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Géographie ou Revenus : les effets distributifs de la taxation carbone

Les effets distributifs de la taxation carbone sont cruciaux pour son acceptabilité politique et  
dépendent à la fois des inégalités de revenus et de facteurs géographiques. En utilisant des 
données  d’enquêtes  et  administratives  françaises,  nous  montrons  que  les  ménages  ruraux 
consacrent une part de leur consommation 2,8 fois plus élevée aux combustibles fossiles que 
les ménages urbains, et travaillent dans des entreprises qui émettent 2,7 fois plus de gaz à 
effet de serre. Nous intégrons ces éléments dans un modèle spatial à agents hétérogènes avec  
choix endogènes de migration et d’accumulation de richesse. Après une augmentation des 
taxes carbone, nous estimons que les ménages ruraux subissent des pertes de bien-être 20 % 
plus élevées que les ménages urbains. Ces pertes sont amplifiées à court terme par une baisse 
des salaires, mais partiellement compensées à long terme par la migration et la baisse des prix 
de  l'immobilier.  Par  rapport  à  des  transferts  uniformes,  cibler  à  la  fois  le  revenu  et  la 
localisation géographique augmente les gains de bien-être médians d’un tiers de plus que ceux 
obtenus par le seul ciblage du revenu. Nous concluons que les mécanismes de taxation du 
carbone  doivent  tenir  compte  des  disparités  spatiales  afin  d’améliorer  leur  acceptabilité 
politique.

Mots-clés :  Taxe  carbone,  énergie,  politique  fiscale,  inégalités,  géographie,  dynamiques 
spatiales, migration

Codes JEL : C61, E62, H23, Q43, Q58, R13

Geography versus Income: The Heterogeneous Effects of Carbon Taxation

The distributive effects of carbon taxation are critical for its political acceptability and depend 
on both income and geographic factors. Using French administrative data, household surveys, 
and matched employer-employee records, we document that rural households have a fossil 
fuel consumption share 2.8 times higher than that of urban households and are employed in 
firms that emit 2.7 times more greenhouse gases. We incorporate these insights into a spatial  
heterogeneous  agent  model  with  endogenous  migration  and  wealth  accumulation,  linking 
spatial and macroeconomic approaches. After an increase in carbon taxes, we quantify that 
rural  households face 20% higher welfare losses than urban households.  These losses are 
amplified in the short run by wage declines, but partially offset in the long run by migration 
and lower  rents.  Compared to  uniform transfers,  jointly  targeting income and geographic 
location increases median welfare gains by one third more than those achieved by income 
targeting alone. We conclude that carbon policies should account for spatial differences to 
improve political feasibility.

Keywords:  Carbon  tax,  energy,  fiscal  policy,  inequalities,  geography,  spatial  dynamics, 
migration.
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Introduction

Carbon taxes reduce emissions but impose unequal costs for households and firms. Fossil

fuels represent a larger share of expenditures for low-income and rural households, and a

larger share in firms’ input costs in rural areas. These distributive effects can undermine

the political acceptability of carbon taxation, as illustrated in France with the Yellow

Vests protests and the subsequent carbon tax freeze. Consequently, designing socially

acceptable carbon taxes requires careful consideration of their distributional impacts

on both households and firms. While the existing literature has predominantly focused

on the “rich versus poor” dimension of the energy transition burden, less attention

has been given to the geographical heterogeneity in energy consumption patterns. This

paper addresses this gap by providing detailed empirical evidence on regional disparities

and integrating these patterns into a rich quantitative model.

In the first part of the paper, we systematically document the distribution of direct

emissions across both households and firms, using several datasets covering the French

economy. We link household-level surveys to fiscal declarations to estimate fossil fuel

consumption for heating and transportation at a highly granular level. Worker-level

emission patterns are derived from matched employer-employee administrative data

combined with sector-level greenhouse gases emissions. In both cases, we describe how

direct emissions are distributed across income levels and city sizes.

In the second part of the paper, we integrate these emission patterns into a new spa-

tial heterogeneous-agent model that captures heterogeneity in both income and geogra-

phy. To our knowledge, this is the first model to simultaneously incorporate endogenous

savings and migration choices within a fully-fledged heterogeneous-agent general equi-

librium framework. Households endogenously choose whether to migrate in response

to carbon taxation, capturing mobility frictions and relocation incentives. Our model

successfully replicates observed heterogeneity in income, wealth, and energy consump-

tion across regions, as well as the cross-correlation between income, geography, and

migration patterns. We then introduce carbon taxes on both households and firms.

Under a welfare-maximizing planner with an emissions constraint, we evaluate a range

of revenue-recycling scenarios, from increased public spending to targeted transfers

based on location and income. Our paper yield three key findings.

First, using micro data on households and firms, we show that geography is more

important than income to assess emission patterns. Our analysis of household-

level survey data reveals that rural households spend 2.8 times more fossil fuels, as a

share of consumption, primarily due to larger homes and higher reliance on car travel.

Notably, supplementary evidence suggests that this rural-urban disparity in energy

consumption extends beyond France, with similar patterns observed in the US, the UK,
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Germany, Spain, Italy, or the Netherlands. Matching employer-employee records with

sectoral-level emissions data, we find that rural workers are twice as likely as their urban

counterparts to be employed in emissions-intensive sectors, such as agriculture and

manufacturing. By attributing firm-level greenhouse gases emissions to employees based

on firm size and sectoral emission intensity, we find that rural households are employed

in firms emitting 2.7 times more GHGs than those located in the Parisian agglomeration.

These findings are embedded into our spatial heterogeneous-agent model to examine the

distributional effects of carbon taxation across both income and geographic dimensions.

Second, our quantitative model shows that carbon taxes disproportionately

burden rural households, with effects varying by income, tax type, and time hori-

zon. In our benchmark scenario, we target a 10% reduction in emissions and use the

additional fiscal revenues to increase public spending that does not enter utility. We find

that median welfare losses in rural areas are 20% higher than those in the Parisian ag-

glomeration (−1.1% vs. −0.9% measured as a welfare-equivalent reduction in wealth at

each period, expressed as a share of initial income). We decompose these effects across

our two tax types: on households’ direct emissions and on firms’ direct emissions. The

tax on household is highly regressive, as fossil fuels are necessities, disproportionately

burdening low-income households. The firm tax is less regressive, as it primarily re-

duces wages – adversely affecting middle-income households – and lowers interest rates,

which harms wealthier households. Moreover, these taxes trigger distinct migration

patterns: while the household tax drives low-income households out of rural areas to

escape steep energy costs, the firm tax attracts them through falling rents. Overall,

our findings underscore that the welfare costs of carbon taxation evolve over time, with

migration playing a crucial role in mitigating its impact across regions.

Third, we find that ignoring geographical location in recycling rules reduces

median welfare by 0.04 point, and mean welfare by 0.13 point. Our optimal

transfer recycling policy – targeting both income and location – outperforms income-

only targeting by 0.04 point and uniform transfers by 0.17 point. Relative to uniform

transfers, jointly targeting income and geographic location increases median welfare

gains by one third more than income targeting alone. This approach not only boosts

median welfare across all income and geographic groups but also cuts the share of

households experiencing welfare losses by 10% compared to income-based transfers.

A key mechanism is that location-based targeting dampens migration flows, thereby

mitigating welfare costs. Importantly, these findings remain robust across alternative

welfare objectives, Pareto weights, and parametric formulas.

Our main contribution is to develop a unified framework for analyzing the gen-
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eral equilibrium distributive effects of carbon taxation by jointly examining its impact

on both households and firms, incorporating both income and spatial heterogeneity.

This framework bridges two key strands of the literature: the distributive effects of

carbon taxation, and the modeling of income and geographical heterogeneity among

households.

The literature on the distributive effects of carbon taxation examines the heteroge-

neous fiscal incidence of carbon taxes across households, using micro-simulation, Com-

putable General Equilibrium (CGE), or heterogeneous-agent general equilibrium mod-

els. The general approach is to link the household distribution, typically along the

income dimension, to energy prices, which are impacted by carbon taxes. This requires

accounting for both the direct effect (households consume fossil fuels for housing and

transportation) and the indirect effect (firms use energy as an input, which affects the

prices of other inputs, such as capital and labor, thus influencing income distribution).

Based on micro-simulations, Cronin, Fullerton and Sexton (2019) for the U.S. and

Douenne (2020) in the French context conclude that carbon taxes are regressive, with

most of the heterogeneity occurring within income quantiles. We confirm that carbon

taxes are regressive and explicitly model this within-quantile heterogeneity by intro-

ducing geographical differences, which are a key determinant of tax burden disparities

across households. Within the CGE literature, Rausch, Metcalf and Reilly (2011) and

Goulder et al. (2019) conclude that the progressivity of source-side effects (related to

changes in relative factor prices) offsets the regressive use-side effects (related to the

composition of total expenditures). Compared to these studies, we endogenize income

and wealth distributions by incorporating idiosyncratic income risk, and introduce ge-

ographical heterogeneity. Our framework is similar to Känzig (2023), who integrates

energy into both household final consumption and firm inputs, capturing distributive

effects on both household income and expenditures; we add an additional layer of het-

erogeneity by considering the spatial dimension. Finally, a central component of the

analysis of the distributive effects of carbon taxation is the use of carbon tax revenue.

As in Goulder et al. (2019) and Mathur and Morris (2014), we demonstrate that trans-

fers improve welfare and can make the policy progressive when targeted at low-income

households. However, we find that income-based transfers do not fully compensate indi-

viduals in rural areas, motivating the exploration of geography-based transfers. Unlike

Fried, Novan and Peterman (2024) and Barrage (2020), who use the revenue to reduce

distortive taxes, we focus on transfers, as they explicitly separate carbon tax revenue

from the general state budget, thus enhancing the political acceptability of the policy.

This paper also contributes to the macroeconomic literature on heterogeneity by

introducing a spatial dimension into heterogeneous-agent models. We start with the
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Aiyagari (1994) model, with idiosyncratic productivity shocks that generate an endoge-

nous income and wealth distributions. We extend this framework by introducing non-

homothetic preferences, as in Comin, Lashkari and Mestieri (2021), to model household

energy demand, and by incorporating multiple production sectors, following Barrage

(2020), to capture firms’ energy demand. We also allow for substitution between clean

and dirty energy using CES energy baskets. Since geography is a key dimension of

heterogeneity (see Redding and Rossi-Hansberg (2017)), our contribution is to add a

geographic layer to this framework while preserving the rich general equilibrium struc-

ture of heterogeneous-agent models. Specifically, we incorporate endogenous migration,

city-specific income levels, energy requirements, and segmented housing and labor mar-

kets. Following Fajgelbaum et al. (2019), who examine location choices in response

to state taxes in the U.S., and Desmet and Rossi-Hansberg (2014), who study sectoral

recomposition across regions, we highlight the key role of worker reallocation in shaping

the distributive effects of carbon taxation. Households are modeled with discrete loca-

tion choices, subject to a monetary migration cost, if their expected lifetime utility is

higher in another region. Following Couture et al. (2024), Kleinman, Liu and Redding

(2023) and Franklin et al. (2024), households draw preference shocks from an extreme-

value distribution, preventing concentration of rich or poor households in a single area.

We extend this static framework by introducing endogenous wealth accumulation, en-

abling households to save and finance migration. Given that we study a permanent

increase in carbon taxes leading to a new steady state, we account for endogenous pop-

ulation dynamics, as emphasized by Hurst et al. (2016). Our calibrated model replicates

the observed joint distribution of household income and geography, influenced by city-

specific wages and rents, as in Allen and Arkolakis (2014) and Davis and Dingel (2019).

However, we depart from their assumption of symmetric fundamentals by allowing for

region-specific energy requirements. In doing so, our model bridges the gap between

heterogeneous-agent macroeconomic models and spatial frameworks with endogenous

migration. Closest to us, Bilal and Rossi-Hansberg (2021) proposes a dynamic location

model with both endogenous mobility choices and wealth accumulation. They focus on

the individual choice between savings and mobility decisions following income shocks

in a partial equilibrium framework. We expand their set-up in a general equilibrium

model.

The remainder of the paper is organized as follows. Section 1 presents descriptive

evidence on the distribution of household and firm carbon emissions. Section 2 intro-

duces our quantitative model. Section 3 discusses the calibration of the model using

French data. Section 4 presents our main results, while Section 5 explores optimal

carbon taxes and rebate policies. Finally, Section 6 concludes.
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1 Descriptive Evidence

This section presents descriptive evidence on the distribution of greenhouse gases emis-

sions by households and firms in France. Our analysis reveals that geographic factors

outweigh income differences. First, rural households consume more energy and fossil

fuels than urban households. Second, businesses in rural areas are more likely to op-

erate in sectors with higher emissions. Although the focus is on France, we observe

similar patterns in other countries.

1.1 Households’ direct emissions

The direct cost of carbon taxes is borne by households with high consumption of carbon-

intensive energy, such as fossil fuels. Since energy is typically a necessary good, most

of the existing literature has focused on income disparities. However, using survey data

from France, we find that the share of fossil fuels in total expenditures is relatively

uniform across the income distribution but declines significantly with the size of the

city in which households reside.

Data. We use French microdata from the 2017 Budget de Famille (BdF) Insee

survey, covering over 16,000 households. From this consumer expenditure survey, we

construct household-level fossil fuel expenditures by adding up fuels for heating and

those used in vehicles. Fossil-fuel consumption from transportation and heating make

up for more then 97% of households’ direct emissions, other activities being unidentified

in consumption surveys. We then consider total energy consumption as the sum of fossil

fuel expenditures and total electricity expenditures.1 Throughout the paper, we classify

locations into five city types: Rural, Small cities, Medium cities and Large cities based

on population size, and the Parisian agglomeration.2 These categories represent 23.5%,

26.0%, 18.5%, 13.4%, and 18.6% of the population, respectively. For a fair comparison,

we also categorize households into five income groups, ranked by disposable income

quintiles.

Empirical Results. We regress households’ energy and fossil fuel expenditures on

city type, income quintile, and control variables, as detailed in Appendix A.4. This

approach accounts for any potential correlation between income levels and location

choices. The predicted shares of electricity and fossil fuel in total expenditures, by city

1In the BdF survey, as in the US Consumer Expenditure Survey, it is not possible to distinguish

between electricity expenditures for housing purposes and those for charging car batteries.
2Rural: below 2,000 inhabitants, Small cities: between 2,000 and 20,000, Medium cities: 20,000

and 50,000, Large cities: over 50,000, the Parisian agglomeration or the urban unit of Paris: includes

departments 75, 92, 93 and 94, as defined by Insee. In Appendix A, we provide a map of France

corresponding to these categories.
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type and income quintile, are shown in Figure 1. One can interpret these shares as

the mean energy share in each city type (or each income quintile) if the city had the

same characteristics as the whole population. While total energy is a necessary good

— its share decreases from 11.3% for the first income quintile (Q1) to 8.9% for the

fifth quintile (Q5) — the fossil fuel share remains flat across the income distribution,

at approximately 5.9% of total expenditures. In contrast, geography strongly predicts

energy consumption: rural households consume 2.1 times more energy than Parisians

(13.7% versus 6.5%) and 2.8 times more fossil fuels (8.7% versus 3.1%). We then

impute the fossil fuel share for all households in France using the complete set of fiscal

declarations from households in 2021.3 We present its spatial distribution in Figure 3,

by averaging fossil fuel shares at the city code level.

Figure 1: Energy share in total consumption (regression-adjusted)

Note: share of fossil fuel and electricity in total consumption expenditures, results net of controls

(details in Appendix A.4). These are the mean energy share in each group (city type, income quintile)

if the group had the same characteristics as the whole population. Paris: Parisian agglomeration or

urban unit of Paris as defined by Insee.

Source: Authors’ computations using Budget de Famille 2017

To explain these differences in energy shares, we decompose household energy use

into housing and transportation, as shown in Table 3 in Appendix.

Housing accounts for 5.2% of total expenditures on average (56% of energy con-

sumption) but varies significantly across households: from 6.3% in rural areas to 3.6%

in Paris, and from 6% in Q1 to 4.1% in Q5. The primary determinant is the share of

households living in a house, which is very high in rural areas (94%) and very low in

Paris (22%), while it is more stable across income quintiles (44% to 64%). Additional

3See Appendix A for details.
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administrative data4 also reveals that rural households have nearly twice the living

space of households living in the Parisian agglomeration — an average of 105.6 square

meters compared to 64 square meters in the urban unit of Paris. When examining

disposable income distribution, we find that the wealthiest households (Q5) have an

average living space of 108.6 square meters, while the poorest households (Q1) live in

an average of 72.5 square meters.

Transportation accounts for 4.1% of total expenditures on average (44% of energy

consumption), but regional differences are again more pronounced: 5.8% for rural areas

versus 2.1% for the Parisian agglomeration, compared to 4% for Q1 and 3.4% for Q5.

Rural households almost universally own a car (93%) and use it for commuting (48%),

whereas Parisian households rely more on public transportation and own cars less often.

The number of vehicles and the necessity of commuting increase with income, resulting

in relatively flat transportation costs across income quintiles. Consequently, geography

is more important than income in explaining household energy shares, driven by higher

housing and transportation costs in rural areas.

4Supplementary data is available in Appendix A.
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Table 1: Energy share in total consumption (%) for several countries

Rural Towns Cities Q1 Q2 Q3 Q4 Q5

France (sum) 11.8 10.3 7.9 10.3 10.0 10.3 9.8 8.6

electricity & gas (housing) 5.2 4.6 3.6 5.5 4.8 4.5 4.2 3.6

transport costs incl. fuels 6.6 5.7 4.3 4.8 5.2 5.8 5.6 5.0

Germany (sum) 13.7 12.6 10.7 11.7 12.3 12.1 11.9 11.1

electricity & gas (housing) 5.7 5.3 5.0 7.7 6.5 5.7 5.1 3.9

transport costs incl. fuels 8.0 7.3 5.7 4.0 5.8 6.4 6.8 7.2

Italy (sum) 14.1 12.2 9.8 – – – – –

electricity & gas (housing) 6.7 5.8 5.0 – – – – –

transport costs incl. fuels 7.4 6.4 4.8 – – – – –

Netherlands (sum) 10.4 10.2 9.1 7.4 8.4 9.3 9.6 11.0

electricity & gas (housing) 4.5 4.2 3.8 5.0 4.5 4.1 3.9 3.4

transport costs incl. fuels 5.9 6.0 5.3 2.4 3.9 5.2 5.7 7.6

Spain (sum) 12.6 11.0 8.5 10.2 11.0 10.9 10.0 9.1

electricity & gas (housing) 5.1 4.2 3.9 5.4 4.8 4.5 4.2 3.6

transport costs incl. fuels 7.5 6.8 4.6 4.8 6.2 6.4 5.8 5.5

UK (sum) 14.3 12.8 11.2 11.4 12.6 12.2 12.5 11.7

electricity & gas (housing) 5.4 4.8 4.9 7.6 6.5 5.2 4.5 3.7

transport costs incl. fuels 8.9 8.0 6.3 3.8 6.1 7.0 8.0 8.0

US (sum) 8.3 7.1 5.7 8.8 8.9 7.7 6.9 4.8

electricity & gas (housing) 3.9 3.3 2.8 4.9 4.5 3.6 3.1 2.2

fossil fuels (transports) 4.4 3.8 2.9 3.9 4.4 4.1 3.8 2.6

Sources: Eurostat 2020 Household Budget Surveys (HBS) for European countries, Eurostat 2015

HBS for the UK, 2023 Consumer Expenditure Survey (CES) for the US.

The dominance of geography over income generalizes to many countries, as shown

in Table 1. In Germany, Spain, the Netherlands, and the United Kingdom, the energy

share of total expenditures is relatively flat across income quintiles, with Q1/Q5 ratios

of 1.1, 1.1, 0.7, and 1.0, respectively. However, the energy share in these countries

varies significantly by living area, with Rural/City ratios of 1.4, 1.1, 1.7, and 1.4,

respectively. In the United States, geography also plays a key role in determining

energy consumption (8.3% in rural areas versus 5.7% in cities with populations over

1 million). However, income differences are more pronounced, with energy shares of

8.8% for Q1 compared to 4.8% for Q5. This contrast between the United States and

Europe can be attributed to transportation costs: while transportation expenses are

higher for wealthier households in Europe, the opposite is true in the United States,

where even lower-income households allocate a substantial share of their expenditures

to transportation.

Therefore, geography plays a more significant role than income in explain-
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ing the share of energy and fossil fuels in household expenditures. Accounting

for this geographic dimension is crucial for understanding the distributive effects of car-

bon taxation, as fossil fuels account for the majority of direct emissions from households.

However, carbon taxes affect not only households but also the firms that employ them.

1.2 Firms’ direct emissions

Some sectors, such as metalworking, agriculture, and transportation, have higher emis-

sions and are therefore more impacted by carbon taxes. Moreover, these sectors are

unevenly distributed across regions and occupations, meaning that both income and

geography play a role in determining the firms where households are employed. This,

in turn, shapes the distribution of the indirect costs of carbon taxes.

Data. We use administrative matched employer-employee data from France known

as BTS-Salariés.5 The BTS dataset has two advantages. First, it is exhaustive, contain-

ing more than 60 million observations in each cross-section, providing rich demographic,

geographic, and plant-level information. Second, it has a panel version that covers the

entire work history of a representative set of workers (∼ 3 million individuals).6 The

large sample size enables us to conduct a detailed analysis by city code and to finely

disaggregate employer and worker groups, which allows for controlling composition ef-

fects. Our contribution is to merge this dataset with sectoral emissions data from 2022

National Accounts.7 To assess workers’ exposure to a carbon tax on firms, we compute

GHGs emissions per worker in each establishment of the economy. Using sectoral-level

emissions and establishment’s share in sectoral labor force, we construct plant-level

emissions. We then build worker-level emissions by dividing plant-level emissions by

employment. We favor establishment-level estimates since biggest firms may own sev-

eral establishments operating in heterogeneous sectors. As a robustness check, we do

the same exercise using firm-level data in Appendix A.3 and find very similar results.

Our method has several limitations. First, it assumes homogeneous emissions inten-

sity within each sector, which may not hold in practice due to differences in technology,

scale, or production processes across firms. Second, we allocate emissions equally across

all workers within a firm, implicitly assuming that all occupations contribute equally

to emissions. However, some roles are likely more carbon-intensive than others (e.g.,

production versus administrative tasks). Incorporating more granular, firm-level or

5BTS-Salariés: Base Tous Salariés : fichiers Salariés.. Notice that in this dataset, we only consider

employees and not independent self-employed workers. For instance in the agricultural sector, we do

not cover self-employed farmers.
6We use the panel dimension of the dataset to analyze mobility rates across regions.
7See Appendix A.3 for details.
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occupation-level data could improve the precision of our estimates and represents a

promising avenue for future research. To our knowledge, such data does not currently

exist in France.

Empirical results. We regress households’ “tons of CO2eq per worker” on city type,

income quintile, as described in Appendix A.4. The predicted tons of CO2 per worker by

city type and income are displayed in Figure 2. We also present its spatial distribution

in Figure 3. Additionally, we present an extensive margin indicator showing the share

of workers in emissions-intensive sectors.8 Figure 2 reveals that rural households work

in firms that are 3 times more polluting than households in the Parisian agglomeration

(19.5 tons of CO2 per worker versus 7.3). Moreover, considering that rural areas account

for 24% of the population, compared to 19% for the Parisian agglomeration, we find

that firms employing rural residents account for 36% of total firms’ emissions, versus

9% for Paris. Along the income dimension, wealthier households tend to work slightly

more in emissions-intensive firms. But the gradient is much less pronounced compared

to the geography dimension.

Figure 2: Emissions imputed to workers and % of workers in emissions-intensive firms

Note: tons of C02eq imputed per worker, controlling for variables detailed in Appendix A.4. It

represents the average tCO2eq/worker in each group (city type, income quintile) if the group had

otherwise the same characteristics as the whole population. Paris: Parisian agglomeration or urban

unit of Paris as defined by Insee.

Source: Authors’ computations using 2022 BTS-Salariés and National Accounts

We provide a sectoral decomposition along the income and geography dimensions in

Table 6 to explain these results. Workers in the two most polluting sectors, agriculture

and industry, heavily concentrate in rural areas. While 3% and 14.2% of rural house-

8Emissions-intensive sectors are defined as those with emissions intensity above 5tCO2 per worker.
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holds are employed in these sectors, only 0.1% and 4.3% of households in the urban

unit of Paris work in them. In contrast, 0.4% and 15% of high-income households (Q5)

work in agriculture and industry, compared to 2.5% and 5.6% of households in the first

income quintile (Q1). In Table 7, we additionally show that rural households represent

46% of all agriculture workers, 42% of mining and quarrying workers, 30% of manu-

facturing workers, 28% of energy workers or 22% of construction and transportation

workers. Those numbers are respectively: 0.4%, 3%, 5%, 12% and 10% for Parisian

households. Therefore, since both rural and wealthier households are more likely to

work in emissions-intensive sectors, they may be more affected by the introduction of

a carbon tax on energy consumed by firms.

Figure 3: Spatial distribution of fossil fuel share and emissions per workers

Sources: Panel a: BdF 2017 and 2021 households fiscal declarations. Panel b: 2022 BTS and national

accounts

In conclusion, geography plays a more significant role than income in explaining both

households’ energy consumption and firms’ emissions intensity. As a result, house-

holds in rural areas will be affected by the introduction of a carbon tax in

two ways: first, through their higher fossil fuel consumption, and second, because the

firms they work for are more emissions-intensive. The role of income is less straight-

forward; while energy consumption is a necessary good, wealthier households tend to

work in more polluting sectors. Therefore, to fully understand the distributive effects

of carbon taxes, we need to develop a model that incorporates these geographic and

sectoral differences.
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2 A spatial heterogeneous-agent model

We combine heterogeneous-agent à la Aiyagari (1994), with idiosyncratic productivity

shocks leading to income and wealth heterogeneity, to spatial models, with segmented

labor and housing markets, different subsistence energy levels by living areas, and

endogenous migration choice. Our productive sector is composed of a regional final good

producer in each living area, which uses capital, labor, electricity and imported fossil

fuel as intermediate inputs. Another national representative firm produces electricity

using capital and imported fuel. Finally, the fiscal authority has a complete set of

instruments: a progressive labor income tax Γ(·), a flat capital income tax τ k, a VAT

tax τVAT and carbon taxes on households τh or firms τ f . Carbon tax revenue is used

either to increase public spending or to implement targeted transfers. The algorithms

used to solve the model are explained in Appendix B.

2.1 Households

The economy is populated by an infinite amount of households indexed by i that are

heterogeneous in two dimensions. The “vertical” heterogeneity is related to the id-

iosyncratic productivity process z, creating a distribution for wealth and income. The

“horizontal” heterogeneity is related to the living area, with several household types k

ranking households from “rural” to “urban”, depending on the size of the city they live

in. The living area determines the minimum subsistence energy consumption level ē(k),

the energy mix parameter γh(k), housing price pH(k), wage w(k), and the mean and

variance of the idiosyncratic productivity shock, so that the individual productivity is

denoted zi(k). Households optimally choose the city type, taking into account a fixed

migration cost: κ(k, k′) ≥ 0. As in Ferriere et al. (2023), we assume a preference shock

that follows a Gumbel distribution with variance ϱ.

Households maximize intertemporal utility, choosing consumption c, housing con-

sumption H, asset a′ at the beginning of next period, energy bundle eh (composed of

electricity Nh and fossil fuel F h with the carbon tax τh), subject to their budget con-

straint, their idiosyncratic productivity process and a borrowing constraint. Households

supply an exogenous level of labor l̄. Each household i of type k solves the following

program9 (omitting subscript i for clarity):

9Denoting a the assets at the beginning of the period, z the idiosyncratic productivity,

and with x′ the next period variable x, the Bellman equation is defined as V (a, k, z) =

maxu,a′,k′

{
u1−θ−1
1−θ + βE [V (a′, k′, z′)|k, z]

}
, such that Equations (1) to (5) hold.
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max
{at+1,kt+1,ct,eht ,F

h
t ,Nh

t }
+∞
t=0

E0

∞∑
t=0

βt

{
u1−θ
t − 1

1− θ

}
subject to:

Λ
1
σ
C

(
ct
uϵC
t

)σ−1
σ

+ Λ
1
σ
E

(
eht − ē(kt)

uϵE
t

)σ−1
σ

+ Λ
1
σ
H

(
Ht

uϵH
t

)σ−1
σ

= 1 (1)

eh =

[
(1− γh(kt))

1
ϵh (Nh)

ϵh−1

ϵh + γh(kt)
1
ϵh (F h)

ϵh−1

ϵh

] ϵh
ϵh−1

(2)

(1 + τVAT)
[
ct + pNt N

h
t + (pFt + τht )F

h
t

]
+ pH(kt)Ht︸ ︷︷ ︸

Total consumption expenditures

+ at+1 − at︸ ︷︷ ︸
Savings

+ κ(k, k′)︸ ︷︷ ︸
Migration cost

= Γ
(
zt(kt)w(kt)l̄

)︸ ︷︷ ︸
Net labor income

+ (1− τ k)rtat︸ ︷︷ ︸
Net capital income

+Tt(kt, zt, at)︸ ︷︷ ︸
Transfers

(3)

zt(kt) = ext(kt) , xt(k) = (1− ρz)µz(kt) + ρzxt−1(kt) + ϵt, ϵt ∼ N (0, σz(kt)) (4)

at ≥ a (5)

Equation 1 implicitly defines utility following Comin, Lashkari and Mestieri (2021),

which is appealing for two reasons. First, it introduces a non-homotheticity for the

energy consumption that does not vanish with income: energy represents a higher share

of total consumption expenditure for poor households, and stays a non-homothetic good

even for high income. Second, this utility function allows for imperfect substitution

between energy and other goods, with a constant elasticity of substitution σ. Here,

ΛC , ΛH and ΛE control the share of expenditures devoted to c, H and eh, and ϵC , ϵH

and ϵE control the income elasticity of demand for each good. On top of this utility

function, we introduce a minimum subsistence level in energy ē(k) that differs across

living areas, accounting for higher energy needs in rural areas compared to urban areas

(lack of public transportation, less efficient transportation system, bigger houses...).

Equation 2 describes the energy bundle of the household. The elasticity of sub-

stitution between fossil fuel and electricity is determined by the parameter ϵh, and the

energy mix depends on the living area with the parameter γh(k).

Equation 3 defines the budget constraint of households, subject to four taxes.

Good and energy consumptions are subject to a VAT tax at a rate τVAT. Fossil fuel

with relative price pFt is subject to an excise carbon tax τht . On the revenue side, labor

income is taxed according to a progressive tax rule Γ(·) defined later. Capital income

is subject to a flat tax at rate τ k. Finally, households receive lump-sum transfers from

the fiscal authority, which may depend on their disposable income level or place of
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residence. On the expenditure side, revenues can be used for consumption, savings, or

covering migration costs.

Equation 4 is the idiosyncratic productivity process. Productivity follows an AR(1)

process with normally distributed shocks. We allow the mean µz and the variance σz

to depend on the type k.

Finally, Equation 5 depicts the borrowing constraint leading to imperfect capital

markets. Households cannot borrow more than −a, so that some agents will be con-

strained and “hand-to-mouths”, creating households with high marginal propensity to

consume at the bottom of the wealth distribution.

2.2 Production: goods, energy and housing

2.2.1 Regional Goods & Services sector

The consumption good (Y ) is produced competitively in each living area k using labor

LY , capital KY and energy bundle eY (composed of electricity NY and fossil fuel F Y

with the carbon tax τ f ). We assume that goods in each region are perfect substitutes,

so that Y =
∑

k Yk. Good producer in region k solves the following program:

max
{LY

k ,KY
k ,eYk ,FY

k ,NY
k ,Yk}

ΠY = Yk − rKKY
k − w(k)LY

k − (pF + τ f )F Y
k − pNNY

k

such that

Yk =

[
(1− ωy(k))

1
σy
(
(KY

k )
α(LY

k )
1−α
)σy−1

σy + ωy(k)
1
σy (eYk )

σy−1

σy

] σy
σy−1

eYk =

[
(1− γy)

1
ϵy (NY

k )
ϵy−1

ϵy + γ
1
ϵy
y (F Y

k )
ϵy−1

ϵy

] ϵy
ϵy−1

ωy(k) is region-specific, reflecting the fact that carbon-intensive industries are often

located in rural areas, whereas less intensive service firms are more common in ur-

ban areas. All other parameters (δ, α, σy, γy, ϵy) are similar across regions. Since labor

supply is not uniformly distributed and production function parameters differ across

regions, wages w(k) are region-specific. Hassler, Krusell and Olovsson (2021) points

toward a very low short-run substitutability between energy and other inputs once the

technology factors have been chosen. Moreover, Casey (2024) shows that Cobb-Douglas

production functions with energy inputs vastly overestimate transitional emissions ad-

justments. Both papers motivate our choice for a CES production function, with σy

being the elasticity of substitution between energy and non-energy inputs. Moreover,

we assume constant return to scale since Lafrogne-Joussier, Martin and Mejean (2023)

finds a full pass-through of positive energy price shocks using French firm microdata.
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Finally, the energy used by the firm is a bundle of electricity and fossil fuel, with an

elasticity of subtitution governed by the parameter ϵy.

2.2.2 National electricity sector

Electricity N (for Nuclear) in our model is a consumption good for households (Nh) and

an intermediary input for firms (Ny). We assume electricity is produced competitively

using capital kN and fossil fuel FN , according to the following program:

max
{KN ,FN ,N}

ΠN = pNN − rKKN − (pF + τ f )FN

such that

N = (KN)ζ(FN)1−ζ

2.2.3 Imported fossil fuel sector and the rest of the world

Fossil fuel is imported from the rest of the world, at a price pF that reacts to the

demand:

pF = p̄F δF

The rest of the world uses this revenue to import goods X from the domestic economic.

The budget constraint of the rest of the world – or equivalently the equilibrium condition

for the current account of both the domestic economy and the rest of the world – is

then:

X = pFF

This assumption is a reduced-form representation of the rest of the world, while still

allowing fossil fuel prices to adjust following a decline in domestic demand.

2.2.4 Regional housing supply sector

Each city-type k has a housing supply HS(k) that may react to the regional housing

price:

HS(k) = Hk

(
pH(k)

)δH
where Hk is a constant and δH is the price elasticity of housing supply.

2.3 Fiscal authority

The fiscal authority gets revenue from taxes on labor income, capital income, con-

sumption and carbon taxation (i.e. fossil fuel consumption). It uses its revenue to
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fund transfers (T ), public spending (G) and public debt repayment (rtd̄). Denoting

µt(a, z, k) the measure of households with state (a, z, k), the aggregation over all house-

holds is given by Xt =
∫
x dµt(a, z, k) for x ∈ {a, c, F h, Nh}, and firms aggregation

F Y
t =

∑
k F

Y
k,t. The government has the following budget constraint:

Tt +Gt + rtd̄ =

∫
[ztwtlt − Γ(ztwtlt)] dµt + τ krtAt + τVAT

(
Ct + pNt N

h
t + pFt F

h
t

)
+ τht (1 + τVAT)F h

t + τ ft (F
Y
t + FN

t )︸ ︷︷ ︸
Carbon tax revenue (CTR)

Following Heathcote, Storesletten and Violante (2017), we assume a progressive labor

tax that gives the following net labor income:

Γ(zwl) = λ(zwl)1−τ

Apart for the carbon tax revenue, the budget constraint clears with G. However, the

carbon tax revenue can be separately allocated either to finance an increase in public

spending, or to fund lump-sum transfers towards households, possibly contingent on

income and location. We explore these different scenarios in Section 5.

2.4 Market clearing conditions and equilibrium

We denote µk̄
t = µt(a, z, k = k̄) the regional aggregation of households of type k̄. The

firm aggregation is X =
∑

k X(k) for X ∈ {KY , HS, Y, IY , F Y , NY }. Finally, to close

the model, we have the following market clearing conditions:

At = KY
t +KN

t +HS
t + d̄ (Asset)

∀k,
∫
zl dµk

t = LY
k (Labor)

∀k,
∫
H dµk

t = HS
t (k) (Housing)

Yt = Ct + INt + IYt +Gt +Xt +
∫
κtdµt (Goods and services)

Ft = FN
t + F Y

t + F h
t (Fossil fuel)

Nt = NY
t +Nh

t (Electricity)

Households’ savings are claims on a mutual fund that holds capital, housing and public

debt, and redistribute the average return to households according to the equation:

rtat = (rKt − δ)Kt +
∑

k p
H
k,tH

k
t + rtdt. Note that in this model, we don’t consider the

specific valuation effects coming from the local housing market. This means that our

Parisian households in the model do not own housing in Paris but rather own a share
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of the total housing stock, proportional to their wealth. Therefore, our model might

underestimate the gap between Paris and rural areas. After carbon taxes, Parisian

households might benefit from an increase in housing prices. We leave that for future

research.

The goods and services (G&S) production (Y ) is consumed by households (c), gov-

ernment (G) or foreigners (X), or invested by firms (IN , IYk ), partly to compensate the

depreciation rate, so that we have It = Kt+1 − (1− δ)Kt. Electricity N is consumed as

intermediate inputs by firms (NY ), or as a commodity good by households (Nh).

We define the equilibrium as paths for households decisions {Ct, Ht, N
h
t , F

h
t , At+1, Kt+1}t,

G&S firm decisions {Yk,t, L
Y
k,t, K

Y
k,t, F

Y
k,t, N

Y
k,t}k,t, electricity firm decisions {Nt, K

N
t , FN

t }t,
relative prices {rt, wk,t, p

N
t }k,t, fiscal policies {Γ(.), τ k, τVAT, τht , τ

f
t }t, public expenditures

{Tt, Gt}t, and aggregate quantities, such that, for every period t, (i) households and

firms maximize their objective functions taking as given equilibrium prices and taxes,

(ii) the government budget constraint holds, and (iii) all markets clear.

3 Calibration on French macro and micro data

As this paper assesses the distributive effects of carbon taxation, the main point of

the calibration is to reproduce the energy mix used by households and firms in France,

along the geography and income dimension. As shown in Section 1, households in rural

areas consume more energy and fossil fuel than households in large cities, and work

in more emission-intensive firms. We carefully calibrate the joint geography-income

distribution, the migration patterns between regions, and the main aggregates. As

explained in Appendix B, our calibration strategy is to directly integrate parameters as

guesses of the model, so that each aggregate target is precisely matched. In this section,

we describe how we choose the target for each parameter. The values for all parameters

are presented in Table 9. Untargeted moments – income composition, taxes, wealth

and MPCs distributions – are presented in Appendix C.

3.1 Households

Consumption heterogeneity: We use ΛE and ΛH to match the average energy

and housing share in total expenditures, and we normalize ΛC to 1 as in Comin,

Lashkari and Mestieri (2021). The parameters ϵE and ϵH are calibrated to fit the non-

homotheticity of energy and housing across the income distribution, ϵC is normalized

to 1. The parameters {ϵj}j∈{E,H} control relative income (expenditure) elasticities of

demand across different goods. Let’s denote the consumer’s average non-homotheticity

parameter ϵ̄i =
∑

i ωi,jϵj with ωi,j the expenditure share in sector j for household i.
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When σ ∈ (0, 1), if ϵj < ϵ̄i this means that the good i is a necessity good for household j

in the sense that it has an expenditure elasticity lower than 1. In our current calibration

both energy and housing are considered as necessity goods for the average household.10

We then add the ē(k) to match the observed spatial heterogeneity in energy constraints.

We normalize ē(Paris) = 0 and set the other ē(k) to match the average energy share in

each city type, and γ(k) to have the right energy mix in each area, as shown in Figure

4.a.

Figure 4: Energy share in total consumption

Notes: share of fossil fuel [(pF + τh)Fh] and electricity [pNNh] in total consumption expenditures

[c+(pF + τh)Fh+ pNNh]. Panel a: by geographical location. Panel b: by disposable income quintile,

untargeted in the model.

Source: BdF 2017 Insee survey.

We estimate the elasticity of substitution between energy and G&S consumption to σ =

0.2, using National Accounts longitudinal data from 1959 to 2021 (the data and method

are described in Appendix C). Finally, we set the elasticity of substitution between fossil

fuel and electricity to ϵh = 1.5. Literature estimates range from 0.02 in the short-run in

Hassler, Krusell and Olovsson (2021) to 2 in the long-run for Papageorgiou, Saam and

Schulte (2017): we choose this value to be the same as the one selected for firms (ϵy),

estimated in Fried, Novan and Peterman (2024). In Appendix F, we provide robustness

check for alternative values of σ, ϵh and ϵy.

Income process: as changes in transfer, labor and capital incomes account for a

10Note that in a 3-good (or higher) environment, being a luxury or a necessity good is not an intrinsic

characteristic of a good but depends on the consumer’s income level.
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large part of the distributive effects of carbon taxation, we calibrate carefully the distri-

bution of each type of income. We fit the disposable income distribution11 (Figure 5.a),

using the AR(1) persistence parameter ρz, which is set to be the same across all types.

We use the means µz(k) and variances σz(k) of the idiosyncratic productivity process

for each type to match the proportion of each geographical location type within each

disposable income quintile (Figure 5.b). Our model recovers that Parisian households

are richer than average, as they account for 26% of the top income quintile but only

19% of the population. Households living in rural areas or small cities are more equally

distributed, with over-representation in Q2, Q3 and Q4, and under-representation in

Q1 and Q5.

Figure 5: Distribution of households and migration matrix

Notes: Panel a: quintile of disposable income. Panel b: share of each geographical location type within

each quintile in data (solid lines) and in the model (dashed lines). Panels c and d : probability to have

migrated from k towards k′ 5 years later, with {1, 2, 3, 4, 5} = {Rural, Small, Medium, Large, Paris}.
Sources: Panel a: RPM 2021 Insee survey. Panel b: BdF 2017 Insee survey. Panel d. Constructed

using panel data from BTS-Salariés 2016-2021.

Migration and other parameters: we compute the migration matrix between

11From the 2021 Insee survey “Revenus et patrimoine des ménages” (RPM 2021).
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each region over 5 years12, i.e. the probability of being in region k′ at time t+ 5 when

the household is in region k at time t. We create a 5 × 5 migration cost matrix κ to

match this migration matrix, and show our results in Figure 5. We recover the fact that

85% of households on average stay where they are (diagonal of the matrix), that the

movers tend to relocate to a close city type (the values around the diagonal). Finally, we

set the annual discount factor β = 0.94 to match the French capital-to-income ratio13

when excluding public debt: a
GDP

= 4.5. Like in Kaplan, Moll and Violante (2018), we

set the intertemporal elasticity of substitution (IES) 1/θ to 1.

3.2 Firms

Goods and services firm: the energy share ωy(k) is city-specific and accounts for

the share of each regional firm in total emissions, as illustrated in Figure 2. We follow

Fried (2018) and set the elasticities of substitution between energy and the capital-

labor bundle, and between electricity and fossil fuel, to respectively σy = 0.05 and

ϵy = 1.5. These elasticities lie within the range of estimates from Papageorgiou, Saam

and Schulte (2017): we provide robustness check for alternative values in Appendix F.

The capital share is set to α = 0.31 to match the share of labor revenue wl
GDP

= 65%

following Cette, Koehl and Philippon (2019). The share of fossil fuel in the policy mix

is set to γy = 0.86 such that electricity accounts for 33% of the regional firms’ energy

mix. Finally, the depreciation rate is set to δ = 11.8% to match the aggregate share of

investment as in Auray et al. (2022).

Electricity firm and other parameters: the electricity sector is capital inten-

sive, so we set ζ = 0.9813 to have FN

F
= 1%. We assume that electricity is produced

using few fossil fuel inputs because France relies mainly on nuclear power plants and

hydroelectricity from dams. The initial price pF of the imported fossil fuel is set such

that fossil fuel imports account for 4% of the GDP. The housing supply scaling parame-

ters {Hk=1,2,3,4} are set to obtain the population share of each region in France: 23.5%,

26.0%, 18.5%, 13.4%, and 18.6% for Rural, Small, Medium, Large, and Paris. The last

parameter H5 is set to obtain the share of housing in total wealth H/A = 0.66. The

price elasticity of housing supply is set to δH = 0.2, in the range of common values

found in the housing model literature (for example 0.1 for Murphy (2018) and 0.3 for

Baum-Snow and Han (2024)). Finally, in our main quantitative exercise, we suppose

the price of fossil fuel is fixed and does not react to the domestic demand (δF = 0):

12To compute this migration matrix, we use the panel data BTS-Salariés 2016-2021. We keep only

workers between 30 and 55 years old, with annual wage above e2,100, and present in the dataset

between 2016 and 2021. This represents 1,010,559 individuals.
13See 2022 Banque de France report.
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this small-open economy assumption is relaxed in Appendix F.

3.3 Fiscal authority

We set lump-sum transfers to T = 0.08 to match the share of transfer in each disposable

income quintile, as shown in Figure 11.a. We set the labor tax progressivity to τ = 0.08

following Ferriere et al. (2023). Following Auray et al. (2022), λ targets public spending

Ḡ at 29.3% of GDP, we set the effective VAT rate τVAT to 22.24% and the effective

capital income tax rate to 9.02%. The resulting amount of tax paid by each group of

households is shown in Figure 11.b. The fit with the data is good, as we mostly miss

corporate taxes in the model.

4 Quantitative results

In Section 1, we show that geography is an important determinant of energy consump-

tion for households and firms. In Section 2 and 3, we build a spatial heterogeneous-agent

model, calibrated on France. In this section, we increase carbon taxes τh or τ f and

compute the welfare change associated to the transition.

Experiment. The experiment is the following. We start at the initial steady state

as described in Section 3. At t = 1, we introduce an unexpected shock to the path

of τh or τ f . After t = 1, the path is perfectly anticipated by agents. The shock is

permanent, with the final tax calibrated to reduce emissions by 10% at the final steady

state. We assume the planner is able to anticipate all future reactions of agents (even

migration) and will therefore set carbon taxes in order to reach its emissions target.

The increase in tax is linear: the tax rises from 0 to τfinal in 10 periods, and stays at

τfinal for t ≥ 10. The carbon tax revenue, in this benchmark experiment, is used to

increase public spending; we consider alternative rebating policies in Section 5.

Welfare measure. The welfare is measured as the wealth equivalent along the tran-

sition. It answers the question: “what share of my income should I receive to be

indifferent between staying at the initial steady state, or experiencing the transition?”.

Formally, we retrieve x by computing for each initial wealth a0, region k0 and produc-

tivity z0 the following equality:

∞∑
t=0

βtE0[U
no tax
i,t |a0 + x, k0, z0] =

∞∑
t=0

βtE0[U
tax
i,t |a0, k0, z0]

with U = u1−θ

1−θ
. Finally, we express the wealth equivalent by dividing x by total dispos-

able income: WE(a0, k0, z0) = x(a0, k0, z0)/TI(a0, k0, z0).
14 We then divide this number

14With TI(a, k, z) = Γ
(
z(k)w(k)l̄

)
+ (1− τk)ra+ T (k).
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by the following infinite sum
∑∞

t=1 β
t ≈ 15.7. This gives the transfer a household

should receive every year in order to be indifferent between staying at the steady state,

or experiencing the transition. Therefore, a wealth equivalent of −1% means that a

household should receive every period a lump-sum transfer equal to 1% of their initial

income in order to be indifferent between staying at the steady state, or going through

the transition with the increase in carbon tax.

In this section, we describe the transmission of τh and τ f on household welfare,

categorized by income quintile and location. We also examine the role of migration in

shaping the distributive effects of carbon taxes, and highlight that the associated costs

may differ between the short run and the long run.

4.1 The distributive effects of carbon taxes

The carbon tax burden varies significantly depending on location, income, and the type

of tax. Figure 6 presents the average welfare effects (in wealth equivalent, as described

above) by region and income quintile for the initial distribution, for an increase of τh

only (left panel) and τ f only (right panel).

Before examining the different channels, we provide some general observations.

First, there is a welfare cost associated with reducing emissions by 10%, as the WE is

negative for all the groups considered. This outcome reflects our assumption that gov-

ernment expenditure G is not valued by households. However, public spending could

contribute positively to well-being. Therefore, the net welfare impact of carbon taxation

could potentially be welfare-enhancing. The extent of this effect hinges on the nature

of the spending involved, a question which falls outside the scope of our current anal-

ysis. Second, this cost is higher for τh (−1.7% of initial disposable income on average)

than for τ f (−0.7% of initial disposable income). This implies that the social planner

would need to compensate each individual with e673 every year to make households

accept the increase in τh, and e272 for the increase in τ f .15 Third, both taxes are

regressive, as the welfare cost is higher for poorer households. The regressive effect

is significantly more pronounced for τh. Fourth, the welfare cost varies substantially

by location. Parisian households tend to experience smaller welfare losses than other

regions, regardless of income, while households in small and medium cities consistently

face high losses. We now detail the distributive effects of both taxes.

15Our policy experiments correspond to an increase in τh of e149 per tCO2, and an increase in τf of

e117 per tCO2. They would represent a one-time equivalent transfer of e10,500 for τh and of e4,250

for τf
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Figure 6: Welfare effect by region and income

Carbon tax on households (τh). Taxing households’ fossil fuel consumption directly

affects their consumption baskets without interacting with firms. As shown in the

decomposition in Figure 13, the overall welfare impact of τh depends on two key factors:

the direct effect of the carbon tax and the change in rents pH . The direct effect of

τh is more pronounced for households with high fossil fuel consumption, i.e., rural

and low-income households. Although households can substitute energy for goods and

fossil fuels for electricity, the non-homotheticity of energy consumption with respect

to income (ϵE) and geography (ē) generates heterogeneous welfare costs. Specifically,

the welfare cost is equal to −1.9% of initial disposable income (WE) in rural areas

compared to −1.5% WE in the Parisian agglomeration, and −2.2% WE for the bottom

income quintile (Q1) versus −1.2% WE for the top quintile (Q5). However, this adverse

effect on rural households is partially offset by a decline in rents. As some households

migrate from small cities to large cities to avoid the carbon tax, housing price decreases

by 6.2% in rural areas and increases by 4.6% in the Parisian agglomeration, mitigating

the geographic disparity. Thus, while the carbon tax disproportionately burdens rural

areas due to differing energy consumption patterns, migration and housing market

adjustments alleviate some of this burden.

Carbon tax on firms (τ f). Taxing firms’ fossil fuel consumption alters their input

mix and impacts households through changes in income and general equilibrium effects.

As illustrated in Figure 13, the welfare impact of τ f depends on adjustments in wages,

housing rents, and the interest rate. Since firms in rural areas are more fossil fuel-

intensive, the rise in fossil fuel prices reduces the demand for other inputs, particularly

labor, leading to a decrease in wages of 3.9% in rural areas compared to 1.1% in the

Parisian agglomeration. This results in welfare costs of −1.1% WE and −0.3% WE,
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respectively. The decline in wages disproportionately affects lower-income households,

as labor income constitutes a larger share of their total income. As with τh, this

geographic burden is partially offset by a decrease in rents: as households migrate from

rural areas to urban areas for better wages, pH decreases in rural areas, mitigating

losses for households that remain. Lastly, the reduction in firms’ capital demand lowers

the interest rate, disproportionately affecting wealthier households, as capital income

represents a larger share of their income.

Policy implication of EU-ETS 1 and EU-ETS 2. While not entirely similar, our

framework can give us insights on the expected effects of the European Union Emissions

Trading System (EU ETS). The first scheme (EU-ETS 1), introduced in 2005 and

targeting specific industrial sectors, corresponds to our tax on firms, denoted as τ f . In

contrast, the upcoming extension (EU-ETS 2, also known as Phase 4), scheduled for

2027 and covering sectors not included in the initial phase – primarily goods directly

consumed by households – aligns closely with our tax on households, τh. In Figure

6, we set τh or τ f such that, at the final steady state, total emissions are reduced

by 10% compared to the initial steady state. This represents a carbon tax increase

by e149 per tons of CO2eq for households, and e117 for firms.16 Our simulations

show that the emission and welfare responses are linear with respect to tax levels, with

negligible interactions between τh and τ f . Therefore, we can extrapolate our results for

different price combinations of the EU-ETS schemes. At the peak of the EU-ETS1 in

2023, the price of a ton of CO2 reached e100, which translates into an 8.5% decrease

in total emissions, provided that EU-ETS1 covers all direct emissions by firms. For

the future EU-ETS2, the first three years will include a price containment mechanism,

whereby if the price exceeds e45, additional allowances may be released. This maximal

price translates into a 3% decrease in total emissions, provided the EU-ETS2 extension

covers all direct households emissions. Therefore, assuming a price of e100 for both the

current EU-ETS and its extension, and providing they cover all direct emissions from

both firms and households, our model predicts a decline of 15% in total emissions, and

a welfare cost equal to −1.8% of initial disposable income (or e−629).

Robustness checks. Our primary objective is to quantify the redistributive effects of

carbon taxes. To this end, we have calibrated the model using relatively low elasticities

of substitution, reflecting limited short-run adaptability. In Appendix F, we replicate

the main experiments using alternative values for key elasticities (σ, σy, ϵy, ϵh). We

find that the distributional results are largely robust to changes in σy, ϵy, and δH :

average welfare losses remain around −1.05% (in wealth equivalent terms), with rural

16As firms emit more and have a higher elasticity of substitution for clean energy, they require lower

taxes to reduce emissions by the same amount.
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households experiencing losses approximately 18% higher than those in the Parisian

agglomeration, and households in the bottom income quintile (Q1) facing welfare losses

45% higher than those in the top quintile (Q5). The elasticity of substitution between

fossil fuels and electricity for households (ϵh) plays a somewhat more significant role.

Reducing ϵh from 1.5 to 1.3 increases overall welfare losses by 0.21 point, as it becomes

harder to substitute away from fossil energy. The rural/Paris welfare gap also widens

slightly, from 18.1% to 18.8%, reflecting rural households’ higher reliance on fossil en-

ergy. The most influential parameter is σ, the elasticity of substitution between energy

and other consumption goods. Increasing σ from 0.2 to 0.4 halves the average welfare

cost of carbon taxation and significantly reduces the rural/Paris disparity. As energy

becomes more easily substitutable, differences in baseline energy consumption matter

less for welfare outcomes. These findings suggest that long-run calibrations, featuring

greater flexibility and substitution possibilities, may yield different results. They also

highlight that the political acceptability of carbon taxation could be enhanced through

policies that facilitate adaptation, such as promoting electric vehicles, improving public

transportation, and investing in energy-efficient housing.

In conclusion, due to differences in households’ energy consumption baskets for τh

and firms’ fossil fuel intensity for τ f , both carbon taxes disproportionately impact rural

areas and lower-income households. Migration and housing price adjustments partially

mitigate the welfare costs along the geographic dimension. In the following section, we

further examine the role of migration and the welfare costs over different time horizons.

4.2 Migration and welfare

In our spatial model, households can migrate subject to a migration cost κ, which tends

to smooth welfare costs between regions over time. In this section, we examine the role

of migration in shaping the distributive effects of carbon taxes.

Counterfactual without migration. In Figure 7, we conduct the same experiments

as above (keeping the same target of - 10% in total emissions) but restrict households

from migrating (formally, we set κ = ∞). The blue bars represent the results of our

benchmark with migration, while the black dashed line reflects the scenario without mi-

gration. We observe that, although migration does not significantly affect welfare costs

across the income dimension, it substantially reduces disparities along the geographical

dimension. Without migration, rural areas face welfare costs equal to −2.7% WE of

initial disposable income for τh and −1.2% WE for τ f , compared to −1.9% WE and

−0.8% WE with migration. The opposite effect is observed in large cities: they attract

households from rural areas seeking to avoid the carbon tax, which pushes housing rents

up, and real wages down. Therefore, welfare costs in the Parisian agglomeration are
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significantly higher with migration than without.

These results highlight the critical role of migration in shaping the distributional

effects of carbon taxes. In Figure 15 in Appendix, we illustrate population changes

between steady states across income and geographic dimensions. For both taxes, signif-

icant composition effects occur within each region, but they are very different for τh and

τ f . Under τh, the increase in energy price tends to incentivize poor households to move

away from rural areas and small cities, and they are replaced by richer households who

can support the increase in prices: in the new steady state, average household income

increases by 2.4% in rural areas and 1.1% in small cities relative to the initial steady

state, but falls by 3% in large cities, highlighting interregional recomposition effects.

The composition effect is reversed for τ f . As wages decline by 4% in small cities against

only 1% in the Parisian agglomeration, high-productivity workers migrate from small

to large cities. They are replaced by low-productivity households for which this change

is less important, as a more substantial fraction of their consumption is financed by

transfers. In the new steady state, average total income has decreased by 5.5% and

2.8% in rural areas and small cities, respectively, compared to the initial steady state,

while it has increased by 1.6% and 4.2% in medium and large cities.

For more details about the dynamics of the model, we plot the difference between

the mobility matrix at several periods during the transition and the mobility matrix of

the initial steady state in Figures 16 and 17.

Short-run and long-run welfare effects. Migration influences the distributive effects

of carbon taxes along the geographic dimension, but migration requires time, as house-

holds must accumulate savings to pay migration costs or wait for a positive productivity

shock. Consequently, the welfare effects may differ between the short run and the long

run. To quantify this phenomenon, we truncate the infinite discounted sum of expected

utility to a finite period and compute the welfare effect for this finite horizon. Formally,

for any T , we solve the following equation:

T∑
t=0

βtE0[U
no tax
i,t |a0 + x, k0, z0] =

T∑
t=0

βtE0[U
tax
i,t |a0, k0, z0]

and scale the x obtained by total income, as explained above. Furthermore, to facilitate

comparisons, we scale the “horizon-h wealth equivalent” to have the same mean as

the “infinite-horizon WE,” since the welfare cost increases with time. This metric

answers the question: “As a percentage of my income, how much money would I need

to compensate for the costs of the first h periods of the transition?”.

The red and yellow lines in Figure 7 represent the WE for T = 5 years and T = 20

years, while the blue bars correspond to T = ∞. As shown, the distributive effects

differ significantly between the short run and the long run. At T = 5, the short-run

27



welfare costs are much higher for rural households than for urban ones, and much

lower for poor households than for rich ones. In the short run, rural households bear

the cost of carbon taxes but have not yet migrated. As the population recomposition

within regions described above has not yet fully materialized, the cost of τh and τ f are

concentrated in the middle of the income distribution, as illustrated by the horizon-

5 decomposition in Figure 14. This “U-shape” pattern aligns with panel b of Figure

5, which shows that rural households are concentrated in the middle of the income

distribution, whereas Parisian households are concentrated at the tails. Another reason

for this U-shape is the fact that the real interest rate decreases a lot in the first periods,

hurting less low-income households.

Figure 7: Welfare effect with and without migration, and at different horizons

In conclusion, we have shown that the cost of the carbon transition for house-

holds heavily depends on income, geography, and the type of taxes. Rural

areas and poor households tend to experience higher losses compared to urban and

wealthy households. Migration plays a significant role in shaping and smooth-

ing these losses across the geographic dimension. Finally, the population recompo-

sition within regions occurs gradually, implying that geographic disparities are more

pronounced in the short run than in the long run.
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5 Optimal transfer policies

The distributive effects of carbon taxation are key for its political acceptability. Our

positive analysis in Section 4 showed that poor and rural households are more affected

by carbon taxes, making them more likely to oppose them or protest, as illustrated by

the Yellow Vest movement in France. In this section, we address the normative question

of the optimal use of carbon tax revenue through targeted lump-sum transfers. Our

fiscal system offers multiple ways to recycle the revenue, such as lowering existing taxes

or investing in measures to mitigate incompressible energy consumption. However, we

argue that transfers are essential for communication and political acceptability. By

explicitly separating carbon tax revenue from the state budget, transfers make clear

that the tax aims to influence behavior rather than finance public deficits.

We consider four scenarios, each targeting a 10% ex-post reduction in emissions

between the initial and final steady states. We assume both taxes are equal, i.e. τh = τ f

(in Appendix E, we also consider scenarios with τh ̸= τ f ). The transfer rule in each

scenario is the following17:

T (yi, k) = CTR ·



0 Scenario 1: Benchmark G

1 Scenario 2: Uniform

µ · y−x
i Scenario 3: Income

µ · y−xk
i Scenario 4: Income×Geography

where T is the transfer, yi the total household’s income, CTR the carbon tax revenue,

and µ the scaling parameter18.

In the “Benchmark G” scenario, the carbon tax revenue is used to increase public

spending G, with transfers set to zero. In the “Uniform” scenario, all households

receive the same transfer. In the “Income” scenario, we find the optimal value19 of

x to maximize welfare, as defined in Section 4. This scenario assumes the government

knows household income and can implement a progressive transfer (if x > 0) but cannot

differentiate based on location k (or is legally restricted from doing so, as in France).

Finally, in the “Income×Geography” scenario, we optimize over five different xk,

allowing the government to apply region-specific progressivity levels.

17We also computed results for the additive rule T (y, k) = (xk + y−x) · CTR · µ, but found that it

yields a lower welfare than scenario 4. Moreover, in Appendix E, we consider an alternative rule to

account for progressivity.
18Total income: y = Γ(zwl) + (1 − τk)ra + T̄ . Carbon tax revenue: CTR = τh(1 + τVAT)Fh +

τf (F y + FN ). Scaling parameter: µ = 1/
∫
i
y−xk
i .

19Scenario 3: x = 2.15. Scenario 4: xk = [2.07, 2.08, 2.38, 2.4, 2.27].
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In Table 2, we show the median welfare for each scenario, by location and by income.

We choose the median welfare as we are interested in the political acceptability of carbon

taxes. In Appendix E, we show that we obtain the same qualitative results for average

welfare, or using Negishi weights, or with alternative rebate formulas.

Table 2: Median welfare by location and income

Scenario Rural Small Medium Large Paris All

(1) Benchmark G −1.10 −1.11 −0.98 −0.98 −0.93 −1.03

(2) Uniform 0.41 0.43 0.50 0.66 0.47 0.47

(3) Income 0.48 0.48 0.64 0.85 0.66 0.60

(4) Income×Geography 0.48 0.50 0.86 1.54 0.75 0.64

Q1 Q2 Q3 Q4 Q5 All

(1) Benchmark G −1.16 −1.22 −1.13 −0.98 −0.82 −1.03

(2) Uniform 1.30 0.80 0.46 0.19 0.06 0.47

(3) Income 4.26 1.69 0.40 −0.13 −0.04 0.60

(4) Income×Geography 6.05 2.02 0.48 −0.08 0.01 0.64

Notes: Welfare is computed as wealth equivalent (in % of households’ disposable income) over the

transition.

Our benchmark scenario yields welfare losses, as the revenue is used to increase G

that is not valued by households. This is the most natural choice to study the distribu-

tive effects of carbon taxation, as introducing G in the utility function would directly

affect inequality and distort the analysis. Therefore, replacing this inefficient use of

carbon tax revenue with a uniform transfer naturally yields a higher utility: the com-

parison is more relevant for the distributive effects, and the welfare ratios between areas

or income quintiles. Moreover, for our calibration, transfers are welfare-improving: a

uniform transfer policy increases median welfare by 0.47% (WE), compared to the base-

line scenario, without carbon tax.. As transfers redistribute resources from high-income

households with low marginal utility to low-income households with high marginal util-

ity, they increase aggregate utilitarian welfare (in Appendix E, we also use Negishi

weights to neutralize the redistribution motive). Additionally, they mitigate inefficien-

cies arising from the borrowing constraint by providing some insurance to low-income

households, which further increases welfare. Hence, the welfare gains stem from the

model’s baseline calibration, and the relevant comparison is between our different trans-

fer scenarios, not between T and G.

While a uniform transfer increases median welfare, an optimal progressive trans-

fer targeting low-income households yields a 0.13 point higher welfare gain (+0.60%

WE), at the expense of high-income groups. However, as illustrated in Table 14 in
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the Appendix, the “Income” scenario generates welfare losses for 24.2% of households,

primarily in rural areas and small cities. These are high-income households who do not

receive the progressive transfer but bear the tax burden.

Therefore, we introduce our “Income × Geography” scenario, which allows trans-

fer progressivity to vary by region. Relative to the income-only rule, this policy im-

proves welfare by increasing progressivity in large cities and reducing it in rural areas

and small towns. It raises median welfare across all income and geographic groups

and reduces the share of households experiencing welfare losses by 10 percentage points

compared to the income-only scenario. These gains stem from the fact that rural

households are concentrated around the middle of the income distribution, whereas the

lowest- and highest-income households are overrepresented in large urban areas. Al-

lowing for region-specific progressivity better aligns transfers with local income profiles

and reduces the dispersion of welfare gains. Figure 8 presents the 25th, 50th and 75th

percentiles of the welfare gain distribution within each income quantile. Compared to

the income-only policy, the Income × Geography rule notably reduces the dispersion of

welfare gains within the bottom quintile (Q1). As a result, incorporating geography

into redistribution policies improves median welfare by 0.04 point (and aver-

age welfare by 0.13 point) relative to the optimal transfer based solely on income. This

implies that compared to the uniform scenario, targeting both income and geographic

criteria increases median welfare gains by one third more than targeting income alone.

Note that this has no effect on median welfare in rural areas but it redistributes gains

toward medium and high income within rural areas.

Figure 8: Median and quartiles of welfare gains by income quintile

Notes: This represents the median, top and bottom quartiles of welfare change for each income

quintile over the transition. Welfare change are computed as a wealth-equivalent expressed in % of

households’ disposable income.

As shown in Figure 18 in the Appendix, our different rebating rules yield different

migration and composition effects across income groups and regions. In the “Income”

scenario, many high-income households migrate from rural and small areas to medium
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and large cities, while lower-income households move in the opposite direction due to

declining rents. In contrast, this effect is mitigated in the “Income × Geography”

scenario: since transfers are less progressive in rural and small areas and more progres-

sive in medium and large cities, rich households from rural areas and poor households

from urban regions have fewer incentives to migrate.

We show that it is possible to reduce emissions while mitigating the welfare

losses associated with the green transition. By implementing transfers based on income

and location, the share of households experiencing welfare losses can be reduced, thereby

enhancing the political acceptability of carbon taxes.

6 Conclusion

In this paper, we study the distributive effects of carbon taxation with a focus on spa-

tial heterogeneity. Using both household-level and matched employer-employee data

from France, we document that rural households have a fossil fuel consumption share

2.8 times higher than urban households and are employed in firms that emit 2.7 times

more. These patterns are consistent across other countries. We incorporate these

findings into a spatial-heterogeneous agent model, featuring idiosyncratic income risks,

endogenous consumption, savings, and migration choices, as well as segmented housing

and labor markets, and local energy expenditure shares for both households and firms.

Our approach bridges a gap in the literature by integrating spatial models, which em-

phasize migration, with heterogeneous-agent models that analyze inequality and wealth

accumulation.

We find that rural households bear a disproportionate burden from carbon taxation.

In our benchmark scenario, their welfare losses are 20% higher than those of Parisian

households, even after accounting for transitional dynamics and migration. Ignoring

spatial heterogeneity in income-based transfer policies reduces overall welfare, that

depends on consumption of energy, housing, other goods and on migration costs, by 0.04

point, a result that holds across different welfare criteria and rebate schemes. Note that

welfare costs of carbon taxes decrease with σ because it significantly reduces households’

energy share. These findings highlight a key policy implication: geographical location

must be explicitly accounted for when designing carbon tax frameworks, particularly

as the EU-ETS2 for household heating and transport becomes operational in 2027.

This work opens several avenues for future research. We focus on optimal transfer

policies, as they play a central role in addressing distributional concerns and enhancing

political feasibility. However, future studies could explore alternative uses of carbon tax

revenues within our framework, such as reducing distortionary taxes or financing clean
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technologies, with possibly endogenous and directed technical progress. Additionally,

our findings indicate that different forms of carbon taxation generate distinct migra-

tion responses, highlighting the need for further empirical research. A related point is

sectoral reallocation of labor and capital. Transitions across zones often imply changes

in sectoral employment and require skill adjustments, which can create significant fric-

tions and distributional impacts. Addressing these would require introducing sectoral

heterogeneity and modeling the dynamics of skill adaptation.
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A Descriptive Evidence

A.1 City types

Our categorization of city types is as follows:

• Rural areas: Fewer than 2,000 inhabitants.

• Small cities: Between 2,000 and 20,000 inhabitants.

• Medium cities: Between 20,000 and 50,000 inhabitants.

• Large cities: More than 50,000 inhabitants.

• Paris: The Parisian agglomeration or urban unit of Paris, including the depart-

ments 75, 92, 93, and 94. The list of city codes is provided by Insee

We favor this categorization because the population is uniformly distributed across

these locations, according to the latest 2021 French Census. We check that we recover

a similar distribution in our administrative datasets used in the following sections (BTS

and fiscal declarations from households). Figure 9 provides a map of France illustrating

these categories, using 2024 Insee geographical code.

Figure 9: Spatial distribution of city types, France

Notes: We have 34,998 observations with a Insee geographical code.

Sources: Population data downloaded from https://www.data.gouv.fr/ using 2024 Insee geograph-

ical code and 2021 French Census data.
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A.2 Households: energy consumption patterns

Energy share and geography: Table 3 shows the energy, fossil and electricity shares

(in % of total consumption expenditures), by living area and income quintile. We

decompose energy use by two categories: housing (and we show the share of population

living in a house and the size of living spaces in squared meters) and transports (with

the share of car owners, the average number of vehicles per households, and the share

of households using a car to commute).

Table 3: Descriptive statistics: households consumption

Variable Rural Small Medium Large Paris Q1 Q2 Q3 Q4 Q5

energy share 12.1 10.6 10.0 7.9 5.7 10.0 10.2 9.8 8.9 7.5

fossil fuel share 8.1 6.7 6.3 4.9 3.0 5.8 6.4 6.4 5.7 4.6

electricity share 4.0 3.9 3.7 3.0 2.7 4.2 3.8 3.4 3.2 2.9

energy for housing 6.3 5.8 5.4 4.3 3.6 6.0 5.8 5.2 4.7 4.1

% living in a house 94.4 80.2 67.7 41.2 22.2 43.7 54.4 62.3 63.4 63.9

size of living space (in m2) 105.6 94.8 81.4 73.2 64.0 72.5 78.2 85.0 92.2 108.6

energy for transports 5.8 4.8 4.6 3.6 2.1 4.0 4.4 4.7 4.2 3.4

% car owners 93.3 89.9 85.9 77.9 59.6 63.0 76.6 86.2 88.9 88.8

# of vehicles per hhs 1.6 1.5 1.3 1.1 0.8 0.8 1.1 1.3 1.5 1.5

% using cars (commute) 47.5 47.5 44.6 42.0 25.0 23.5 36.8 45.8 51.8 49.3

Sources: size of living space coming from Fideli 2017: over 26 millions observations. All over variables

are from BdF 2017: 16,739 households, weighted using survey weights.

Energy share and age: Table 4 shows the variable described above, by age groups.

We find that age also correlates with energy consumption, mostly because of housing

expenditures. This is why we add it as a control in our regressions. Yet, it appears

that the fossil fuel share is roughly flat across age groups.
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Table 4: Descriptive statistics: age groups, BdF 2017

Variable <30 30-39 40-49 50-59 60-69 >70

energy share 7.3 8.1 8.4 9.4 9.9 10.3

fossil fuel share 4.5 5.2 5.4 6.1 6.1 5.9

electricity share 2.8 2.9 3.0 3.4 3.8 4.4

energy for housing 3.4 3.8 4.3 4.9 5.7 7.3

% living in houses 23.4 50.6 59.0 64.2 67.9 65.2

energy for transports 3.9 4.2 4.1 4.5 4.2 3.0

% of car owners 68.5 82.1 86.2 86.8 84.7 72.1

# of vehicles per hhs 1.0 1.3 1.4 1.5 1.3 0.9

% using cars (commute) 51.5 63.6 65.3 59.8 15.6 1.7

Notes. 16,739 households, weighted using survey weights.

Spatial distribution of fossil fuels consumption: Leveraging the complete set

of fiscal declarations from French households in 2021, we estimate the spatial distribu-

tion of fossil fuel consumption. The methodology involves the following steps:

1. Using the 2017 BdF survey, we regress the fossil fuel share on variables that are

also available in the fiscal declarations: disposable income, age of the household

reference person, household size, and city type. To mitigate the influence of

outliers, we limit the analysis to households with a fossil fuel share below 50% (5

standard deviations above the mean).

2. Based on this regression model, we estimate the fossil fuel share for each household

in the fiscal declarations dataset. We retain households with an annual income

above 2, 100e and for which a city type can be assigned. This yields 36,582,417

household-level observations.

3. Finally, we calculate the average fossil fuel share for each Insee geographical code

(34,987 areas) and present the spatial distribution in Figure 3.

Households and size of living spaces: We use the Fideli 2017 database to

assess the size of living spaces depending on income and spatial characteristics. Fi-

deli or Fichier Démographique d’Origine Fiscale sur les Logements et les Individus is a

structured administrative data that relates tax administration records on housing prop-

erty and declared earnings through fiscal identifiers for households and dwellings. The

dataset provides demographic details, household structures, income levels, social ben-

efits received, and contextual geographic information, covering both mainland France

and all overseas departments.
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Table 5: Households’ size of living space, in m2

Variable Rural Small Medium Large Paris

Q1 93.4 78.8 68.1 61.6 53.1

Q2 96.3 82.9 71.2 64.4 56.0

Q3 102.0 90.6 77.6 69.6 57.4

Q4 110.0 99.8 85.7 77.4 60.5

Q5 130.3 120.7 106.3 98.6 77.9

Sources: Fideli 2017: over 26 millions observations.

Energy shares in other countries: Table 1 provides the energy share by living

area and income quintile for some countries, using Eurostat 2020 Household Budget

Surveys (HBS) that harmonizes micro-data for European countries. The data is from

2020, except for the UK, which is from 2015. Italy does not have quintile distribution

data. “Towns” includes both towns and suburbs.

We use the Consumer Expenditure Survey (CES) 2023 for the US. We use the latest

tables publicly available. For the US, the category > 1M covers cities with populations

over 1 million.

In both datasets, we can recover average energy shares by income quintiles and by

city sizes. Energy consumption is decomposed between housing and transport costs.

Note that in the HBS dataset, we cannot distinguish fossil fuels from other transport

costs such as repairs or parking fees. We find that rural areas consistently exhibit higher

energy shares compared to towns and cities across all countries.

A.3 Firms: emission patterns

Data on sectoral emissions. To recover sectoral emissions, we use Insee national

accounts that reports total emissions and emissions per euro of value-added for most

sub-sectors of the French economy. As a robustness, we also compute emissions intensity

using datasets from Bach et al. (2024) (mining and manufacturing), CITEPA (waste).

We build a tCO2eq per worker metric using annual value-added and employment levels

from 2022 Insee National Accounts. We find very heterogeneous results across sectors.

Within manufacturing, ’Coke & refining’ is the most intensive in emissions with 1, 512

tCO2eq annual emissions per worker. ’Air transports’ is the most intensive across

all sectors with 2, 379 tCO2eq per worker. In the services (except construction and

transportation), firms emit on average 1.9 tCO2eq per worker. A notable exception

among the services are ’Rental and leasing activities’ that emits 43.7 tCO2eq per worker

every year.

Administrative data on workers and firms. All employer - employee data
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(BTS-Salariés). The BTS is an annual report that all companies employing salaried

workers in France are required to submit. These reports contain numerous worker- and

firm-level details, including wages, hours worked, job type, qualifications, pay periods,

employment type (full-time/part-time), and both workers’ and firms’ geographical lo-

cations. The BTS dataset covers all employees, including those in public companies,

local governments, and public hospitals. There exists a panel version of that repeated

cross-section called The All Employees Panel. The latter has been tracking employ-

ees since 1976. Up to and including 2001, the sample size was approximately 1/24th,

based on individuals born in October of an even-numbered year. From 2002 onwards,

the sample has been doubled and covers around 3 millions individuals each year. We

notably use the panel version to compute mobility rates by regions and quintiles.

Merging BTS micro data and sectoral emissions. From the BTS 2022, we

assign to each worker i the average emissions intensity from its firm’s f i.e. αi = αf .

In each group (city or quintile), we then compute the average αi i.e.
1

length(q)

∑
i∈q αi.

Those results are presented in Figure 2. For our extensive margin, we define emissions-

intensive sectors as those with a tCO2eq per worker above 5. This represents the 20%

most emissions-intensive jobs. We additionally report the share of workers in those

sectors in Table 6 and Table 7.

Table 6: Share of workers (%) in each sector, by geography and income quintile

Sector NAF Code Emissions per worker Rural Small Medium Large Paris Q1 Q2 Q3 Q4 Q5

Agriculture 01-03 227.9 3.0 1.6 0.9 0.6 0.1 2.5 1.8 1.4 0.8 0.4

Industry 05–33 33.6 14.2 12.1 8.9 6.6 4.3 5.6 6.4 10.1 12.7 15.0

Energy 35 227.5 0.8 0.6 0.5 0.5 0.6 0.2 0.2 0.2 0.6 1.8

Water supply & waste 36–39 163.9 0.8 0.8 0.7 0.5 0.5 0.4 0.4 0.7 1.2 0.7

Construction, sales & repairs 41–47 4.1 20.8 20.5 18.2 17.0 16.6 20.9 19.7 22.2 18.3 14.9

Transportation & storage 49-53 62.6 5.4 5.3 5.3 4.5 4.6 3.4 4.1 5.8 7.4 4.9

Services 55–99 1.9 55.0 59.1 64.4 70.4 73.4 67.1 67.5 60.6 59.0 62.3

Sum – – 100 100 100 100 100 100 100 100 100 100

Notes. We use the 2022 cross-section of the BTS. We remove values below 1,000 euros annual and we

merge individuals present more than once in the dataset, ending up with 31,836,096 observations.
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Table 7: Share of workers (%) in each sector, by geography and income quintile

Sector NAF Code Emissions Labor share Rural Small Medium Large Paris Q1 Q2 Q3 Q4 Q5
tCO2

Workers
% total % sectoral workers % sectoral workers

Agriculture 01-03 227.89 1.37 45.96 30.92 16.04 6.69 0.39 36.87 25.98 20.11 11.38 5.65

Crop, animal production, hunting 01 250.58 1.22 46.57 30.37 15.93 6.79 0.35 38.78 26.77 20.05 10.18 4.23

Forestry and logging 02 26.86 0.09 52.29 25.92 15.77 4.97 1.06 20.43 18.15 20.85 25.63 14.94

Fishing and aquaculture 03 68.98 0.07 26.33 47.72 18.60 7.01 0.33 22.97 21.53 20.34 15.18 19.98

Industry 5-33 33.58 9.93 30.35 32.10 21.21 11.13 5.21 11.29 12.87 20.30 25.44 30.09

Mining & quarrying 5-9 18.27 0.07 42.55 30.35 16.70 6.98 3.42 6.59 9.83 17.51 36.10 29.98

Manufacturing 10-33 33.69 9.86 30.27 32.11 21.24 11.17 5.22 11.33 12.90 20.32 25.36 30.09

Paper & paper products 17 38.10 0.20 38.00 35.02 18.08 7.22 1.68 5.64 8.64 19.68 33.61 32.43

Coke & refining 19 1512.03 0.03 23.21 27.94 28.37 15.87 4.61 3.03 4.48 4.91 9.72 77.86

Chemicals & chemical products 20 140.90 0.50 26.95 30.04 22.51 10.40 10.10 6.38 8.60 12.97 21.80 50.25

Other non-metallic mineral prod. 23 208.94 0.35 38.45 32.14 18.87 7.39 3.15 7.39 10.36 20.31 30.41 31.54

Basic metals, metallurgy 24 267.47 0.26 35.28 33.25 21.67 8.76 1.04 4.91 7.58 16.52 32.67 38.32

Energy 35 227.47 0.58 28.15 24.64 20.86 13.97 12.39 5.32 5.95 6.13 19.86 62.75

Water supply & waste 36-39 163.93 0.69 25.71 28.72 23.90 13.58 8.09 10.24 12.49 21.50 34.65 21.12

Waste management 37-39 207.78 0.54 24.59 28.11 24.50 14.00 8.80 11.28 13.61 23.22 33.66 18.22

Construction, sales and repairs 41-47 4.13 19.21 22.95 28.13 23.61 14.90 10.40 21.84 20.62 23.14 19.03 15.38

Transportation & storage 49-53 62.61 5.10 22.35 27.34 24.74 14.70 10.87 13.30 16.11 22.65 28.90 19.03

Land transport & pipelines 49 22.54 2.84 24.04 27.17 23.80 14.08 10.91 16.44 18.17 20.39 29.81 15.20

Water transport 50 2378.54 0.08 14.65 27.38 26.02 27.77 4.17 15.96 19.81 15.49 15.23 33.51

Air transport 51 321.26 0.20 12.81 24.15 26.89 12.32 23.82 4.38 11.16 20.28 27.26 36.93

Services (other) 55-99 1.90 63.11 18.46 24.61 24.13 18.76 14.03 21.35 21.51 18.87 18.63 19.65

Rental and leasing activities 77 43.73 0.42 19.39 27.26 25.23 15.74 12.38 16.85 19.13 21.93 21.99 20.11

Notes. We use the 2022 cross-section of the BTS. We remove values below 1,000 euros annual and we

merge individuals present more than once in the dataset, ending up with 31,836,096 observations.

Spatial distribution of sectoral emissions. Using the 2022 BTS, we can visual-

ize emissions per worker by geographical location at a very granular level. In Figure 3,

we present a map showing the average emissions per worker at the local scale. We have

31,836,096 worker-level observations, which are aggregated into 34,607 geographical

units.

A.4 Predicted energy shares and emissions

OLS Regression. Table 3 displays average energy shares for income quintile and

location, but there is a correlation between these dimensions. This is why we regress

our variables of interest using the following OLS regression:

yi = α +
5∑

q=1

βqIQi=q +
5∑

k=1

γkICi=k + µ ∗ Controlsi + ϵi (6)

with yi either individual consumption share or the emissions intensity of the worker, Qi

income quintile groups and Ci city-size groups (as defined in Section 1.1). We control

by age and household’s size when regressing for consumption patterns. Results of our

regression are presented in Table 8 below. We use the regression coefficients to build

average energy consumption shares in Figure 120 and average emissions per worker in

20The displayed values are equal to the coefficients, plus a constant to obtain the right average.
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Figure 2. As a robustness, we use different estimates of sectoral level emissions from

Bach et al. (2024) and the CITEPA in column (5), while column (4) uses sectoral-level

estimates from national accounts. In both columns, we used the sector of the estab-

lishment since the biggest firms may operate in several sectors with different emissions

intensities. As an additional robustness check, we also provide the same regressions

using firm-level sectoral emissions in column (6).
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Table 8: Regressions

yi: consumption share yi: emissions per worker

BdF 2017 BTS 2022

(1) (2) (3) (4) (5) (6)

Energy Fossil fuel Electricity Nat. Acc. IPP Firm-level

Intercept 12.00∗∗∗ 6.77∗∗∗ 5.23∗∗∗ 18.03∗∗∗ 20.37∗∗∗ 17.77∗∗∗

(0.32) (0.29) (0.16) (0.04) (0.05) (0.04)

Q2 −0.72∗∗∗ 0.15 −0.88∗∗∗ −0.87∗∗∗ −0.66∗∗∗ −0.94∗∗∗

(0.20) (0.18) (0.10) (0.05) (0.05) (0.05)

Q3 −1.05∗∗∗ 0.21 −1.27∗∗∗ −0.58∗∗∗ 0.35∗∗∗ −0.71∗∗∗

(0.20) (0.18) (0.10) (0.05) (0.05) (0.05)

Q4 −1.65∗∗∗ −0.04 −1.61∗∗∗ 1.32∗∗∗ 3.77∗∗∗ 1.01∗∗∗

(0.20) (0.18) (0.10) (0.05) (0.05) (0.05)

Q5 −2.28∗∗∗ −0.51∗∗ −1.77∗∗∗ 7.55∗∗∗ 11.30∗∗∗ 7.65∗∗∗

(0.20) (0.18) (0.10) (0.05) (0.05) (0.05)

Small −1.89∗∗∗ −1.79∗∗∗ −0.10 −4.13∗∗∗ −5.17∗∗∗ −4.02∗∗∗

(0.22) (0.20) (0.11) (0.04) (0.05) (0.05)

Medium −2.50∗∗∗ −2.01∗∗∗ −0.49∗∗∗ −6.41∗∗∗ −8.32∗∗∗ −6.26∗∗∗

(0.22) (0.20) (0.11) (0.04) (0.05) (0.04)

Large −4.97∗∗∗ −3.68∗∗∗ −1.28∗∗∗ −7.88∗∗∗ −10.51∗∗∗ −7.71∗∗∗

(0.17) (0.15) (0.08) (0.05) (0.05) (0.05)

Paris −7.11∗∗∗ −5.54∗∗∗ −1.56∗∗∗ −12.17∗∗∗ −16.00∗∗∗ −11.85∗∗∗

(0.21) (0.19) (0.11) (0.05) (0.05) (0.05)

Age 0.06∗∗∗ 0.03∗∗∗ 0.02∗∗∗ – – –

Household size −0.11∗ 0.16∗∗∗ −0.27∗∗∗ – – –

Observations 16,739 16,739 16,739 31,836,096 31,836,096 31,614,291

Notes. This table report results of Equation (6). In columns (1) to (3), we use survey weights.

Columns (2) and (3) are used in Figure 1. Column (4) is used in Figure 2. In BdF 2017, we only keep

observations with strictly positive disposable income. In BTS 2022, we only keep workers with annual

net wage declared above 1,000 euros. Column (4) uses sectoral emissions estimates from national

accounts at the establishment-level. Column (5) uses sectoral emissions estimates from Bach et al.

(2024) and CITEPA, again at the establishment-level. Column (6) uses sectoral emissions estimates

from national accounts at the firm-level.
∗: p < 0.05, ∗∗: p < 0.01, ∗∗∗: p < 0.001
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B Algorithm

The main challenges of this paper are the heterogeneous-agent structure, the discrete

location choice and the high number of guesses. In this section, we detail the algorithms

used at the steady state, for the calibration and during the transition. Each steady state

takes 5 seconds to compute on a personal computer, and 27 seconds for a non-linear

transition between two distinct steady states. The entire code has been written from

scratch on Matlab.

Heterogeneous-agent structure. Our state-space for asset, income and geogra-

phy is S = A× Z×K. We discretize A over an exponential grid of 100 points between

0 and 40, Z over 5 points using Tauchen (1986) method, and K = {1, 2, 3, 4, 5}, which
gives us 2,500 grid points. We solve the household decision using value function itera-

tion (VFI). The key variable of choice for the household is the implicit utility u(a, k, z):

given u, k′ and the first-order conditions, the households can choose its consumption

c, eh, Nh, F h, H, and the budget constraint gives the saving choice a′ as a residual. To

solve the VFI, the follow these steps:

1. for each choice k′ ∈ K, use a golden-section algorithm to find the implicit utility

uk′(a, k, z) such that a′ = 0, to obtain a lower bound for the maximization of the

utility.

2. guess the expected value function f(a, k, z) = E[V (a, z, k)].

3. for each choice k′ ∈ K, use a golden-section algorithm to find the implicit utility

uk′(a, k, z) that maximizes the value function Uk′(a, k, z) + βf(a′, k′, z′).

4. using Gumbel trick described below, find the new value function V (a, k, z).

5. using spline interpolation over V (a, k, z), compute the new guess for the value

function f(a, k, z).

6. use the Howard’s improvement: for 30 iterations, iterate the f guess without

optimizing, taking fnew(a, k, z) = uk′(a, k, z) + βf(a, k, z).

7. compare the new value function fnew with the guess f(a, k, z): if the Euclidian

norm of the difference is above 10−8, replace f by fnew and go back to step 3.

Once we have the decision rule, we compute the transition matrix M between (a, k, z)

and (a′, k′, z′). If d(a, k, z) is our column measure of density over the state space, we

compute d′ = Md. This means that the row i of d is associated with the column i of

M . Therefore, for each i of the state space, we fill the column i of M with 2 ∗ 5 ∗ 5

values that are the products of:

• a: for the household’s decision a′(a, k, z), we put a′ on our grid A, by computing

weights ω− and ω+ depending on the distance between a′ and the inferior (a−)
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and superior (a+) points of the grid, and we put the values ω− and ω+ at every

rows a− and a+ of the state space.

• z: using the Tauchen weights, we put the probability P (z → z′) at every rows z′.

• k: using the migration probability P(k → k′) computed during the Gumbel trick

(see below), we put these probabilities for every rows k′.

Note that we use a sparse matrix M , as each column contains only 50 values over 2,500

lines. Finally, we compute d′ = Md until every row of |d′ − d| is lower than 10−8, i.e.

when we obtain the stationary density given the decision matrix M .

Discrete location choice. We follow Ferriere et al. (2023) for the implementation

of discrete choice with preference shocks drawn from an extreme-value distribution. De-

note V k′
t (a, z, k) the value function for the household at the grid point (a, z, k) choosing

the future location k′. Let ϵk′ the preference shock for each location k′, and assume the

vector −→ϵ = {ϵ1, ϵ2, ϵ3, ϵ4, ϵ5}. Then the complete value function is the expectation of

all k′-value function, taken over −→ϵ :

Vt(a, z, k) = E−→ϵ

[
max

k

{
V k′

t (a, z, k)
}]

= ϱ ln

(∑
k′∈K

exp

(
V k′
t (a, z, k)

ϱ

))
where the last equality derives from assuming that ϵk′ follows a Gumbel distribution

with variance ϱ – see Ferriere et al. (2023), Couture et al. (2024) or Kleinman, Liu and

Redding (2023). The probability of choosing location k′ is given by:

Pk′

t (a, z, k) =
exp

(
V k′
t (a,z,k)

ϱ

)
∑

k′∈K exp
(

V k′
t (a,z,k)

ϱ

) = exp

(
V k′
t (a, z, k)− Vt(a, z, k)

ϱ

)

High number of guesses. We need ng = 13 guesses to solve our model, at the

steady state and during the transition: interest rate R (asset market), total electricity

N (electricity market), housing rents{pH1 , pH2 , pH3 , pH4 , pH5 } (segmented housing markets),

local outputs {Y1, Y2, Y3, Y4, Y5} (segmented labor markets), and carbon tax revenue

CTR (government budget constraint). For the calibration procedure, we use more

than 30 guesses, as we add parameters as guesses and calibration targets as clearing

conditions.

To find the equilibrium values for our guesses at the steady state, we use a quasi-

Newton algorithm, improved with the Broyden method. Denote x the column vector

of our guess variables, and f the function that associates the vector of guesses to the

column vector of errors e in each clearing conditions, so that f(x) = e. f is the central

function, that computes the optimality conditions for firms, governments, households

and the measure. We use the following steps:

47



1. guess an initial vector x0, and compute the error e0 = f(x0).

2. for each guess i, create the vector xi
0 with xi

0(i) = x0(i) + ϵ (with ϵ = 10−4) and

xi
0(̄i) = x0(̄i), and compute the error ei0 = f(xi

0).

3. create the Jacobian matrix M of size n2
g that relates a change of each guess to a

change in each clearing condition. The column i is the vector ei0 − e0.

4. iterate the guess using xnew = x + α, with α = −M−1 ∗ e ∗ d, with d a damp-

ening factor (usually equal to 1, can be lower if the initial guess is far for the

equilibrium). Denote elast = e the error.

5. compute enew = f(xnew).

6. modify the Jacobian matrix using the Broyden algorithm: (M−1)new = M−1 +
(α−θ)(α′M−1)

α′θ
, with θ = M−1(e − elast). If the code does not converge, it is also

possible to recompute, every t iterations, the “true” Jacobian of step 3.

7. if max |e| > 10−5, go back to step 4.

For the non-linear transition, we use the same method of guessing a path for our

variables and iterating it using a quasi-Newton algorithm. First, we compute the initial

and final steady state, as we consider a permanent increase in carbon tax.

Second, we compute the Jacobian of our system around the final steady state. This

means that we compute the effect of a shock at any time period tschock of the transition

(100-1 in our experiment), of any variable i (13), on any clearing condition j (13), at

any time tclearing (99), leading to a matrix J = 1287 × 1287. To compute this object

efficiently, we use parallel computation (as any variable can be shocked independently),

sparse vectors, and the fake-news algorithm developed by Auclert et al. (2021). While

formally dependent on the final steady state considered, the matrix J can be used to

compute transitions towards other steady states (possibly with a dampening factor), as

it only provides a new guess for the non-linear transition, and not the real path.

Third, we use the following algorithm to compute the non-linear transition:

1. guess an initial path X of size ng × (T − 1) for our guess variables.

2. starting from period T−1, compute the optimal backward decision for households,

and the firms’ and government optimality conditions.

3. create the transition matrix as explained above for each period, and iterate for-

ward from 1 to T − 1 to obtain the measure and the aggregate variables.

4. compute the path of errors E of size ng×(T−1) for the market clearing condition.

5. iterate the guess path using Xnew = X− J−1E.

6. if max |E| > 10−3, go back to step 2.
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C Calibration

Table 9: Table of parameters

Parameter Description Value Notes and targets

Households

β Discount factor 0.94 a
GDP = 4.5

θ Intertemporal ES 1 Kaplan, Moll and Violante (2018)

σ ES between c and eh 0.2 Estimated in Appendix C

ΛE Energy share 0.095 Energy share in consumption = 9.5%

ΛH Housing rents share 1.464 Housing spending share in consumption = 17%

ϵE Non-homotheticity parameter 0.9 Energy expenditures across income quintiles

ϵH Non-homotheticity parameter 0.25 Housing expenditures across income quintiles

ΛC , ϵC Utility parameters 1 Comin, Lashkari and Mestieri (2021)

γh(k) Fossil share [0.83, 0.81, 0.81, 0.80, 0.73] Fossil fuel share in consumption in each k

ϵh ES between Fh and Nh 1.5 Authors choice

Hs
k Housing supply [0.43, 0.46, 0.29, 0.20, 0.32] Population in each city type

ē(k) Energy incompressible use 0.01 ∗ [1.82, 1.43, 1.30, 0.59, 0] Energy share across types

ρG Gumbel shock variance 0.1 Income heterogeneity, aggregate

ρz Persistence z 0.97 Income heterogeneity, aggregate

µz(k) Mean z [-0.09,-0.07,0.09,0.14,0.04] Average income for each type

σz(k) Variance z [0.29,0.29,0.28,0.27,0.40] Heterogeneity within each type

a Borrowing constraint 0 Authors’ choice

Firms

pF Price of fossil fuel 0.6773 Share of fossil fuel imports = 4%

ωy(k) Energy share [0.09, 0.07, 0.05, 0.04, 0.02] Share of each regional firm in total emissions

σy ES between ey and (K, l) 0.05 Fried (2018)

α Capital share 0.3089 wl
GDP from Cette, Koehl and Philippon (2019)

γy Share of fossil in Y mix 0.86 Firms’ share in total emissions = 62.5%

ϵy ES between F y and Ny 1.5 Fried (2018)

Government

T̄ Transfers 0.08 Share of T in income

τ Labor tax progressivity 0.08 From Ferriere et al. (2023)

λ Labor tax level 0.571 Ḡ
GDP = 0.29 as in Auray et al. (2022)

τk Corporate income tax rate 9.02% Effective rate in Auray et al. (2022)

τVAT VAT tax rate 22.34% Effective rate in Auray et al. (2022)
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C.1 Data on income

For Figure 4, we use Enquête Budget des Familles 2017. For Figure 5.a, we use the

average disposable income by decile from Revenus et patrimoine des ménages, Édition

2021. For Figure 5.b, we use fiscal data in 2021 total income as reproduced below:

Table 10: Geographical composition of each revenue decile (%)

Q1 Q2 Q3 Q4 Q5 Mean

Rural 17.7 24.7 25.6 26.8 20.4 23.5

Small cities 21.0 25.9 27.0 28.7 25.5 26.0

Medium cities 22.3 19.8 18.7 17.6 16.8 18.5

Large cities 20.8 14.9 13.05 11.3 12.2 13.4

Paris 18.2 14.7 15.6 15.7 25.0 18.5

Sum 100 100 100 100 100 100

For Figure 11, we use the Revenus et patrimoine des ménages, Édition 2021, that

we reproduce below:

Table 11: Revenues and taxes by income decile (thousand euros)

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Primary income 10.5 15.9 21.0 25.9 31.3 36.4 42.2 49.5 60.4 133.1

Net labor income 4.8 9.5 13.5 17.5 21.7 25.7 30.0 35.4 42.0 69.2

Net financial income 1.8 2.1 2.8 3.2 3.7 4.4 5.4 6.6 9.6 52.3

Sum of taxes -4.8 -5.6 -6.7 -7.9 -9.2 -10.5 -12.1 -14.5 -18.5 -46.3

Taxes on products and production -4.2 -4.7 -5.1 -5.6 -6.3 -6.7 -7.3 -8.0 -9.4 -12.7

Taxes on income and wealth -0.6 -1.0 -1.6 -2.3 -3.0 -3.7 -4.9 -6.5 -9.0 -33.6

C.2 Household energy consumption: estimation of σ

In Figure 10, we use French longitudinal aggregate data taken from Insee 2022 national

accounts. As explained in Hassler, Krusell and Olovsson (2021), the share of energy in

total consumption comoves with the relative price of energy. This would not happen if

energy and goods consumption were perfect substitutes.
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Figure 10: Consumption ratio ( e
h

c
) and relative price of energy (ph)

With Comin, Lashkari and Mestieri (2021) preferences, the elasticity of substitution

between goods of different sectors is constant, i.e.

∂ ln(c/eh)

∂ ln(ph)
= σ

Thus, we estimate σ through a simple OLS estimation:

∆ ln(eht )−∆ ln(ct) = −σ∆ ln(pht ) + ϵt

We get σ̂ = 0.2, significant at the 5% level. From the graph, we can isolate two periods.

It seems that before 1990, the consumption ratio comoved more with ph than after.

Restricting our estimation to the 1959-1990 period, we get σ̂ = 0.28 significant at the

5% level. Taking only the 1990-2021 period we get σ̂ = 0.08 not significantly different

from zero. Adding an intercept to the regression always yields a zero for the constant

term. As Hassler, Krusell and Olovsson (2021) that use U.S. data, we find low short-

run elasticity between energy and non-energy inputs in French data. In our benchmark

calibration, we decide to set σ = 0.2, which is in the range of Casey (2024) pointing

out that Cobb-Douglas functions vastly over-estimate transitional energy adjustments,

and Golosov et al. (2014) that use such a framework.

C.3 Other untargeted moments

In this section, we present untargeted moments of our model. In Figure 11, we show

the income composition across income quintile, and total taxes paid by households.

51



Figure 11: Income composition and taxes by income quintile

Notes: Panel a: composition of income data and model fit. Panel b: taxes paid by households in the

model and data (excluding social contribution).

Source : Revenus et patrimoine des ménages, Édition 2021.

Our model does not match the upper tail of the wealth distribution but performs

well in matching the distribution of wealth across the first wealth quintiles (Q1 to Q4).

Our MPC distribution falls within the lower bounds of Boehm, Fize and Jaravel (2025)

using bank data in France.

Figure 12: Wealth inequalities and MPC heterogeneity

Notes: Panel a: net mean wealth by net wealth quintile. Panel b: instantaneous MPC (total expen-

diture) by quartile of disposable income.

Sources: Panel a: Insee Revenus et patrimoine des ménages, 2021. Panel b: Boehm, Fize and Jaravel

(2025).
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D Additional results – Section 4

In Figure 13, we decompose the welfare effect of τh and τ f into the 5 variables that

affect directly households’ budget constraint: wages (w), household carbon tax (τh),

electricity price (pN), interest rate (R) and housing rents (pH). To obtain this decom-

position, we start from the transition path, and we shut one variable at a time by

setting its value to the steady state level. The effect we attribute to each variable is

the difference between the total effect (with all variables moving along the transition)

and the partial transition (with all variables moving, except one).

Figure 13: Decomposition of the welfare effect

53



Figure 14 is the same decomposition, but considering only the welfare changes during

the first 5 periods of the transition.

Figure 14: Decomposition of the welfare effect at horizon t = 5

54



Figure 15 shows, for each group area × income quintile, the change in population

between the two steady states. The weighted sum of each line is equal to 0, as the

share of households in each disposable income quintile is always 20% but the share of

households within each region is not; the sum of each column can be different from 0,

as households migrate between regions.

Figure 15: Density change by income and region between steady states

Notes: Panel a: only increase τh with a 10% decrease in total emissions. Panel b: only increase τf

with a 10% decrease in total emissions. Disposable income quintiles are built at the national level.

Lecture: After the increase in τh, in the new steady state, the share of households that are in rural

areas and in the 1st quintile decreases by 0.52 points compared to the initial steady state.

For τh, poor households migrate from rural areas to large cities and Paris, due to

the direct effect of carbon tax. For τ f , it is the opposite; rich households migrate to

large cities due to the decrease in wage, and poor households move to rural areas due

to the decrease in housing rents.
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Figure 16: Mobility changes, τh only

Note: In panel a, we plot the difference between the mobility matrix after 1 year and the mobility

matrix of the initial steady state.

Lecture: One year after the increase in τh, the share of rural households that decide to stay in rural

areas (region 1) decrease by 0.56 point compared to the initial mobility matrix.
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Figure 17: Mobility changes, τ f only

Note: In panel a, we plot the difference between the mobility matrix after 1 year and the mobility

matrix of the initial steady state.

Lecture: One year after the increase in τf , the share of rural households that decide to stay in rural

areas (region 1) decrease by 0.01 point compared to the initial mobility matrix.
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E Additional results – Section 5

E.1 τh vs τ f

In Table 12, we show the optimal values of τh and τ f required to reduce emissions by

10%.21 In the benchmark complete model 1, taxing households is costly in terms of

welfare and inefficient at reducing emissions due to the incompressible energy consump-

tion ē. Therefore, the optimal tax is significantly higher for firms than for households.

If we remove the geographic dimension from our model by setting ēk, γk, ωk, and zk to

their average values across all regions, the optimal τh increases while τ f decreases, as

households become less constrained. Finally, eliminating non-homothetic preferences

by assuming ϵE = ϵH = 1 further equalizes the two carbon taxes. Since energy is a

necessary good, taxing household energy disproportionately affects poorer households,

which have the highest marginal utility. Removing non-homotheticity smooths the car-

bon tax burden across income groups, thereby reducing the welfare cost associated with

τh.

Table 12: Optimal taxes to reduce emissions by 10%

Model Description τh τf Ratio

(1) Benchmark model 0.045 1.076 0.042

(2) No geography 0.132 0.743 0.178

(3) Homothetic preferences 0.334 0.476 0.702

E.2 Recycling policies: additional results

While Table 2 in main test shows the median welfare for each group and each scenario,

Table 13 below is the average welfare, computed as the average wealth equivalent (in

% of households expenditures) over the transition.

21For a comparison, when τh = τf we get τ = 0.155. When adjusting only one tax we get: τh = 0.587

and τf = 0.446.
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Table 13: Average welfare by location and income

Scenario Rural Small Medium Large Paris All

(1) Benchmark model: G −1.11 −1.10 −1.03 −1.02 −0.94 −1.05

(2) Uniform transfers 0.58 0.59 0.57 0.64 0.61 0.59

(3) Income rule 2.52 2.23 1.19 1.14 1.10 1.77

(4) Geo X Income 2.05 1.90 2.04 2.09 1.46 1.90

Q1 Q2 Q3 Q4 Q5 All

(1) Benchmark model: G −1.19 −1.20 −1.09 −0.98 −0.80 −1.05

(2) Uniform transfers 1.40 0.83 0.47 0.22 0.08 0.59

(3) Income rule 6.32 2.06 0.44 −0.02 0.06 1.77

(4) Geo X Income 6.67 2.25 0.51 0.03 0.09 1.90

Notes: Welfare is computed as wealth equivalent (in % of households’ disposable income) over the

transition.

In Table 14, we show the share of losers by location and by income group, i.e. the

percentage of households within each group that suffer welfare losses after the policy.

Table 14: Share of losers by location and income

Model Rural Small Medium Large Paris All

(1) Benchmark model: G 100 100 100 100 100 100

(2) Uniform transfers 0 0 0 0 0 0

(3) Income rule 29.0 27.2 29.3 26.9 6.1 24.2

(4) Geo X Income 28.2 25.8 25.6 19.9 5.6 21.9

Q1 Q2 Q3 Q4 Q5 All

(1) Benchmark model: G 100 100 100 100 100 100

(2) Uniform transfers 0 0 0 0 0 0

(3) Income rule 0 0 6.3 49.6 10.1 24.2

(4) Geo X Income 0 0 0 49.6 9.5 21.9

E.3 Migration & Transfers

In Figure 18, we show the density change between steady states, for each transfer rule.

The “Income” transfer scenario implies large migrations, as poor households are less

constrained and can afford to live in rural areas even with high energy requirements.

The “Income × Geography” scenario implies fewer migrations, as rich households in

rural areas receive a transfer and therefore do not choose to migrate.
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Figure 18: Migration dynamics

Notes: Panel a: increase in public spending. Panel b: uniform transfers. Panel c: optimal income

rebating rule. Panel d : optimal income × geography rebating rule.

Lecture: After the scenario “Benchmark G”, the share of households that are in rural areas and in

the 1st quintile increases by 0.09 point compared to the initial steady state.

E.4 Alternative Pareto Weight

In the main text, we compute the optimal transfer rule by maximizing the welfare using

uniform weights. This means we maximize

W =

∫ 1

0

αi

∞∑
t=0

βtE0[Ui,t]di

with αi = 1. In the following Table 15, we use Negishi weights to neutralize the

redistribution motive:

αi =

[
∂V (a, z, k)

∂a

]−1

The optimal coefficient to maximize welfare with Negishi weights is equal to x = 1.68

for the “Income” transfer rule (compared to x = 2.15 for uniform weights), and

xk = [2.0, 2.0, 2.25, 2.3, 2.15] for the “Income × Geography” rule (compared to

xk = [2.07, 2.08, 2.38, 2.4, 2.27] for uniform weights). Therefore, Negishi weights imply

60



a lower progressivity for the transfer rule, as it neutralizes the redistribution motive.

However, as carbon tax is regressive, we still obtain that the optimal transfer is pro-

gressive. The average welfare with Negishi-optimal transfer rules are shown in Table

15:

Table 15: Average welfare by location and income, Negishi weights

Scenario Rural Small Medium Large Paris All

(1) Income 2.15 1.98 1.27 1.30 1.20 1.66

(2) Income×Geography 2.09 1.90 1.89 2.06 1.39 1.88

Q1 Q2 Q3 Q4 Q5 All

(1) Income 5.57 2.03 0.57 0.08 0.08 1.66

(2) Income×Geography 6.51 2.23 0.52 0.04 0.09 1.88

Notes: Welfare is computed as wealth equivalent (in % of households’ disposable income) over the

transition.

E.5 Alternative transfer rule

Our transfer rule from Section 5 is a simple inverse function. In this section, we compute

the same results with an alternative formula taken from Ferriere et al. (2023):

T (y, ȳ) = mȳ
2 exp

(
−ξ
(

y
ȳ

))
1 + exp

(
−ξ
(

y
ȳ

)) (7)

with y total disposable income and ȳ mean total disposable income. This transfer

function is governed by two parameters: a level m and a phase-out ξ. The parameter ξ

determines how quickly transfers phase out with total income. Optimizing our model

with this new transfer rule, we get: m = 0.19 and ξ = 6.39. Figure 19 compares our

optimal inverse-rule formula with the transfer rule 7. The rule 19 is more progressive

than the main inverse rule, since it fades away faster to 0 when income increases.

This additional progressivity allows to reach higher aggregate welfare (around +3% in

all scenarios) – see our results of aggregate welfare by income and city-type groups

in Table 16. With this transfer rule, we again find that allowing for spatial specific

progressivity parameters ξk
22 enhances aggregate welfare by +8.3%.

22Optimizing other this new set of parameters we get: ξk = [7.69, 7.69, 6.24, 6.08, 6.76] andmk = 0.19
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Figure 19: Inverse formula vs. formula 7

Table 16: Average welfare by location and income, alternative transfer rule

Scenario Rural Small Medium Large Paris All

(1) Income 2.46 2.31 1.54 1.51 1.39 1.93

(2) Income×Geography 2.22 2.06 2.19 2.34 1.58 2.07

Q1 Q2 Q3 Q4 Q5 All

(2) Income 6.99 2.33 0.43 −0.08 0.05 1.93

(2) Income×Geography 7.51 2.45 0.42 −0.07 0.08 2.07

Notes: Welfare is computed as wealth equivalent (in % of households’ disposable income) over the

transition.
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F Robustness

F.1 Elasticities of substitution

Benchmark values for our main elasticities are: σ = 0.2, ϵh = 1.5, σy = 0.05, ϵy = 1.5,

δH = 0.2. In this section, we run the same scenario as our “Benchmark G” for the

following alternative values: σ = 0.4, ϵh = 1.3, σy = 0.2, ϵy = 1.3, δH = 0.3. For

each specification, we find the new initial steady state with carbon taxes equal to 0,

then the new final steady state with −10% decrease in total emissions. We finally

compute the transitional dynamics between the two steady states, to compute average

welfare effects (defined as wealth equivalent in percentage of households expenditures)

by location and income groups. We present our results in Table 17, where the last

column is our inequality ratio, defined as the percentage change between the first and

the fifth column (for example, the 18.1% at the first line means that Rural households

suffer a welfare loss 18.1% higher than Parisian households).

Table 17: Average welfare by location and income, different elasticities

Scenario Rural Small Medium Large Paris All Rural/Paris

(1) Benchmark model: G −1.11 −1.10 −1.03 −1.01 −0.94 −1.05 18.1

(2) σ = 0.4 −0.56 −0.57 −0.54 −0.52 −0.52 −0.54 7.7

(3) ϵh = 1.3 −1.33 −1.33 −1.22 −1.21 −1.12 −1.26 18.8

(4) σy = 0.2 −1.01 −1.01 −0.94 −0.93 −0.86 −0.96 17.5

(5) ϵy = 1.3 −1.26 −1.25 −1.15 −1.14 −1.06 −1.19 18.9

(6) δH = 0.3 −1.12 −1.12 −1.03 −1.02 −0.93 −1.06 20.4

Q1 Q2 Q3 Q4 Q5 All Q1/Q5

(1) Benchmark model: G −1.19 −1.20 −1.09 −0.97 −0.80 −1.05 48.8

(2) σ = 0.4 −0.58 −0.61 −0.56 −0.52 −0.47 −0.54 23.4

(3) ϵh = 1.3 −1.40 −1.44 −1.31 −1.18 −0.96 −1.26 45.8

(4) σy = 0.2 −1.08 −1.09 −1.00 −0.89 −0.73 −0.96 47.9

(5) ϵy = 1.3 −1.33 −1.35 −1.23 −1.10 −0.91 −1.19 46.2

(6) δH = 0.3 −1.21 −1.21 −1.10 −0.98 −0.80 −1.06 51.2

Notes: Welfare is computed as wealth equivalent (in % of households’ disposable income) over the

transition. Last column: inequality ratio, defined as the percentage change between the first and the

fifth column.

Elasticity of substitution between G&S consumption and energy (σ = 0.4). Increas-

ing σ substantially reduces welfare losses across all groups. For example, rural welfare

losses decline to −0.56% and the Q1 group’s losses drop to −0.58%. This is because

households adapt more easily to higher fossil fuel prices. Note that this also dampens
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both geographic and income-based inequalities in welfare impacts: the rural-to-Paris

welfare gap decreases from 18.1% in the benchmark to 7.7%, and the Q1-to-Q5 gap

drops from 48.8% to 23.4%.

Elasticity of substitution between fossil fuels and electricity for households (ϵh = 1.3).

Reducing ϵh from 1.5 to 1.3 increases welfare losses across all groups, as it becomes more

difficult to substitute for households. Rural losses rise to −1.33% and Q1 losses increase

−1.40%. The rural-to-Paris welfare gap widens slightly to 18.8%, while the Q1-to-Q5

gap narrows modestly to 45.8%.

Elasticity of substitution between capital-labor and energy for firms (σy = 0.2). With

a higher σy, welfare costs are smaller for rural (−1.01) and poor (−0.86) households.

The rural-to-Paris welfare gap decreases slightly to 17.5%, and the Q1-to-Q5 gap nar-

rows to 47.9%. This indicates that greater substitution flexibility in production not

only lowers overall welfare costs but also marginally reduces income and geographic

disparities.

Elasticity of substitution between fossil fuels and electricity for firms (ϵy = 1.3).

Decreasing ϵy from 1.5 to 1.3 increases welfare losses across all groups, as energy is

less substitutable, creating a higher decline in wages and interest rate. The rural-to-

Paris welfare gap widens slightly to 18.9% while the Q1-to-Q5 gap narrows modestly

to 46.2%.

Elasticity of housing supply (δH = 0.3). Increasing δH does not change aggregate

losses (−1.05 against −1.06) but it amplifies distributive effects. The rural-to-Paris

welfare gap increases significantly to 20.4%, while the Q1-to-Q5 gap widens to 51.2%.

These results suggest that more elastic housing supply amplifies both income and spatial

disparities in welfare costs.

F.2 Partial Equilibrium vs General Equilibrium

Most of the empirical literature on the distributive effects of carbon taxes imputes

emissions to households’ consumption basket, either directly (on direct consumption of

fossil fuels) and indirectly (on imputed carbon content of good and services). In this

section, we run a “partial equilibrium” analysis in our model. We take as given all the

prices and the distribution, and we impute emissions to F h and c, knowing that F h

accounts for 40% of national emissions and therefore c should account for 60%. Finally,

we find the carbon tax τ such that emissions are reduced by 10%, assuming F h and c

are taxed proportionally to their emission intensity. Table 18 shows the median welfare,

computed as wealth equivalent, between our benchmark model (general equilibrium)

and this partial simulation.
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Table 18: Median welfare by location and income

Scenario Rural Small Medium Large Paris Rural/Paris

(1) General equilibrium −1.11 −1.10 −1.03 −1.01 −0.94 18.1

(2) Partial equilibrium −5.60 −5.31 −4.40 −4.39 −4.44 27.5

Q1 Q2 Q3 Q4 Q5 Q1/Q5

(1) General equilibrium −1.19 −1.20 −1.09 −0.97 −0.80 48.8

(2) Partial equilibrium −5.02 −5.27 −5.41 −4.78 −4.07 23.3

Notes: Welfare is computed as wealth equivalent, in % of households’ disposable income. Last column:

inequality ratio, defined as the percentage change between the first and the fifth column.

The welfare cost is significantly higher in partial equilibrium because households

must fully bear the tax burden through changes in expenditures, without adjustments

in wages, rents, or interest rates. While τh allows households to substitute towards

c and N , and τ f enables firms to substitute toward capital and labor, this unique τ

restricts households’ ability to adjust, forcing a reduction in their overall consumption

basket. In partial equilibrium, households decrease their consumption of goods (−5.4%)

and fossil fuels (−16.9%) while increasing electricity consumption (+22.3%). Because

we assume a fixed population density, migration is not an option, further amplifying

the tax burden. Consequently, partial equilibrium analysis overstates spatial effects

compared to our general equilibrium framework.

On the opposite, partial equilibrium underestimates the income dimension. τh is

regressive because it disproportionately affects households with high fossil fuel consump-

tion, and τ f is regressive through its negative impact on wages. In partial equilibrium,

our τ does not affect wages, and targets consumption c and not only fossil fuel F h,

leading to a more balanced distributional impact across income groups.

F.3 Endogenous fossil fuel price

In this section, we depart from our assumption of a fixed fossil fuel price (δF = 0)

and instead allow the price to respond to changes in domestic fossil fuel demand. We

consider two cases: δF = 0.1 and δF = 0.5. For both cases, we calculate the transition

dynamics using the same carbon tax increase as in our Benchmark G scenario from

Section 5. In these new scenarios, total emissions decrease by 9.6% when δF = 0.1 and

by 8.3% when δF = 0.5. Welfare results, broken down by location and income groups,

are reported in Table 19. These adjustments do not alter our overall quantitative

findings.
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Table 19: Average welfare by location and income, pF endogenous

Scenario Rural Small Medium Large Paris All Rural/Paris

(1) Benchmark model: G −1.11 −1.10 −1.03 −1.01 −0.94 −1.05 18.1

(2) δF = 0.1 −1.07 −1.06 −0.98 −0.97 −0.89 −1.01 19.3

(3) δF = 0.5 −0.91 −0.91 −0.84 −0.84 −0.77 −0.86 19.2

Q1 Q2 Q3 Q4 Q5 All Q1/Q5

(1) Benchmark model: G −1.19 −1.20 −1.09 −0.97 −0.80 −1.05 48.8

(2) δF = 0.1 −1.14 −1.15 −1.05 −0.93 −0.77 −1.01 48.3

(3) δF = 0.5 −0.98 −0.98 −0.89 −0.80 −0.66 −0.86 48.5

Notes: Welfare is computed as wealth equivalent, in % of households’ disposable income. Last column:

inequality ratio, defined as the percentage change between the first and the fifth column.
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