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Inégalité d’état de santé respiratoire chez le jeune enfant et exposition 
à la pollution de l'air

Cet article étudie les effets différenciés de l'exposition des jeunes enfants à la pollution 
de l'air sur leur recours à des soins en lien avec les maladies respiratoires, en fonction 
du niveau de vie des parents et de facteurs de vulnérabilité liés à leur état de santé. Il  
s’appuie sur un appariement de bases de données administratives françaises, l’EDP-
Santé.  Fondée  sur  une  méthode  quasi-expérimentale,  cette  étude  met  d’abord  en 
évidence des effets significatifs sur les admissions aux urgences et la délivrance de 
médicaments  contre  les  maladies  respiratoires  lors  de  chocs  de  pollution  de  l'air, 
supposés exogènes car liés à des inversions thermiques. En utilisant une approche de 
machine learning générique, elle met ensuite en évidence des effets hétérogènes d’un 
enfant à l’autre : ces effets sur le recours au soin affecteraient principalement 10% des 
jeunes enfants, caractérisés par une fragilité de leur santé à la naissance et un niveau de 
vie  parental  plus  faible.  Nos  résultats  indiquent  que  les  politiques  localisées  de 
réduction de l’exposition à la pollution de l’air, si elles étaient ciblées prioritairement 
en fonction de la vulnérabilité particulière de certaines populations, pourraient être 
plus efficaces.

Mots clés : Exposition à la pollution, inégalités environnementales, inférence causale, 
effets de traitement hétérogènes

Code JEL: I14, I18, Q53, Q58

Air Pollution and Children’s Health Inequalities

This  paper  examines  the  differential  impacts  of  early  childhood  exposure  to  air 
pollution on children’s health care use across parental income groups and vulnerability 
factors  using  French  administrative  data.  Our  quasi-experimental  study  reveals 
significant  impacts  on  emergency  admissions  and  respiratory  medication  in  young 
children,  attributed  to  air  pollution  shocks  from  thermal  inversions.  Using  causal 
machine learning, we identify these health impacts as predominantly affecting 10% of 
infants, characterized by poor health indicators at birth and lower parental income. Our 
results  indicate  that  targeted  policies  based  on  vulnerability  metrics  may be  more 
effective  at  delivering  public  health  benefits  than  those  based  solely  on  exposure 
levels.

Keywords: Pollution Exposure, Environmental Inequalities, Causal Inference, 
Heterogeneous Treatment Effects

JEL Codes: I14, I18, Q53, Q58



1 Introduction

Air quality and environmental inequalities are urgent health policy issues, especially
when young children are at risk. The average impacts of air pollution on mortality,
morbidity (Currie et al., 2014; Velasco and Jarosińska, 2022), and its links to
childhood asthma are well-documented (Khreis et al., 2019). However, the picture is
far from complete since air pollution does not affect all children equally. Specifically,
the differential effects of early childhood exposure to air pollution, influenced by
diverse socio-economic backgrounds, are underexplored. This gap is notable, given
the disparities in vulnerability, pollution exposure, and access to healthcare among
children from varying backgrounds.

Figure 1a shows a marked reduction in the average yearly fine particulate matter
(PM2.5) exposure for children in France from 2008 to 2017, using two distinct data
sources, based on satellite measurements (ACAG) or on emission inventories (Ineris).
Figure 1b reveals significant inequalities in exposure: children from both the upper
and lower parental income deciles experience the highest pollution exposure within
their birth cohorts.
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Figure 1: Average PM2.5 exposure by birth year and within decile of adjusted household
income. Source: ACAG: Atmospheric Composition Analysis Group; Ineris: French National
Institute for Industrial Environment and Risks; EDP-Santé

This paper studies the heterogeneous health consequences of temporary increases
in exposure to PM2.5 for children using quasi-experimental evidence linking health

2



outcomes to socio-demographics, vulnerability factors, and air pollution exposure.
To investigate these inequalities, we leverage a large representative administrative
data sample of about 340,000 children born in France between 2008 and 2017, which
includes comprehensive information on their health care utilization and parental
income, and use generic machine learning inference (Chernozhukov et al., 2023) to
identify the groups that are particularly vulnerable to the health consequences of
air pollution exposure.

Identifying the causal effects of air pollution exposure on children’s health care
utilization is challenging due to three main endogeneity issues. First, pollution,
as a by-product of economic activity, not only affects health but is also correlated
with other factors such as work conditions and habits (Dehejia and Lleras-Muney,
2004; Heutel and Ruhm, 2016; Stevens et al., 2015). Second, household location
choices are endogenous dynamic decisions that may be influenced by anticipated
air pollution exposure and related amenities like the absence of major roads (Pan,
2023). Finally, measurement errors in individual pollution exposure, with precise
daily tracking being impractical and concentration measures showing significant
source-dependent variations, can introduce an attenuation bias.

To address these endogeneity issues, we use a quasi-experimental design based
on a specific meteorological phenomenon: thermal inversions. Thermal inversions
occur when a layer of warm air traps cooler air beneath it, preventing the dispersal
of pollutants and leading to elevated levels of PM2.5 in the surrounding area. Our
empirical strategy leverages this natural phenomenon to design a binary exposure
shock, from a plausibly exogenous variable, to implement a rich heterogeneity
analysis following Chernozhukov et al. (2023). Specifically, we categorize infants
into “more exposed” (treated) and “less exposed” (control) groups depending on
their exposure to an above-average number of thermal inversions in their first year,
factoring in municipality-specific and year-specific averages. This group distinction
offers credible exogenous variations in air pollution exposure, evidenced by its
significant association with fine particulate matter concentrations and its lack of
correlation with individual child characteristics.

In this study, the “treatment” refers to the quasi-random assignment to expo-
sure groups based on exposure to thermal inversions, for which we estimate the
corresponding average treatment effect (ATE). It is important to note that our
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empirical approach uses a reduced-form estimator within an instrumental variable
(IV) framework, with thermal inversions serving as the IV for air pollution ex-
posure. As a result, the ATE from thermal inversion exposure is effectively the
intention-to-treat (ITT) effect (Imbens, 2014).1 The causal interpretation of these
estimates hinges on the assumption that, after controlling for municipality and
year fixed-effects as well as weather variables, changes in the number of thermal
inversions within a municipality are unrelated to changes in infant health care use,
except through their influence on air pollution.

Our analysis examines two key indicators of health care use linked to air pollu-
tion: emergency admissions, and medication dispensed for respiratory conditions.
More specifically, we focus on emergency admissions and medications related to
bronchiolitis and asthma.2 In 2017, medications for obstructive airway diseases
accounted for EUR 1 billion in reimbursements from the French National Health
Insurance, serving 8.6 million beneficiaries, 26.6% of whom were under 20 years
old.3 France’s comprehensive universal health care system minimizes financial
barriers, making health service usage a more accurate reflection of actual health
care needs compared to many OECD countries (OECD, 2019). This universal
system facilitates not only the analysis of drug prescriptions but also provides access
to comprehensive health care utilization data across a representative population
sample, contrasting with the more limited scope of data from specific insurance
groups or Medicare (Klauber et al., 2023; Deryugina et al., 2019). This broad and
representative coverage renders our dataset ideal for investigating income-based
health disparities.

Our findings indicate that infants overexposed to air pollution in their first year
have on average a higher propensity to utilize healthcare services for respiratory
issues compared to their less exposed peers. After controlling for municipality and

1Our emphasis on these parameters is primarily driven by the methodological constraints in
Chernozhukov et al. (2023), as discussed later.

2Medications for asthma address both immediate symptoms and chronic management. De-
schenes, Greenstone and Shapiro (2017) emphasize that these drugs also act as a defensive
investment by reducing asthma-related hospitalizations and fatalities despite the condition’s
persistent prevalence (Fanta, 2009).

3According to Open medic (CNAM), this drug class represents 9.9% of the euro value of drug
deliveries reimbursed for individuals under 20 years old. The average cost amounts to 58.5 euros
per young beneficiary (under age 20) in 2017, for an average of 3.7 packs, of which 41.3 euros are
reimbursed by the National Health Insurance.
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year fixed-effects and weather variables, the infants in the exposed birth cohorts
experience an average of 11 additional days with thermal inversion in their first year
(+30%). This corresponds to a short-term spike in PM2.5 pollution exposure over
a few days and equates to a 0.1 to 0.2 µg/m3 increase in average annual exposure,
or about 1 to 2%. Our results indicate that the exposed cohorts are more likely
to experience at least one emergency admission for bronchiolitis or asthma during
their first three years, with an increased probability of 0.5 p.p. (12% of the mean
probability). These children also show a higher propensity for anti-asthma drug
consumption before their first birthday, a probability that increases with the extent
of air pollution exposure differential.

We extend this analysis by exploring various dimensions of heterogeneity, notably
parental income and vulnerability at birth. Our results reveal that the impacts of
air pollution are concentrated in about 10% of the infant population, which are
mainly characterized by a combination of poor health indicators at birth. The
most impacted infants (top 10%) exhibit a 2.5 p.p. increased likelihood of being
prescribed anti-asthma medication (10% of their group-specific mean probability)
and a 1.3 p.p. increased likelihood of at least one emergency bronchiolitis admission
(27% of their group-specific mean probability) if exposed to the air pollution shock
within their first year.

Our results also hint that air pollution is a leading cause of emergency admissions
for bronchiolitis among the bottom and top deciles of parental income. Figure
2 reveals a negative gradient between the likelihood of emergency admissions for
bronchiolitis and parental income, with the bottom and top deciles accounting for
14% and 6.7% of all admissions, respectively. However, for admissions attributed
to air pollution, these percentages rise to 17.4% for the lowest income group and
11.1% for the highest, emphasizing the disproportionate impact of air pollution on
admissions for both ends of the income spectrum.

Our findings underscore that temporary surges in air pollution exposure con-
tribute to respiratory health complications in young children, with the most vulnera-
ble being disproportionately affected. This highlights the urgent need for mitigation
policies that extend beyond traditional targeting based on local air pollution lev-
els, calling for a tailored approach recognizing local characteristics of population
and pollution sources. The European Union (EU)’s proposed amendments to the
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Figure 2: Distribution of children household adjusted income in children with an
emergency admission for bronchiolitis (all causes) and in children with an emergency
admission for bronchiolitis due to air pollution, as identified by our heterogeneity analysis.

Ambient Air Quality Directives, aiming to establish stricter thresholds for local
air pollution levels by 2030, serve as a framework for discussing these targeting
policies.4 Our research suggests the need for more precise air quality monitor-
ing, the development of harmonized indices that account for population-specific
vulnerabilities, and targeted compensation schemes, particularly for lower-income
groups. Crucially, our empirical analysis informs the development of more effective
national air quality roadmaps, aligning with the EU’s mandate. It underscores that
prioritizing regions with vulnerable populations, identified by simple metrics like
the number of premature births, may more effectively mitigate the adverse health
impacts of air pollution compared to approaches based solely on pollution exposure.
This vulnerability-based targeting could emerge as a more effective strategy over
exposure-based prioritization.

Our research engages with the literature exploring the heterogeneous health
impacts on air pollution. Deryugina et al. (2019) find that the mortality effects of

4Amendments adopted by the European Parliament on 13 September 2023 on the proposal for
a directive of the European Parliament and of the Council on ambient air quality and cleaner air
for Europe (recast) (COM(2022)0542 – C9-0364/2022 – 2022/0347(COD))(1).
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air pollution are concentrated in the most vulnerable 25% of the elderly popula-
tion, by leveraging the generic machine learning approach (Chernozhukov et al.,
2023), whereas Deryugina et al. (2021) examine the associated socio-economic and
geographical determinants. We consider that infants and young children warrant
particular attention in the study of health disparities stemming from air pollution
due to the potential lifelong consequences (Isen, Rossin-Slater and Walker, 2017;
Bharadwaj et al., 2017) and intergenerational transmissions of inequalities (Currie,
2009). In this line of research, and closely related to our work, Jans, Johansson and
Nilsson (2018) document the impact of air quality on infant health by socioeconomic
status, using thermal inversions to tackle endogenous residential sorting. Thermal
inversions have been also used as an exogenous source of variations for air pollution
in Arceo, Hanna and Oliva (2016) and Dechezleprêtre, Rivers and Stadler (2019),
among others, to investigate related environmental questions.

The remainder of this paper is organized as follows. Section 2 presents some
background facts about inequalities and air pollution in France. Section 3 describes
the data used in our empirical study. Section 4 presents the empirical strategy.
Section 5 collects the empirical results and related discussion. Section 6 discusses
policy implications. Section 7 concludes.

2 Health Inequalities & Air Pollution in France

Children in dense urban areas are disporportionately exposed to fine particulate
matter, highlighting the environmental inequalities faced by some communities.
Figure 3 shows the high concentration of PM2.5 in these populous areas, including
France’s major cities, as depicted in Figure A3. This phenomenon reflects broader
socioeconomic disparities beyond the simple urban-rural divide. Nationally, children
from both the lower and upper parental income deciles experience elevated air
pollution levels, indicative of spatial sorting effects. The upper decile is more
exposed due to their over-representation in the largest, often more polluted, French
urban areas. Nonetheless, within these areas, children from poorer backgrounds
face the greatest exposure to PM2.5, as shown in Figure A2, a consequence of their
residence in the most polluted municipalities.

Recent U.S. research indicates that higher exposure to air pollution persists
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among specific racial groups and, to some degree, low-income populations (Currie,
Voorheis and Walker, 2023), suggesting that health inequality due to air pollution
is a global issue, not unique to France. Hsiang, Oliva and Walker (2019) observed
that although cities with higher household incomes have increased levels of nitrogen
dioxide (NO2), it is the disadvantaged groups within these cities who endure the
most exposure. The study also reveals a U-shaped relationship between income
and pollution exposure observed at the national level, paralleling France’s situation
where urban low-income groups disproportionately suffer from pollution (Le Thi,
Suarez Castillo and Costemalle, 2023; Champalaune, 2020; Salesse et al., 2022).
The spatial segregation of high and low-income populations in French urban and
suburban areas further intensifies this phenomenon (Aerts, Chirazi and Cros, 2015).

Figure 3: PM2.5 concentrations at the municipality level (µg/m3) in 2010 (source:
ACAG) and population densities in 2017 (source: Insee-IGN, 2021)

Children’s sensitivity to air pollution exposure may also be influenced by inherent
vulnerability factors (Deguen and Zmirou-Navier, 2010). Due to social inequalities
in health, susceptibilities to air pollution may differ across standards of living, as
children from lower-income families typically have poorer health at birth. Figure
4 highlights this disparity, showing that children from low-income families are
1.5 times more likely to be born prematurely or with birth weights below 2.5 kg,
representing a significant and noteworthy difference. These marked inequalities are
also observed among children born at term, as detailed in Table A5 in the Appendix.
Families with higher incomes tend to have more “healthy births”, defined as those
with non-pathological admissions, and absence of principal diagnosis involving
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significant problems from the hospital discharge data.5 Of significant concern is
the additional health care provided to children from lower-income families during
their initial hospital stay at birth, especially for severe risks. Children from modest
backgrounds born prematurely face a 1.77 times higher risk of low birth weight, a
1.48 times greater likelihood of needing neonatal intensive care, and a 1.75 times
increased risk of undergoing a respiratory system X-ray.
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 Figure 4: Share of premature births and low birth weight by parental income decile

Figure 5a demonstrates a significant correlation between parental income and
the incidence of hospital stays for asthma in early childhood. Specifically, 1.9% of
infants from the lowest income bracket require emergency hospital care, compared
to only 1.2% from the highest income decile. This stark contrast underscores the
pronounced health disparities across income groups in France, starting from birth.

Perhaps more surprisingly, Figure 5a reveals that the administration of anti-
asthmatic medication increases with parental income up to the sixth decile. Given
that asthma can be controlled with appropriate care, the higher levels of urgent
asthma crises and lower levels of medication dispensed suggest insufficient treatments
among lower-income groups. This is supported by the opposite patterns of increasing
medication use and decreasing emergency admissions for related diseases up to the
same income decile, implying that remedial investments are probably missing at

5Additional information is provided in Appendix A.
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the bottom of the parental income distribution. Medication usage across income
levels mirrors the pattern observed in general practitioner and pediatrician visits, as
depicted in Figure 5b. Public health guidelines mandate a specific number of doctor
visits for all children, irrespective of their health status. From 2006 to 2018, nine
such visits were required within a child’s first year, with full reimbursement from
national health insurance, barring any extra fees charged by certain professionals.6

Doctor visits are more frequent among higher-income groups (up to the 7th decile).
This may indicate differences in health care utilization rather than health status.
Notably, lower-income families tend to consult general practitioners, whereas higher-
income families more often visit pediatricians. These observations suggest disparities
in both the quantity and quality of health care accessed by various income groups.
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Figure 5: Emergency admissions for asthma, anti-asthma medications and visits to
doctors (GP and pediatrician) by decile of parental income

3 Data

In this study, we combine several datasets at the municipality level: (i) air pollution
data sourced from two distinct databases; (ii) atmospheric condition data extracted
from a European reanalysis model; (iii) an extensive administrative dataset of a

6These instructions were given to the parents through the “Carnet de Santé”, a notebook given
at birth and filled in by health professionals throughout the child’s development.
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representative sample of the French population, with comprehensive individual
data such as health care utilization and fiscal information.

Municipalities are delineated according to the 2017 administrative geography
for communes, with arrondissements being used for major cities (Paris, Lyons,
and Marseilles). These administrative units offer an adequate level of precision for
the purpose of our study. Over half of these units have less than 500 inhabitants
and occupy an area of less than 11 square kilometers (Chéron and Escapa, 2015),
enabling a detailed study of exposure to air pollution.

3.1 Local Air Pollution

We use two reference data sources on local concentrations of PM2.5 in France at
the annual level, to verify that our results are not sensitive to known discrepancies
in large-scale estimates (Fowlie, Rubin and Walker, 2019). First, we use historical
annual average data available for 2009-2020 at the municipality level in France. This
database is produced by the French National Institute for Industrial Environment
and Risks (Ineris). This dataset is the outcome of a statistical reconciliation process
that combines measurements from monitoring stations with simulated data derived
from an air quality model that uses emission inventories (Real et al., 2022). The
second source is the Atmospheric Composition Analysis Group (ACAG) provides
annual estimates of PM2.5 concentrations displayed on a one-kilometer grid that
spans the European territory. These estimates are grounded on satellite observations
and cover the years 2001-2018 (Hammer et al., 2020).

We evaluate the annual mean exposure to PM2.5 for children by merging these
concentration data with location information, as detailed in Section 3.3. Although
these datasets are available continuously over several years, one limitation is that
they are only available for the calendar year. Therefore, as exposure in the first
year of a child’s life starts on the date of birth, and not necessarily on the first
of January, it is not possible to measure PM2.5 exposure for all children in our
sample.

Figure 1 shows significant discrepancies in the average exposure of infants to
PM2.5 between the two main data sources. The annual average exposure of infants
in France sharply declined from 14-17 µg/m3 in 2009 to 9-11 µg/m3 by 2017. This
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decrease is explained by progress in all sectors, such as enhanced dust removal
methods in industrial processes, improved efficiency of biomass combustion plants,7

and a reduction in primary particles emitted by diesel vehicle exhaust in large
cities.8 In this context, an exposure variation of 0.10-0.15 µg/m3 equates to 1%
of the average annual exposure. This variation could represent a 1% sustained
increase of the daily average concentration throughout a year, or alternatively,
an amplification of the daily average concentration by 36.5% over a span of 10
days within a year. The quasi-experimental variations in annual average exposure
examined in our study stem from a substantial short-term daily exposure surge, of
about 30%, over a dozen of days with thermal inversions.

3.2 Local Weather Conditions

The UERRA datasets feature reanalysis data of atmospheric and surface climate
variables, derived from the assimilation of historical data into a numerical weather
model. The UERRA-HARMONIE reanalysis system offers hourly estimates of
atmospheric variables at an 11km2 horizontal resolution, with 65 height levels,
covering the period from 1961 to 2019 over Europe. This dataset, accessible on the
Copernicus Climate Data Store, represents the highest resolution reanalysis dataset
for Europe available at the time of our study, to the best of our knowledge.9

We derive municipality-level weather data by aligning each municipality’s cen-
troid with its closest point on the UERRA grid.10 The weather-related control
variables are established in accordance with the method described by Dechezleprêtre,
Rivers and Stadler (2019). For each child, we acquire the following information for
their first year of life: (1) the counts of the number of days during which the average
daily temperature falls into one of 20 temperature bins, spanning the entire range

7“Bilan de la qualité de l’air extérieur en France en 2017.” Rapport Commissariat Général au
Développement Durable, 2018, Ministère de la Transition Ecologique et Solidaire.

8“Bilan de la qualité de l’air 2019, Surveillance et information en Ile-de-France.”, 2019, Air
Parif.

9We are grateful to the Copernicus Climate Change and Atmosphere Monitoring Services
for making the Copernicus products available. We acknowledge that neither the European
Commission nor ECMWF assumes responsibility for any use that may be made of the Copernicus
information or data it contains.

10The median area of the municipality regions (approximately 11 square kilometers) aligns, on
average, with the dimensions of the UERRA grid units.
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of observed temperatures; (2) the counts of the number of days where the daily
average wind speed is categorized into one of 12 wind speed bins, as delineated by
the Beaufort wind scale; (3) the mean relative humidity experienced during their
first year; and (4) the mean pressure throughout that year.

We classify a day with a thermal inversion when there is a positive difference
between the daily mean temperatures at 500 meters and 15 meters above the
surface level.11 We assign weather conditions, including thermal inversions, to each
infant’s first year of life, considering their respective birth dates. Appendix A offers
supplementary information pertaining to our weather data.

3.3 Health care use and socio-demographics

The Echantillon Démographique Permanent (EDP) is a longitudinal representative
sample that tracks 4% of the French population across various administrative sources.
Recently, it has been supplemented with National Health Insurance affiliation data,
thereby creating the “EDP-Santé” data sample.

This rich dataset combines multiple data sources, including the census and
several administrative sources for all individuals born on one of the first four days
of each quarter, known as the “EDP individuals”, linked via a common identifier.12

Additionally, data from National Health Insurance (Caisse Nationale d’Assurance
Maladie, CNAM) since 2008 provides detailed information on hospital admissions,
drug prescriptions, and other health data.13 Our health data combines information
about drug deliveries, inpatient birth stays, emergency admissions, and doctor visits.
Income data from 2010 to 2016 is sourced from the fiscal database Fidéli/Filosofi,
covering all EDP individuals and their household members, including parents, at
the same address.

Our study encompasses 336,169 children born from 2008 to 2017. We track
medication, specifically anti-asthma drugs (26% usage in the first year), delivered
in city care and reimbursed by National Health Insurance over 2008-2018. These

11Jans, Johansson and Nilsson (2018) and Dechezleprêtre, Rivers and Stadler (2019) employ
this definition for thermal inversions as well.

12Specifically, these dates are the 2nd, 3rd, 4th, and 5th of January, and the 1st through 4th of
April, July, and October.

13Conducted by the Direction de la Recherche, des Études, de l’Évaluation et des Statistiques
(DREES) for measuring health inequalities (Dubost and Leduc, 2020)
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medications, classified under ATC code R03 for obstructive airway diseases,14 are
observed alongside doctor consultations or visits resulting in individualized reim-
bursements. Data excludes consultations from the Maternal and Child Protection
(Protection maternelle et infantile, PMI), with 15% of children under six having at
least one consultation in 2012 (Amar and Borderies, 2015).

We use hospital discharge data from the PMSI (Programme de Médicalisation
des Systèmes d’Information) that includes all hospital stays (inpatient hospital
admissions) linked to EDP individuals from 2008 to 2018. Emergency admissions
for asthma and bronchiolitis in infants’ first three years are identified using ICD-10
codes J45-J46 and J21 for the principal diagnosis encoded by the physician.15 These
admissions exclude non-hospitalized emergency room visits, representing severe
cases. The diagnosis used is determined at the end of the patient’s stay and justifies
the hospital admission. Emergency admissions for bronchiolitis are considered
before age two, and for asthma before age three, following Santé Publique France16

and the Haute Autorité de Santé17 guidelines. The health data is further detailed
in Appendix A.

We identify birth hospital stays for 85% of EDP infants using the methodology
based on perinatal statistics.18 For a more comprehensive analysis, we use subset
of 235,000 EDP children, for whom we have both household income data from
Fidéli-Filosofi and detailed birth health information. Parental income is calculated
as adjusted disposable income, combining earnings, self-employment income, cap-
ital income, and social transfers, minus direct taxes, adjusted for household size
(Blanpain, 2019).19 We rank infants by household income percentile within their
birth cohort for the first three years, and assign them to income groups using the
average income percentile across these years.

14Commonly prescribed molecules include salbutamol and fluticasone propionate; details in
Appendix A.

15Appendix A.1.2 shows evidence of the unavoidability of asthma admissions, indicating that
emergency admissions correlate with actual infant health and not differential healthcare access.

16https://www.santepubliquefrance.fr, 2023, 9th of April.
17Haute Autorité de Santé, 2009, “Asthme de l’enfant de moins de 36 mois : diagnos- tic, prise

en charge et traitement en dehors des épisodes aigus.” Recommandations Professionnelles
18As defined by the French Federation of Perinatal Health Networks (ATIH) and the DREES

in ScanSanté/Indicateurs de santé périnatale/FFRSP/ATIH.
19Details on income groups and consumer unit calculations are in Table A4 in the Appendix,

using the modified OECD scale.
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4 Empirical Strategy

Our objective is to estimate the causal effect of an increase in exposure to air
pollution on anti-asthmatic drugs deliveries and emergency admissions during the
first years of life. Identifying the causal effects of pollution exposure on children’s
health care use is however challenging due to several factors. First, pollution is
not randomly distributed across space, as it is often associated with the proximity
to dense urban areas. These areas have specific populations with varying baseline
health, health behaviors, and access to health care.20 Second, even within a specific
location, pollution is not randomly assigned over time. It tends to be correlated
with local economic conditions, which can influence or be associated with infant
health outcomes.21 Third, individual measures of pollution exposure are subject to
errors.

This section presents our identification strategy, the econometric models used
to estimate the average treatment effects, and our approach to investigate heteroge-
neous treatment effects.

4.1 Linking Air Pollution to Health Care Use

We tackle endogeneity by isolating and designing a quasi-experimental air pollution
binary shock induced by variations in local thermal inversion exposure among
children, factoring in their birth location and time. This approach allows us to
create distinct “more exposed” (treated) and “less exposed” (control) cohorts for
comparison.

We opt for a reduced-form IV model for several reasons. The primary reason
is methodological: the approach developed by Chernozhukov et al. (2023) used
in the heterogeneity analysis requires a binary treatment variable and does not
accommodate instrumental variables. We hence closely follow the approach in

20To address this, researchers commonly control for time-invariant and unobserved local deter-
minants using location fixed effects.

21To tackle this issue, some studies use time variations that are credibly unrelated to residential
sorting or transient economic factors (Isen, Rossin-Slater and Walker, 2017; Jans, Johansson
and Nilsson, 2018). For instance, they compare cohorts born before or after the introduction
of significant environmental regulations, like the 1970 Clean Air Act, or investigate short-term
health responses to specific events such as thermal inversions.
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Deryugina et al. (2019) by designing a binary treatment from a plausibly exogenous
variable. An additional reason pertains to data constraints: the annual aggregation
of pollution data limits the first stage of our analysis to only children born in January,
resulting in the exclusion of approximately 75% of the sample.22 Consequently,
while we also present results using a two-sample two-stage least squares (TS2SLS)
method with this restricted first stage in the appendix, our primary focus is on the
reduced-form estimates of the binary exposure variable on health care use.

Identification strategy. Our identification strategy is to compare children who
have been exposed to an above-normal number of thermal inversions during their
first year to others, where the “normal level” varies across locations and years. The
key identifying assumption is that after controlling for municipality fixed-effects,
birth year fixed-effects, and weather variables, the local changes in the number
of thermal inversions are unrelated to changes in the health outcomes of children
except through their influence on air pollution. In this context, we interpret our
binary treatment as a positive shock of air pollution exposure. We use this treatment
for both estimating average treatment effects and conducting the heterogeneity
analysis.

The binary treatment variable Ti serves as a quasi-random assignment to higher
levels of air pollution exposure. It assigns children either to the more exposed or
less exposed groups based on their exposure to temporary surges in air pollution,
as measured by an above-average number of days with thermal inversions before
their first anniversary. The reference level of number of thermal inversion days
for each infant i, denoted N i, is calculated at the municipality c and year t level.
This baseline accounts for regional and temporal variations, including geographical
factors like topography and annual fluctuations potentially linked to climate change.
Figure 6 illustrates the relationship between thermal inversions and topographical
characteristics, which are irrelevant to our identification strategy. Appendix B.1 is
devoted to our model of N i.

22Moreover, weather-related IVs impact pollutants beyond PM2.5, complicating the identification
of effects attributable to a specific pollutant. This complexity challenges the interpretation of
2SLS estimates, as demonstrated by Godzinski and Suarez Castillo (2021).
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Figure 6: Topography in the UERRA model (source: UERRA user guide) and annual
share of days with thermal inversions UERRA 1999-2017 (right).

For each infant i, we calculate the exposure to ni = Ni − N i additional days of
thermal inversion compared to the local long-term average N i, which varies across
birth year t and municipality c. Here, Ni represents the actual number of days with
thermal inversion experienced by child i in their first year. We define a cohort as
exposed when the number of days with local thermal inversion during the child’s
first year of life exceeds the reference level by a threshold value denoted as n > 0.
The binary treatment variable is formally defined as follows:

T n
i = 1

{
Ni − N i ≥ n

}
. (1)

We also conduct our analysis using Ti as an instrumental variable for PM2.5,
which yield estimates of local average treatment effects closely aligned with our
reduced-form results.23 However, we have made a deliberate choice not to emphasize
these results in the main specifications of the paper and instead focus on the reduced-
form estimates for the reasons mentioned above.

Econometric specifications. We estimate the average treatment effects on
health outcomes with the following model

23Appendix B.2 provides the results of a two-sample two-stage least squares regression, where
the first-stage is given by (3) and the second-stage corresponds to (2), using P̂M i instead of Ti.
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Yi = βTi + XI
i γI + XW

i γW + µc + δt + ϵi, (2)

where the dependent variable Yi is the health care outcome of interest for child
i, born in municipality c. We control for individual-level variables XI

i , weather
variables XW

i , as well as municipality fixed effects µc to control for local and time-
invariant determinants of health and pollution, and birth-year fixed effects δt to
control for unobserved time-varying shocks common to children born in the same
year t. Ti is constructed to represent that child i is exposed to an air pollution
shock before their first anniversary, which is mediated by exposure to an above
normal number of thermal inversions. This approach ensures that the air pollution
exposure is arguably exogenous to the child’s unobservable characteristics, as will
be demonstrated shortly.

At the individual level, we control for a very large set of variables aimed at
capturing observed heterogeneity: gender, parental income (introduced in decile
and linearly), mother’s characteristics (age and an indicator for being born abroad),
gestational age (as an indicator for premature birth and linearly), birth weight (low
birth indicator and linearly), as well as six other health indicators derived from the
hospital stay at birth.24 In addition, XW

i includes an extensive range of weather
conditions characterizing the child’s exposure during the first year, i.e. the number
of days in each of 20 temperature bins, the number of days in each of 12 wind
strength bins, and second-order polynomials for average pressure and humidity.

The parameter of interest is β, interpreted as the average treatment effect
associated with the quasi-experimental binary shock of exposure to air pollution
Ti ∈ {0, 1}. All standard errors are clustered at the UERRA grid level, the
geographical level of measure of the treatment status.

Quasi-experimental pollution exposure shocks. The estimates derived from
(2) can be seen as the ITT effects, capturing the reduced-form impact of the
treatment variable Ti which serves as an instrumental variable used to quasi-
randomly assign infants to air pollution shocks. We investigate the threshold choice

24These health indicators include (i) neonatalogy department stay, (ii) respiratory or cardiovas-
cular diagnoses, (iii) electrocardiogram, (iv) respiratory system, (v) no pathology diagnosis, (vi) a
birth labeled as “normal” for national insurance reimbursement purposes.
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n using the corresponding first-stage regression

PMi = θnT n
i + XW

i λ + ρc + ξt + ei, (3)

where PMi measures concentrations of fine particulate matter for child i given its
municipality c of residence and year of birth t, varying n. We control for weather
variables, XW , as well as municipality and year fixed effects, respectively ρc and ξt.
Recall that PM2.5 data is only available at the annual level. Therefore, we estimate
(3) for children born in January, whose first year coincides with the calendar year.
This restriction reduces the sample size by four. Additionally, including controls
XI reduces the sample by approximately 40% due to missing values.

In our analysis, we opt for the threshold n = 7, which corresponds to an
intermediate pollution shock equivalent to approximately one standard deviation of
ni (sd = 7.7). This approach leads to categorizing 14% of the sample as the exposed
group. Figure 7 displays the estimation results for θ, showing a dose-response
relationship between PM2.5 levels and local changes in thermal inversions from
both reference data sources on pollution (ACAG and Ineris).25 We further evaluate
how this quasi-experimental shock impacts the annual number of thermal inversions
experienced by children with the following specification

Ni = bTi + XI
i gI + XW

i gW + mc + dt + ui. (4)
25These estimates align with daily estimates from Godzinski and Suarez Castillo (2021) when

aggregated yearly (see Appendix B.1).
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Figure 7: Days with thermal inversion from birth to first anniversary and PM2.5
Exposure in first year. Notes: Infants born in January from the primary sample. θn estimates
from (3) for increasing values of threshold n.

Table 1 reports the corresponding estimates from (3) and (4). According to
column (1), children in the exposed group, on average, experience an additional
10.8 days of thermal inversion before their first anniversary. Depending on the
PM2.5 source, this corresponds to an increase in annual average exposure by either
0.12 or 0.24 µg/m3 (i.e. about 1-2% of the annual mean exposure). The estimates
in Table 1 remain robust when including XI in column (2) despite the reduced
sample size. However, for the ACAG source, the coefficient is slightly reduced
and not significant at the 5% level. Columns (3) and (4) report estimates when
excluding children who are intermediately treated, i.e. ∀ni ∈ [0; n]. In this case, the
treated and control groups differ by almost 15 days of thermal inversions, leading to
a larger PM2.5 exposure difference of approximately 0.3 µg/m3 in both sources.26

26The impact of excluding intermediately treated children appears to be more pronounced with
ACAG data, but it is also noticeable with Ineris data, particularly for larger threshold values n,
as shown by Figure B5 in the Appendix.
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Table 1: Design of the quasi-experimental treatment and exposure to air pollution:
when days with thermal inversion in first year exceed by n = 7 days the prediction

All Children Excluding those
intermediately treated

Outcome (1) (2) (3) (4)

Additional days with thermal inversion in first year
10.79 10.60 14.71 14.65

[10.48;11.11] [10.32;10.89] [14.31;15.11] [14.33;14.97]
XI no yes no yes

Sample size 336169 217859 235380 147042

Additional exposure to PM2.5 (ACAG source) in first year for those born in January
0.12 0.055 0.28 0.21

[0.022;0.22] [-0.044;0.15] [0.17;0.40] [0.075;0.35]
XI no yes no yes

Sample size 82164 49703 49133 29732

Additional exposure to PM2.5 (Ineris source) in first year for those born in January
0.24 0.23 0.29 0.23

[0.12;0.37] [0.085;0.37] [0.14;0.45] [0.043;0.43]
XI no yes no yes

Sample size 73354 49214 44530 29462

Notes: This Table presents the results of twelve distinct regressions, with three outcomes in rows
and four specifications in columns. Each outcome is regressed on the binary exposure dummy
Ti = 1{n̂ > n = 7}, on ground-level weather controls, with or without individual characteristics XI ,
and with municipality and year fixed effects. Standard errors are clustered at the UERRA grid level.

We conduct a comparison exercise to validate the assumption that the exposure
dummy provides a reliable exogenous variation of air pollution. In (2), we replace
Yi with infant characteristics XI

i , excluding them from the set of explanatory
variables. The resulting coefficients in Table 2 represents the conditional correlation
between the treatment status and child characteristics. These results indicate a high
level of comparability between treated and non-treated births regarding children’s
characteristics, both unconditionally (columns 2 and 3) and conditionally (columns
4 and 5). This comparability provides credibility to using the exposure dummy
based on thermal inversions as a reliable proxy for as-good-as-random variations
in air pollution.27 Additionally, we demonstrate that the temporal variation in

27Comparing births based on extreme PM2.5 exposure levels (e.g., the 10% most exposed versus
the 50% least exposed) would not be suitable primarily because of the spatial sorting driven by
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children’s exposure to thermal inversion days across urban areas is free from specific
trends in Figure B4 in Appendix B. This ensures that our analysis is not influenced
by particular temporal biases.

Table 2: Characteristics of the sample and birth comparability across treated and non
treated infants.

Mean values Conditional Equality Test
N Treated Non treated Estimate p-value

(1) (2) (3) (4) (5)

Treatment definition
Days with thermal inversion in first year 336, 169 50.9 32.8 10.8 0.00

Outside Cities 336, 169 0.06 0.05
Urban Area <50,000 336, 169 0.12 0.10
Urban Area 50,000 - 200,000 336, 169 0.19 0.16
Urban Area 200,000 - 700,000 336, 169 0.23 0.21
Urban Area >700,000 336, 169 0.24 0.21
Urban Area of Paris 336, 169 0.16 0.26
Born in 2012 or before 336, 169 0.35 0.54
Born after 2012 336, 169 0.65 0.46

Birth hospital stay
Missing birth hospital stay 336, 169 0.13 0.15 -0.00 0.42
Birth weight 287, 517 3252.6 3260.0 -1.01 0.80
Gestational age 266, 795 39.0 39.0 0.03 0.09
Healthy birth (absence of diagnosic) 287, 518 0.83 0.81 0.00 0.58
Duration 287, 518 4.9 5.0 -0.01 0.79
Respiratory or cardiovascular affections 287, 518 0.18 0.17 0.00 0.44
Electrocardiogram 287, 518 0.05 0.05 0.00 0.69
Respiratory system radiography 287, 518 0.04 0.04 -0.00 0.36

Household characteristics (tax data)
Missing household disposable income 336, 169 0.13 0.19 0.00 0.62
Percentile of household disposable income 275, 054 49.3 49.6 0.05 0.79
Household number of persons 199, 942 4.0 4.0 -0.01 0.54
Household number of dependents 199, 981 1.9 2.0 -0.01 0.42
Household below poverty line 200, 103 0.10 0.10 0.01 0.03
Household owns its housing 200, 103 0.49 0.48 -0.00 0.50

Household characteristics (Civil registry)
Girl 336, 169 0.49 0.49 0.00 0.44
Mother age 335, 719 30.4 30.5 -0.11 0.00
Mother born abroad 334, 865 0.18 0.20 -0.00 0.76
Father born abroad 330, 367 0.19 0.21 0.00 0.54
Mother born abroad, no French nationality 332, 666 0.12 0.14 -0.00 0.35
Father born abroad, no French nationality 328, 403 0.13 0.14 -0.00 0.94

Notes: For each variable, column (1) indicates the number of observed children, and among observed values:
column (2) gives the mean for the exposed cohort (Ti = 1 with n = 7) and column (3) for the control cohort
(Ti = 0). Column (4) gives the coefficients for (2) using the row variable as dependent variable instead of Y ,
and column (5) shows the associated p-value.

household characteristics, which could introduce biases.
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4.2 Uncovering Inequalities with Machine Learning

The primary purpose of our study is to document children’s health inequalities
related to air pollution in three ways. We aim at: (a) confirming that children react
heterogeneously to air pollution; (b) quantifying the distribution of negative effects
across children; and (c) drawing a portrait of the most affected children, in terms
of parental income and vulnerability factors.

Our descriptive evidence on exposure and health care use suggests that the
effects of air pollution may be vastly heterogeneous across children of different
income groups. However, adding interactions terms to model (2) would provide
a limited portrait of the most vulnerable children by choosing ex-ante a limited
number of groups to compare based on some variables. Therefore, we study the
heterogeneous treatment effects of our binary quasi-experimental shock using the
generic machine learning approach developed in Chernozhukov et al. (2023). We
propose an intuitive description of this procedure below and provide all the technical
details in Supplementary Appendix C.

We maintain the same exposure groups (treated and control) as described above,
but we introduce propensity scores to replace the large set of municipality fixed
effects for computational reasons, and also to address potentially remaining group
imbalances.28 We search for heterogeneity using all explanatory variables listed
in Table C1, denoted Zi, i.e. the same variables XI

i used in (2) in addition to
extra local characteristics: a measure of local concentrations of PM2.5 before birth,
a measure of accessibility to GPs and to pediatricians, and the type of urban
areas as depicted in Figure A3. To predict the health care use of children, we
train and tune two machine learning algorithms using 100 random splits of the
data, where each split randomly assigns half of the data to a main sample and
the other half to an auxiliary sample. The algorithms aim to predict the health
outcome of infant i conditional on all observable covariates Zi, separately for the
infants in the exposed group and the control group, and use only the auxiliary
samples for both training and tuning. We use these machine learning predictions,
denoted Ŷ T (Zi) and Ŷ C(Zi), respectively, to form proxy predictors in the main
sample of: (1) the outcome of interest of each infant in absence of pollution shock

28The propensity score p(XI
i ) is specified as a logit model, where XI

i includes the same individual
variables used in (2).
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b0(Zi) = E[Yi|Zi, Ti = 0] with b̂(Zi) = Ŷ C(Zi), and (2) the conditional average
treatment effect (CATE) of each infant s0(Zi) = E[Yi|Zi, Ti = 1] − E[Yi|Zi, Ti = 0]
using Ŝ(Zi) = Ŷ T (Zi) − Ŷ C(Zi).

The output Ŝ(Zi) is used as a single index capturing each infant’s sensitivity to
the air pollution quasi-experimental variation. This index represents the likelihood
of infant i, with characteristics Zi, to need healthcare services for respiratory issues
resulting from increased air pollution exposure in their first year. It is possible
to conduct valid inference about important features of the true CATE s0(Zi),
even when Ŝ(Zi) is a biased estimate, by using the main samples across all data
splits (Chernozhukov et al., 2023). The two proxy predictors and the estimated
propensity scores are used to address our three aims by: (a) estimating the Best
Linear Predictor of the conditional average treatment effect s0(Zi) (BLP); (b)
estimating the Group-Average Treatment Effects by sensibility groups (GATES);
and (c) performing a classification analysis to describe the vulnerability groups
(CLAN, for classification analysis).

The BLP of s0(z) is an affine function β̂1 + β̂2Ŝ(z) where Ŝ(z) acts as a proxy for
treatment effect heterogeneity. We estimate it using Ordinary Least Squares (OLS)
on the main sample, projecting the outcome Yi onto the treatment interacted with
the proxy variable Ŝ(Zi) and incorporating additional control variables. Typically,
this interaction method is used to explore heterogeneity across specific dimensions
of Zi. However, in our approach, the heterogeneity dimension is not predetermined
by the researcher but is instead determined through Ŝ(.), by dedicating half of
the sample to this learning process. The estimated coefficient β̂2 is a consistent
estimate of the correlation between the treatment sensitivity, as measured by Ŝ(z),
and the true CATE.29 Testing the null hypothesis β2 = 0 hence provides a way to
investigate the presence of heterogeneous treatment effects, i.e. that s0 varies with
Z. Rejecting β2 = 0 means both that s0 varies with Z and that Ŝ(·) is a relevant
proxy predictor of the heterogeneity. If not rejected, it could be that s0 does not
vary with Z or that Ŝ(·) does not capture well the true heterogeneity.

We create four groups k = 1, 2, 3, 4 based on increasing predicted average
29For clarity, we have omitted a key estimation step for consistency of (β̂1, β̂2): the treatment

needs to be residualized with the propensity scores, and the OLS needs to be weighted with the
Horvitz-Thompson transform of propensity scores (Chernozhukov et al., 2023).
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treatment effects, using the 50th, 75th, and 90th quantiles of Ŝ(Zi). We estimate
the GATES by OLS, under the same rationale: using half of the sample to form
sensitivity groups facilitates estimating interactions with the treatment dummy
in the main sample to represent average effect for each group. The resulting
estimates γ̂k’s corresponds to the expected s0(z) for each group k. By construction,
the GATES are expected to satisfy γ̂1 ≤ γ̂2 ≤ γ̂3 ≤ γ̂4 reflecting the average
treatment effects correlating to each group’s sensitivity. This approach provides
valuable insights into the distribution of the negative health impacts of the quasi-
experimental pollution shock across children in our data. Absence of heterogeneity
or an ineffective proxy would result in statistically indistinguishable GATES across
groups.

Finally, we investigate the compositions of these groups defined in the GATES
using the vector of CLAN parameters containing the average characteristics of each
group k, denoted δk, along the multiple dimensions of Z. This approach hence
allows drawing a portrait of the different groups, in particular the most affected.

The parameters of interest are therefore β1, β2, γk’s, and δk’s, which are sep-
arately estimated for each main sample across all 100 data splits. We report
their median across the splits, and their confidence intervals of coverage 1 − α, as
calculated by Chernozhukov et al. (2023) as the median across the splits of CIs
with coverage 1 − α/2, which is rather conservative.30

5 Results

The next two subsections include the main results: average effects and heterogeneity
analysis. The appendices provide further insights, including an examination of
emergency admission avoidability (A.1.2), a placebo test (B1), two-sample 2SLS
estimates (B.2), additional outcomes (B.4), robustness regarding seasonality and
quarter-of-birth (B.1 and B.3), and an additional heterogeneity analysis including
measures of healthcare accessibility (C1).

30We adapt the numerical routines from the GenericML R package (Welz et al., 2022) to allow
for propensity scores outside of [0.05,0.95], as well as random sample splits with up to 95% of
control units (90% in source codes). In our implementation, we compare the performance of the
lasso and random forest to form the two proxy predictors.
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5.1 Average effects on health care use

We first estimate the average effects of the air pollution shock on antiasthmatic
drug deliveries and emergency admissions. Table 3 reports the parameter estimates
and standard errors associated with T n=7

i from (2). The first two columns report
the average treatment effect for a baseline exposure shock, where the exposed group
consists of infants with ni > n = 7, and the control group comprises infants with
ni ≤ n = 7. The last two columns show the same specifications but omit infants
with intermediate exposure, comparing infants with ni > n to infants with ni < 0.
In both instances, the second column limits the sample to infants with (non-missing)
individual characteristics XI for robustness. The results are largely insensitive to
the inclusion of XI , aligning with the absence of correlation between an infant’s
exposure status and its characteristics, as shown in Table 2.

Exposure to an air pollution shock, corresponding to an additional 0.1 to 0.2
µg/m3 in the first-year average exposure to PM2.5 (n̂ > n), causally increases the
risk of infants being admitted to the emergency room for asthma (resp. bronchiolitis)
before the third anniversary by 0.2 percentage points (resp. 0.3). This corresponds
to 14% (resp. 8%) of the baseline risk of 1.4% (resp. 3.6%). Notably, the
risk of receiving anti-asthma medications before the first anniversary significantly
increases only when treated and controls have larger exposure differences (column
3), corresponding to an additional 0.3 µg/m3 in first-year average PM2.5 exposure.
Note that, given the disparity between PM2.5 data sources and the variety of
pollutants affected by thermal inversion, these estimates provide evidence of a
causal link rather than a precise quantification.31

31In Appendix B.4, we further examine the number of doctor visits as an additional outcome,
although non-specific to respiratory diseases, and find a modest yet significant increase that
remains consistent across all four specifications.
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Table 3: Average treatment effect of the quasi-experimental air pollution shock

All Children Excluding those intermediately treated
Outcome (1) (2) (3) (4)

Having drug delivery for obstructive airway diseases before first anniversary
0.003 0.003 0.008 0.006

[-0.003;0.009] [-0.004;0.010] [0.001;0.014] [-0.002;0.014]
XI no yes no yes

Sample size 336169 217859 235380 147042

Hospital emergency admissions: bronchiolitis or asthma before third anniversary
0.005 0.007 0.004 0.006

[0.002;0.009] [0.003;0.011] [0.000;0.008] [0.002;0.011]
XI no yes no yes

Sample size 246075 189722 163071 124262

Hospital emergency admissions: asthma before third anniversary
0.002 0.003 0.002 0.003

[0.000;0.005] [0.001;0.006] [-0.000;0.005] [-0.000;0.005]
XI no yes no yes

Sample size 246075 189722 163071 124262

Hospital emergency admissions: bronchiolitis before second anniversary
0.003 0.003 0.004 0.004

[0.000;0.006] [-0.000;0.006] [0.001;0.007] [0.000;0.008]
XI no yes no yes

Sample size 277271 207825 188460 139968

Notes: This table presents the results of 16 distinct regressions, with 4 outcomes in rows and 4 specifications
in columns. Each outcome is regressed on the binary treatment designed to capture a positive variation in air
pollution exposure, Ti = 1{n̂ > n = 7}, quantifying whether a child was over-exposed to thermal inversion in
its first year, on ground-level weather controls, with or without individual characteristics XI , municipality
and year fixed effects. Standard errors are clustered at the UERRA grid level.

Due to the somewhat arbitrary nature of selecting the threshold, we also present
the estimates for various choices in Figure 8. We observe dose-response relationships
like in Figure 7 for PM2.5 concentrations, suggesting that our treatment design
effectively captures the consequences of air pollution on infants’ health care use.
Specifically, the risk of receiving antiasthmatic drugs before the first anniversary
is significantly increased at the 5% level starting at n = 10, while the risk of
emergency admission for asthma or bronchiolitis and the number of visits to doctors
are significantly increased at the 5% level starting at n = 5. The average treatment
effect for medication becomes more pronounced when excluding moderately treated
infants, whereas the point estimates for emergency admissions barely change.
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This suggests a stronger dose-response relationship for medication and possibly a
threshold effect for emergency admissions.

In a placebo test, we identify a cohort of placebo-treated infants residing in
municipalities that experience an increase in thermal inversions (n̂ > n) after their
healthcare consumption period. These children belong to areas where an unusual
number of thermal inversions occur in the year following their n-th anniversary,
hence the exposure occurs after the considered period, with the outcome measured
from birth to their n-th anniversary. We estimate (2), without individual controls to
maintain a large sample size, among never-treated children from birth to their n-th
anniversary. The results, reported in Table B1 in Appendix B, show no significant
effects from this placebo treatment, providing evidence for the credibility of our
analysis.
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Figure 8: Days with thermal inversion and health outcomes. Notes: Model (2) (without
XI) for increasing values of n.

5.2 Heterogeneity of the effects

Evidence of heterogeneity. Table 4 presents the best linear predictor of the
CATE for each outcome. In almost all cases, we reject homogeneity at the 5%
level, based on the p-values associated with the coefficient β̂2, which captures the
correlation between the CATE and the proxy. The most relevant proxy, in terms of
their correlation with the CATE, is found for bronchiolitis emergency admissions,
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with β̂2 estimated at 0.33 (p-value < 0.001). For antiasthmatic medication in the first
year, β̂2 is estimated at 0.11 (p-value = 0.003). For asthma emergency admissions
before the third anniversary, β̂2 is estimated at 0.162 (p-value = 0.001). These
results indicate that our algorithms effectively capture significant heterogeneity in
treatment effects.32

We also experimented with another choice of n. In general, the machine learning-
derived heterogeneity correlates better with the ground truth for an intermediate
treatment level compared to high treatment levels because the latter substantially
reduces the size of the treatment group. For instance, the intermediate threshold
n = 7 yields a treatment group with about 14% of infants compared to about 8%
for n = 10. The results are nevertheless qualitatively similar, though less precise.

Table 4: Testing for heterogeneity and proxy relevance: Best Linear Predictor

Having drug delivery for obstructive airway diseases before first anniversary
ATE(β̂1) 0.006 [-0.003;0.014] p=0.201
HTE(β̂2) 0.114 [0.038;0.190] p=0.003

Hospital emergency admissions for bronchiolitis or asthma before third anniversary
ATE(β̂1) 0.004 [-0.000;0.009] p=0.066
HTE(β̂2) 0.136 [0.038;0.237] p=0.007

Hospital emergency admissions for asthma before third anniversary
ATE(β̂1) 0.002 [-0.000;0.005] p=0.067
HTE(β̂2) 0.162 [0.063;0.258] p=0.001

Hospital emergency admissions for bronchiolitis before second anniversary
ATE(β̂1) 0.003 [-0.001;0.006] p=0.141
HTE(β̂2) 0.325 [0.248;0.401] p=0.000

Notes: Medians over 100 splits. The reported confidence intervals are the median across the splits of CIs with
coverage 1 − α with α = 0.05. Associated p-values are computed as two times the median across the splits of
the p-values that the parameter is equal to zero against the two-sided alternative, and could be divided by
two under a mild assumption (see Appendix C).

Concentrated effects. For anti-asthma drug deliveries and emergency admissions
for bronchiolitis, we find compelling evidence that the pollution exposure effect is
concentrated in 10% of the infants, which consists of infants between the 90th and

32In comparison, Deryugina et al. (2019) report a lower correlation, between 0.013 and 0.015,
for wind-induced exposure’s impact on elderly mortality. This may be attributed to the higher
difficulty of predicting individual-level daily mortality risk, given the rarity of the event.
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100th percentile of the proxy predictor for each outcome, as shown in Table 5 and
illustrated in Figure 9. Exposed infants in these groups have a 2.4 p.p. (p-value
= 0.053) higher probability of using antiasthmatic medication in the first year
and a 1.7 p.p. (p-value = 0.002) higher probability of emergency admission for
bronchiolitis.

Table 5: Average effect by sensitivity group

Having a drug delivery for obstructive airway diseases before first anniversary
GATE(γ̂1), bottom 50% -0.001 [-0.012;0.010] p=0.809
GATE(γ̂2), 50th-75th percentile 0.007 [-0.007;0.022] p=0.313
GATE(γ̂3), 75th-90th percentile 0.009 [-0.010;0.028] p=0.206
GATE(γ̂4), top 10% 0.023 [-0.001;0.046] p=0.053

GATE(γ̂4) − GATE(γ̂1) 0.024 [-0.001;0.049] p=0.065

Hospital emergency admissions for bronchiolitis before second anniversary
GATE(γ̂1), bottom 50% 0.000 [-0.004;0.005] p=0.855
GATE(γ̂2), 50th-75th percentile 0.002 [-0.005;0.008] p=0.634
GATE(γ̂3), 75th-90th percentile 0.001 [-0.008;0.009] p=0.856
GATE(γ̂4), top 10% 0.017 [0.006;0.028] p=0.002

GATE(γ̂4) − GATE(γ̂1) 0.017 [0.006;0.029] p=0.004

Notes: Medians over 100 splits. The reported confidence intervals are the median across the splits of CIs with
coverage 1 − α with α = 0.05. Associated p-values are computed as two times the median across the splits of
the p-values that the parameter is equal to zero against the two-sided alternative, and could be divided by
two under a mild assumption (see Appendix C).

We observe progressive increases in the group average treatment effects for
obstructive airways disease drugs, with significance observed primarily in the top
decile. In comparison, the top 10%’s effects for bronchiolitis are more pronounced.
In the third group (infants in the 75th to 90th percentile of predicted impacts), the
parameter estimates are near zero and not significant. These results indicate that
the significant effects of air pollution exposure are largely concentrated in the most
affected 10% of infants, diminishing quickly for the less sensitive groups.

Portraying the most vulnerable children. Table 6 shows the CLANs for the
two outcomes identified by the GATES, focusing on the top 10% of most affected
infants. This table describes the mean characteristics of this group compared to
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Figure 9: Average effect by sensitivity group. Notes: Medians over 100 splits. The
reported confidence intervals are the median across the splits of CIs with coverage 1 − α with
α = 0.05.Associated p-values are computed as two times the median across the splits of the
p-values that the parameter is equal to zero against the two-sided alternative, and could be
divided by two under a mild assumption (see Supplementary Appendix C). The dashed lines
report the ATE.

the bottom 50%. The results for both outcomes reveal the following patterns.
Primarily, infants with pre-existing health challenges (such as preterm birth, low
birth weight, cardio-respiratory pathology, electrocardiogram abnormalities, and
respiratory X-rays at birth) are more adversely affected by excessive exposure,
as reflected in both outcomes. The top 10% most affected infants for emergency
admissions for bronchiolitis are particularly vulnerable. For instance, they are
almost three times more likely of being born prematurely (18.7% risk compared
to 5.9% for the 50% least affected) and have an 18.9% risk of low birth weight.
In contrast, the differences between the 10% most affected and 50% least affected
in terms of medication are relatively modest, showing only a 2.6 p.p. difference.
Regarding emergency admissions for bronchiolitis, the most affected infants are
often economically disadvantaged on several dimensions. Specifically, the bottom
10% in parental income represents 17.4% of this group, and beneficiaries of the
universal health coverage are disproportionately represented as discussed below.
For anti-asthma medications, there is only a slight over-representation of the lowest
income decile (11.1% in the most affected versus 9.4% in the least affected). However,
this finding, particularly for anti-asthmatic medication usage, should be approached
cautiously as it pertains to healthcare use. It may not fully represent the actual
healthcare needs of the poorest children, who could be underrepresented due to
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limited access or utilization.
For any given health outcome, such as emergency admissions for respiratory

issues or prescriptions for respiratory medications, it is pertinent to compare the
group of children most affected by air pollution exposure with the broader cohort
of all infants experiencing these health outcomes due to any cause. While air
pollution exposure is a significant factor, it represents only one of many potential
causes for such health issues in infants. This comparison helps to contextualize the
specific impact of air pollution relative to other contributing factors. Figure 2 in the
introduction provides a visual summary of our results. When comparing with the
overall population distribution, we observe that the 8th decile of parental income
suffers relatively the least, while the 1st decile suffers the most. Additionally, when
comparing with the income distribution among children suffering from bronchiolitis
due to all causes, we find that both ends of that distribution experience relatively
more severe effects from bronchiolitis caused by air pollution compared to other
causes. Specifically, the top decile in parental income accounts for 6.7% of all-cause
emergency admissions for bronchiolitis, compared to 11.1% for admissions linked to
air pollution. This result suggests that the top income decile may have a similar
risk of seeing their children admitted to emergency for bronchiolitis due to air
pollution as the rest of the population, while having a lower overall risk of being
admitted to emergency for bronchiolitis due to all causes. One interpretation of
this finding is related to their baseline, long-term exposure, potentially increasing
their susceptibility to adverse effects from short-term pollution shocks.

Table 6 also shows that access to general practitioners (GP) and pediatricians
is lower for those most affected, particularly regarding anti-asthma medication use,
indicating potential accessibility challenges for more vulnerable groups. Concerning
bronchiolitis, while access to a general practitioner is also lower for the most affected,
access to a pediatrician appears to be relatively higher. This finding can be linked
to the concentration of the most affected children in large urban areas, including
Paris, where access to pediatricians is generally above average.

In an effort to better understand the role of health care accessibility, we incor-
porate variables measuring eligibility for CMU-C, an income-based complementary
health insurance plan in France that eliminates all financial constraints on primary
care for the poorest individuals. However, not all eligible individuals enroll, often
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due to lack of awareness or marginalization.
Our analysis, limited to 2010-2016 due to the need for fiscal income data, utilizes

a CMU-C eligibility indicator based on household eligibility at birth or within two
years thereafter, minimizing bias against low-income children.

We find that in the most affected group for anti-asthma medications, there is a
higher likelihood of being in the bottom income decile, and a lower likelihood of
unenrolled yet eligible CMU-C individuals, as Figure C1 shows. In contrast, for
emergency bronchiolitis admissions, this group is more likely to be in the bottom
income decile and eligible for CMU-C, but not necessarily enrolled. Given that
these admissions are less avoidable, our results imply that observed healthcare
consumption may underestimate the true effects, especially for non-emergency
treatments, due to financial barriers limiting access to care. However, this bias is
likely minor for emergency admissions.

Our results show that 79.4% of the most affected children (group 4) resided in
areas where the annual PM2.5 exposure exceeded 10 µg/m3 in 2008, the European
Commission’s 2030 target and the 2006 World Health Organization (WHO) guide-
lines. A higher baseline PM2.5 exposure correlates with increased sensitivity to air
pollution for both analyzed outcomes, particularly bronchiolitis. Notably, the most
affected group resides in municipalities where annual exposure levels are 1.7 µg/m3

higher than those least affected, measured in the year preceding birth to prevent the
inclusion of endogenous variables as individual characteristics. This supports the
interpretation that elevated baseline exposure intensifies the risk during short-term
pollution spikes. We discuss in Appendix B an alternative explanation for this
observation, which might stem from our study’s design: a thermal inversion may
have a larger short-term impact on concentration levels in more polluted areas.
We find supporting evidence for this hypothesis in one of the PM2.5 data sources,
indicating that thermal inversions may have a more pronounced effect in highly
polluted regions. Conversely, our other data source suggests a more uniform impact
of the shock across different baseline exposure levels.

In summary, our results suggest that infants from the bottom 10% of parental
income distribution face a higher risk of suffering the most from an air pollution
shock. Conversely, the infants from the top 10% of parental income, who generally
have a lower baseline risk, experience a relatively greater impact from air pollution
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compared to all other causes of bronchiolitis. Our research also provides evidence
that factors such as healthcare accessibility and baseline exposure, which are
influenced by the municipality of residence, may significantly contribute to these
outcomes.

Table 6: Comparison of the least and the most affected by air pollution, depending on the
outcome

Average of the characteristics for :
(i) the 10% the most affected,

(ii) the 50% the least affected, and (i)-(ii) difference most - least
Bronchiolitis emergency Antiasthmatic medication

before second anniversary before first anniversary
(i) (ii) (i)-(ii) (i) (ii) (i)-(ii)

Girl 0.459 0.477 -0.017(p=0.001) 0.424 0.490 -0.065(p=0.000)
Birth weight 3094.33 3283.20 -188.807(p=0.000) 3229.00 3275.66 -45.606(p=0.000)
Gestational age 38.24 39.08 -0.838(p=0.000) 38.87 39.03 -0.164(p=0.000)
No pathology 0.693 0.831 -0.136(p=0.000) 0.800 0.821 -0.020(p=0.000)
Cardio-respiratory pathology 0.242 0.166 0.077(p=0.000) 0.178 0.169 0.010(p=0.007)
Monitoring electrocardiogram 0.116 0.039 0.076(p=0.000) 0.060 0.043 0.017(p=0.000)
Premature birth 0.187 0.059 0.127(p=0.000) 0.095 0.069 0.026(p=0.000)
Low birth weight 0.189 0.056 0.133(p=0.000) 0.086 0.070 0.016(p=0.000)
Birth without significant issues 0.581 0.741 -0.160(p=0.000) 0.689 0.731 -0.043(p=0.000)
Disposable income percentile 43.56 49.74 -5.813(p=0.000) 49.38 49.84 -0.499(p=0.088)
Neonatology stay 0.228 0.082 0.145(p=0.000) 0.115 0.095 0.021(p=0.000)
Respiratory system radiography 0.087 0.030 0.057(p=0.000) 0.044 0.033 0.011(p=0.000)
Accessibility : GP 3.97 4.10 -0.127(p=0.000) 4.04 4.10 -0.051(p=0.000)
Accessibility : Paediatrician 3.66 3.48 0.168(p=0.000) 3.45 3.54 -0.103(p=0.000)
Decile 1 0.174 0.090 0.083(p=0.000) 0.111 0.094 0.018(p=0.000)
Decile 10 0.111 0.083 0.026(p=0.000) 0.098 0.099 -0.001(p=0.786)
CMU beneficiary 0.171 0.133 0.036(p=0.000) 0.121 0.130 -0.010(p=0.005)
PM2.5 13.38 11.66 1.74(p=0.000) 12.13 11.86 0.270(p=0.000)
Mother Age 30.34 30.64 -0.276(p=0.000) 30.20 30.79 -0.595(p=0.000)
Mother Born abroad 0.238 0.164 0.074(p=0.000) 0.167 0.166 0.003(p=0.390)
Outside Cities 0.064 0.052 0.014(p=0.000) 0.056 0.055 -0.000(p=0.867)
Urban Area <50,000 0.094 0.112 -0.018(p=0.000) 0.112 0.108 0.004(p=0.128)
Urban Area 50,000 - 200,000 0.138 0.182 -0.046(p=0.000) 0.179 0.171 0.008(p=0.027)
Urban Area 200,000 - 700,000 0.176 0.231 -0.054(p=0.000) 0.203 0.225 -0.023(p=0.000)
Urban Area >700,000 0.166 0.207 -0.039(p=0.000) 0.211 0.206 0.004(p=0.287)
Urban Area of Paris 0.361 0.216 0.146(p=0.000) 0.239 0.233 0.006(p=0.186)
Areas not EU-compliant 0.794 0.729 +0.066 (p=0.000) 0.719 0.744 -0.025 (p=0.000)

Notes: (i) corresponds to group 4, with proxy predictor in the top 10% and group average treatment effect γ̂4; (ii)
corresponds to group 1, with proxy predictor in the bottom 50% and group average treatment effect γ̂1. Medians
over 100 splits. Confidence intervals and p-values are as described in previous tables.

6 Policy implications

Effective air quality policies that yield tangible health benefits hinge on identifying
and addressing the specific root causes of emissions and vulnerability factors unique
to each area. As we detail below, doing so requires a comprehensive approach that
includes data-driven analysis and tailored policy implementation. This section is
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devoted to the policy implications of our study, using the EU’s proposed revision
of the Ambient Air Quality Directives as a framework for discussion.

This proposed policy package, aiming to align with the WHO’s guidelines by
2050, introduces interim air quality standards for 2030 and zero pollution targets
by 2050, as part of a broader EU-wide climate neutrality objective. The framework
includes three key elements which resonate with the findings of our study. First, it
emphasizes the importance of public transparency, requiring improved air quality
monitoring, reporting, and standardized indices across member states. Second,
it is backed by a legal framework, including citizen compensation for air quality
standard breaches. Lastly, the directives would require member states to create
Air Quality Roadmaps to meet air quality standards, allowing for flexibility at
the national and local levels to accommodate diverse economic and geographic
conditions. This policy mirrors the framework of the Clean Air Act in the United
States, where the State Implementation Plans enable states to tailor their own
regulatory approaches to achieve and maintain national air quality standards. The
2008 Ambient Air Quality Directive already requires Member States to comply with
pollution standards, based on local monitoring of concentrations. The French state
was declared non-compliant with this directive by its highest administrative court
in 2017 and has been fined 10 million euros every six months, recently reduced to 5
million euros.33

Our study underscores the need for enhanced air quality monitoring and har-
monized indices in the EU, focusing on reducing measurement errors and providing
detailed, accessible data for effective policymaking. Indices tailored to specific
vulnerabilities, such as those of children and the elderly, could enhance the iden-
tification of “high-risk zones” for focused public health interventions and timely
responses in areas most affected by pollution.

In addition, our findings also support the EU’s initiative to strengthen compen-
sation rights for health damages from air pollution, particularly for vulnerable, often

33This fine reduction decision acknowledges air-quality improvement plans in non-compliant
areas like Paris and Marseilles. Local initiatives include the Plans de protection de l’Atmosphère,
that detail local measures such as low emission zones or portside electricity for boats. Nationally,
actions encompass funding for air quality efforts, eco-friendly vehicle subsidies, electric charging
infrastructure, and building sector reforms like banning new oil/coal boilers and promoting energy
efficiency and sobriety.
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lower-income, populations. Emphasizing these groups in compensation strategies is
important, considering their health care access challenges and financial constraints.
Developing targeted compensation schemes could provide necessary financial relief,
lessen health care burdens for these families, and promote adherence to air quality
standards, functioning as both support and incentive to public and private entities.

More importantly, our results offer valuable insights for designing effective
national air quality roadmaps. Our results suggest that these roadmaps should
prioritize regions with vulnerable populations to mitigate severe health impacts
of air pollution as early as possible. We illustrate the relevance of this targeted
approach in our subsequent comparison of three different strategies for achieving
the EU’s interim 2030 air quality targets for PM2.5 (annual average limit value of
10 µg/m3) in France.

Air Quality Roadmaps: a tool for target interventions. Policies often target
areas with high pollution levels. However, considering population vulnerability
might offer a preferable strategy to maximize health benefits (Deryugina et al.,
2021). Given the financial constraints associated with air pollution reduction, a
priority ranking system that takes into account population characteristics could
more effectively mitigate morbidity and mortality associated with exposure to air
pollution. Such a targeted approach could accelerate the realization of benefits
like reduced health care expenditures, fewer workdays lost to illness, and enhanced
overall well-being, as compared to the conventional strategy of focusing solely on
the most polluted areas.

From a practical standpoint, effective targeting necessitates identifying local
PM2.5 emission sources, which may stem from vehicle emissions, industrial activities,
energy consumption, agricultural practices, wildfires, or transboundary pollution.
There is already a host mitigation policies available that, once local sources are
identified, can be tailored accordingly. For example, measures to encourage the
fast post-spreading burial of nitrogenous fertilizers and the use of covers for slurry
pits in the agricultural sector are examples of targeted rural strategies to reduce
emissions in the French National Plan for the Reduction of Atmospheric Pollutant
Emissions for the period 2022-2025.34

34“Arrêté du 8 décembre 2022 établissant le plan national de réduction des émissions de polluants
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We examine three distinct strategies for prioritizing the compliance of French
municipalities with the 10 µg/m3 PM2.5 exposure threshold: one based on annual
PM2.5 exposure levels, another on median income, and a third on the number of
premature births. Over our study period, nearly 80% of most affected children were
born in municipalities that did not meet the 10 µg/m3 exposure threshold. Assuming
that the spatial distribution of the most vulnerable children across municipalities
remains constant, our aim is to identify the most effective strategy for ensuring
that these children reside in areas that comply with the exposure threshold as early
as possible. Remark that targeting areas with a higher concentration of premature
infants, not only addresses the immediate health impacts of PM2.5 exposure on
these infants but also aligns with mitigating one of its possible root causes (Sun
et al., 2015).

We employ two alternative methods for ranking municipalities. In the first
approach, municipalities are grouped into small clusters that each represent 5%
of all municipalities in France, regardless of the number of births. These clusters
are formed based on similar values for either PM2.5 exposure, median income, or
the number of premature births. Nonetheless, achieving the same reduction in a
major city and in a smaller municipality may not be equally feasible. In the second
approach, municipalities are grouped into clusters that account for 5% of total
births nationwide, again based on similar values for the aforementioned variables.
When we consider groups of municipalities that each account for an equal share
of total births, achieving broad impact may require to prioritize a lower number
of municipalities, but with greater population. For each clustering approach, the
roll-out of compliance is then prioritized for clusters with either the highest levels
of PM2.5 exposure, the lowest median income, or the greatest number of premature
births.

Figure 10 provides the results when rolling-out compliance starting from the
first group of municipalities (denoted p5) and extending to all (p100) municipalities
that were non-compliant with the threshold in 2008. The results are presented for
two different groupings: Figure 10a represents clusters that each account for 5% of
all municipalities (irrespective of their size), while Figure 10b represents clusters
that each account for 5% of total births nationwide (to account for size effects).

atmosphériques.” Journal Officiel de la République Française, Texte 27 sur 110.
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When clustering by municipalities, the most effective policy design appears to be
targeting the top 5% of municipalities with the highest number of premature births,
as this approach would immediately benefit 60% of the most vulnerable children.
These municipalities account for nearly half (49.9%) of all births nationwide.
Consequently, the financial burden of enforcing compliance in these areas could
be substantial due to their large population. In contrast, focusing on the 10% of
municipalities with the highest pollution levels (comprising 35.7% of all births)
would reach 47% of the most affected children. Targeting based on median income
proves to be the least effective approach in this case.

When clustering by number of births, the most effective approach remains to
prioritize municipalities based on the number of premature births, provided that the
target encompasses more than 20% of municipalities weighted by births. Targeting
the lowest median income municipalities may be effective to achieve a short-term
goal (maximize impact within the first 15% of municipalities weighted by births).
Targeting municipalities with the highest PM2.5 exposure levels becomes the least
effective strategy.
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Figure 10: Comparative analysis of targeting strategies for achieving compliance with
the 10 µg/m3 PM2.5 2030 target. Notes: Non-compliant municipalities are ranked based on
three criteria: PM2.5 exposure levels in 2008, incidence of premature births in 2018, and median
income in 2018. Then, they are grouped into percentiles, either unweighted (left) or weighted by
the number of births (right).
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In both approaches, the conventional strategy that prioritizes the most polluted
areas without considering local population characteristics is consistently dominated
by at least one of the two alternatives. These alternatives, based on simple metrics,
can be regarded as realistically implementable. Therefore, our study suggests that
a more targeted approach, focusing on the most vulnerable populations, could more
effectively deliver health benefits. Such an approach should inform the design of
country-specific air quality roadmaps, ensuring that interventions are both effective
and meaningful. It is important to note that our recommendations are primarily
based on the effects of PM2.5 on young children and short-term health impacts;
other pollutants, populations, and long-term effects are not considered, underscoring
the need for further research and improved pollution data.

7 Conclusion

In this paper, we have examined the differential impacts of early childhood exposure
to air pollution on children’s health care use across parental income groups using
French administrative data. Our results provide quasi-experimental evidence
linking vulnerability factors and pollution exposure on health measures during
the first three years of life. In particular, we find causal evidence that short-
term surges of air pollution affect the likelihood of emergency admissions and
drug consumption related to respiratory issues for young children. We uncover
substantial treatment effect heterogeneity using generic machine learning inference.
Our analysis reveals that significant health effects of short-term variations of air
pollution are concentrated in about 10% of the infant population. These infants
are characterized by a combination of poor health indicators at birth, and are more
likely to be from the lowest parental income decile. These effects should be seen as
lower bounds, as they are measured using actual health care consumption, which
only responds to adverse shocks when access is not an issue.

In light of our empirical findings, we advocate for a nuanced policy approach
that goes beyond merely targeting regions with high pollution levels. Our analysis
provides insights for the design of air quality policies, indicating that targeted
interventions in regions with vulnerable populations may potentially lead to more
immediate and substantial health benefits. However, it is important to carefully
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consider the composition of the population in these regions and evaluate the impact
on all demographic groups to ensure a comprehensive and effective policy framework.
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Appendix A Data

A.1 Hospital Discharge Data - PMSI

Our study relies on data from the PMSI MCO databases, which provide comprehen-
sive information on each hospital admission in France, including inpatient stays and
visits to emergency rooms. We identify hospital admissions for asthma or bronchioli-
tis that are associated with an emergency room visit using the main diagnoses codes
(J45-J46 for asthma and J21 for bronchiolitis). These data accounted for patients
whose entry mode was recorded as “home” and whose origin was “with emergency
room visit”. However, these admissions do not include visits to the emergency room
that did not result in hospitalization, or unplanned admissions with direct access
to a hospital service other than the emergency department. Descriptive statistics
of our main outcomes are provided in Table A2.
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Table A1: Descriptive statistics on main outcomes (1/2)

By year Through years
Birth year First Second Third First to Third By Third N

anniversary anniversary
Drug delivery for obstructive airway diseases

2008 0.238 0.217 0.184 0.296 0.393 35, 831
2009 0.248 0.229 0.205 0.320 0.417 34, 034
2010 0.244 0.246 0.202 0.328 0.420 33, 892
2011 0.261 0.243 0.194 0.322 0.426 33, 256
2012 0.270 0.247 0.208 0.333 0.437 34, 910
2013 0.269 0.249 0.214 0.340 0.440 35, 089
2014 0.266 0.252 0.206 0.338 0.439 34, 658
2015 0.283 0.258 0.207 0.338 0.447 32, 366
2016 0.278 0.255 31, 254
2017 0.276 30, 879

All years 0.263 0.244 0.202 0.327 0.427 336, 169

Visits to the Paediatrician
2008 4.357 2.506 1.350 3.855 8.212 34, 908
2009 4.437 2.515 1.355 3.869 8.307 33, 441
2010 4.434 2.548 1.336 3.884 8.318 33, 414
2011 4.441 2.517 1.302 3.818 8.259 32, 845
2012 4.489 2.491 1.296 3.786 8.275 34, 537
2013 4.600 2.428 1.254 3.682 8.282 34, 769
2014 4.576 2.363 1.202 3.566 8.141 34, 336
2015 4.494 2.279 1.168 3.447 7.941 32, 101
2016 4.495 2.294 1.177 3.488 7.838 30, 972
2017 4.581 2.348 30, 518

All years 4.490 2.437 1.280 3.733 8.208 331,811

Visits to the GP
2008 7.265 6.520 5.201 11.721 18.986 34, 908
2009 7.298 6.377 5.162 11.539 18.837 33, 441
2010 7.182 6.341 5.003 11.343 18.526 33, 414
2011 7.247 6.325 4.894 11.218 18.465 32, 845
2012 7.252 6.219 4.815 11.034 18.286 34, 537
2013 7.287 6.128 4.712 10.841 18.128 34, 769
2014 7.201 6.040 4.490 10.530 17.730 34, 336
2015 7.259 5.906 4.417 10.324 17.582 32, 101
2016 7.185 5.807 4.344 10.239 17.334 30, 972
2017 7.163 5.892 30, 518

All years 7.235 6.182 4.825 11.049 18.294 331,811
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Table A2: Descriptive statistics on main outcomes (2/2)

By year Through years
Birth year First Second Third By Second By Third N

anniversary anniversary
Emergency admission for asthma

2009 0.004 0.005 0.004 0.009 0.012 34, 034
2010 0.003 0.006 0.005 0.011 0.013 33, 892
2011 0.004 0.007 0.005 0.012 0.015 33, 256
2012 0.004 0.007 0.005 0.011 0.014 34, 910
2013 0.004 0.006 0.006 0.012 0.015 35, 089
2014 0.004 0.007 0.005 0.011 0.014 34, 658
2015 0.005 0.008 0.006 0.013 0.017 32, 366
2016 0.005 0.008 0.005 0.013 31, 254
2017 0.006 30, 879

All years 0.004 0.007 0.005 0.011 0.014 300, 338
Emergency admission for bronchiolitis

2009 0.023 0.004 0.0005 0.026 0.027 34, 034
2010 0.028 0.005 0.001 0.032 0.033 33, 892
2011 0.032 0.005 0.001 0.036 0.037 33, 256
2012 0.036 0.005 0.0005 0.040 0.040 34, 910
2013 0.034 0.005 0.001 0.038 0.039 35, 089
2014 0.031 0.005 0.001 0.036 0.036 34, 658
2015 0.039 0.004 0.0005 0.043 0.043 32, 366
2016 0.037 0.005 0.0003 0.041 31, 254
2017 0.044 30, 879

All year 0.034 0.005 0.001 0.036 0.036 300, 338
Emergency admission for bronchiolitis before second anniversary
or asthma before third anniversary

2009 0.026 0.009 0.005 0.036 34, 034
2010 0.030 0.011 0.006 0.043 33, 892
2011 0.035 0.012 0.006 0.048 33, 256
2012 0.038 0.011 0.005 0.050 34, 910
2013 0.036 0.011 0.007 0.051 35, 089
2014 0.034 0.012 0.006 0.047 34, 658
2015 0.043 0.012 0.006 0.056 32, 366
2016 0.040 0.013 0.006 31, 254
2017 0.047 30, 879

All year 0.036 0.010 0.005 0.041 300, 338
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A.1.1 Birth hospital stay and baseline health indicators

Our data accounts for 99.6% of births in Metropolitan France (Quantin et al., 2013)
, with the remaining 0.4% of births taking place outside of hospitals (Blondel et al.,
2011). Newborn stays are identified in the PMSI using the criteria of the Scan
Santé reference perinatal indicators. We also identify stays in neonatology units by
the presence of a neonatology billing supplement (codes NN1, NN2, and NN3). We
establish a general health status indicator based on principal diagnoses associated
with the child’s stay. A child is considered healthy if its only primary diagnosis falls
into codes Z38 “Children born alive, according to place of birth” or Z76.2 “Medical
surveillance and care of other infants and children in good health”. The presence of
a principal diagnosis associated with a condition, coded for example in chapter P
“Certain conditions originating in the perinatal period”, is thus associated with at
least one condition, without prejudging its severity.

A second indicator is proposed based on homogeneous groups of patients (GHM),
a medico-economic nomenclature which makes it possible to describe and bill the
health insurance system for the care of patients. This nomenclature evolved
significantly in 2012 with regard to the major diagnostic category 15 “Newborns,
premature babies and conditions of the perinatal period”, to be based firstly on
age, then on the mode of entry, the presence of surgical procedures, the mode of
discharge (in particular death) before looking at, by gestational age and weight
group, the principal diagnosis with a closed list to detect “significant problems”.
Newborns with “no significant problems” are classified as such by default, if there
are no problems of greater severity that would have led to a different classification.
In this approach, children are considered healthy at birth when they fall within
codes 15M05A and 15M06A, i.e. “Newborns of 3300g and gestational age of 40SA
and above with no significant problems” and “Newborns of 2400g and gestational
age of 38SA and above with no significant problems”.

Furthermore, we introduced dummy variables based on the information from
the child’s birth stay that indicate (i) whether any diagnosis pertains to respiratory
or cardiovascular pathology codes, (ii) whether a radiography of the respiratory
system was coded or not (PMSI MCO, Table A, if CDC-ACT starts with ZBQK00
or GEQH00 or LJQK00 or ZBQK003, encoded in Common classification of medical
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acts CCAM), and (iii) whether an electrocardiogram was reported (PMSI MCO,
Table A, if CDC-ACT starts with "DEQP00", in CCAM code).

A.1.2 Infant emergency hospital admissions by day of the week

We observe no significant seasonality in asthma emergency admissions on weekdays
and weekends, whereas we see significantly fewer admissions on weekends for all
respiratory admissions and bronchiolitis. (Table A3). This suggests that any
episode of breathlessness in an infant with asthma or suspected asthma will lead to
an emergency admission and is unavoidable regardless of the circumstances. This
implies that the observed data is not biased by parental behavior or health care
usage constraints. We obtain similar results for children less than 2 years old. For
children less than 3 years old, there is evidence of fewer emergency admissions on
weekends, in particular for the bottom 50% of parental income on Saturdays.
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Table A3: Emergency admissions of EDP infants (less than one year old) by day of
the week.

Emergency admissions of EDP infants (less than one year old) - 2009-2017
All J J21 J45-J46

Respi. Bronchiolitis Asthma
(1) (2) (3) (4)

Tuesday (ref: Monday) 0.292 0.475 0.098 0.292
(0.750) (0.706) (0.523) (0.183)

Wednesday -0.537 -0.235 -0.281 0.156
(0.750) (0.706) (0.523) (0.183)

Thursday -1.096 -0.763 -0.159 -0.002
(0.749) (0.706) (0.523) (0.183)

Friday -0.740 -0.582 -0.366 -0.053
(0.749) (0.706) (0.523) (0.183)

Saturday -3.366∗∗∗ -2.516∗∗∗ -1.366∗∗∗ -0.247
(0.749) (0.706) (0.523) (0.183)

Sunday -3.064∗∗∗ -2.139∗∗∗ -1.193∗∗ -0.045
(0.749) (0.706) (0.523) (0.183)

Constant 15.932∗∗∗ 13.414∗∗∗ 6.872∗∗∗ 2.134∗∗∗

(0.530) (0.499) (0.370) (0.130)

Observations 3,287 3,287 3,287 3,287

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

A.2 Drug delivery data

We use data on drug dispensing for obstructive airway diseases from the DCIR
database (Données de Consommation Inter-Régimes), which provides information on
all reimbursed outpatient health care expenditures in France. A dispensing/delivery
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event corresponds to a pharmacy delivery medicine reimbursed by the health
insurance fund for a medicine of class R03 “Drugs for obstructive airway diseases”
of the Anatomical, Therapeutic, and Chemical (ATC) classification. The most
common drugs are shown by parental income in Figure A1. The delivery of such
medications is included in a reference algorithm for identifying chronic respiratory
diseases. According to this criterion, the French National Health Insurance identifies
individuals with chronic respiratory diseases as those who have received three
dispensings of these drugs on separate occasions, except for those diagnosed with
cystic fibrosis. Similar algorithms have been utilized in the medical literature, e.g.
in Belhassen et al. (2016) and (Naiim et al., 2019), to identify cases of recurrent
wheezing in infants and evaluate the short and long-term therapeutic management
of asthmatic children, respectively. In a study combining the 2006 ESPS survey to
health insurance reimbursement data, Delmas and Fuhrman (2012) demonstrated
that one dispensing in 2005 and another in 2006 in ATC class R03 characterized
51.3% of self-reported asthmatics (both intermittent and persistent) aged 5 to 44
years, and those with such dispensings constituted 64.9% of self-reported asthmatics.
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Figure A1: Drug deliveries to infants in their first year by income decile and main
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A.3 Air pollution data

Data on PM2.5 exposure is derived from two sources. The French National Institute
for Industrial Environment and Risks (Ineris) produces historical data (2009-2020)
as an annual average at the level of municipalities in metropolitan France (Ineris
Cartothèque; Real et al. (2022)), based on a statistical comparison of observations
from measurement stations and concentrations simulated by a numerical air quality
model. Based on satellite observations, the Atmospheric Composition Analysis
Group (Hammer et al., 2020) proposes annual average data at the European level
on a one-kilometre grid (V4EU03, 2001-2018).

Area with > 700 000 inhabitants (but Paris) Area of Paris France (metropolitan)
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Figure A2: PM2.5 Exposure For Children in their Birth Year, By Urban Area,
Relative to Fifth Decile of parental income
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Figure A3: Urban areas by number of inhabitants in 2017 (Insee, 2020)

A.4 Local weather data

The meteorological data, including the one used to identify days with thermal
inversions, are those from the European atmosphere and surface reanalysis model
(UERRA). This model generates hourly estimates of various meteorological variables
such as temperature, humidity, and wind across multiple atmospheric layers, at a
ground resolution of 11km x 11km. The UERRA project is laying the groundwork
for a pan-European reanalysis with an extremely high resolution (5.5 km) forced by
the global ERA-5 reference reanalysis system. As explained in UERRA’s user guide,
atmospheric reanalysis is a technique used to reconstruct past weather conditions by
combining historical observations (both in-situ and remote sensing via surface and
satellite) with a dynamical model. The process generates a coherent description of
the atmospheric state that is both physically and dynamically consistent. The model
assimilates observational data to closely replicate the conditions it records. The
main advantage of reanalysis is that it provides a multivariate, spatially complete,

53

https://www.insee.fr/fr/statistiques/4806694


and coherent record of the atmospheric state, which is far more complete than any
observational dataset.

These open-access data are available on the Copernicus website, in the Climate
Data Store. We classify a day as a day with a thermal inversion when the difference
between the daily average temperatures at 500 metres and 15 metres is positive. We
count the number of such days over the first year of a child’s life. The meteorological
control variables we use include the number of days in the year across 20 temperature
intervals and 12 wind speed intervals (as per the Beaufort scale), as well as the
annual average humidity and pressure.35

A.5 EDP sample and linkage issues

The Echantillon Démographique Permanent (EDP) tracks individuals born on 16
specific birth dates (2nd to 5th of January; 1st to 4th of April, July, and October)
across multiple survey and administrative sources. These sources are connected by
a common identifier. Of the 364,105 EDP individuals with birth dates from 2008
to 2017, 340,897 have a recorded municipality of residence in metropolitan France.
This information is issued from the birth certificate.

Out of these, 336,169 children are found in the National Health Insurance
affiliates referential and consist of the main sample of our study. Approximately
98% had access to health care in their birth year. Given that France provides
universal health insurance to its residents, the lack of access at this age likely
suggests either absence from the territory or linkage issues.

A.6 Adjusted income by birth cohort

We compute the adjusted disposable income per consumption unit at the household
level for each infant. It is defined as the sum of earnings, self-employment income,
capital income, and social transfers, minus direct taxes, and divided by the number
of consumer units. The consumption units are computed using the modified OECD
scale, which assigns 1 consumption unit to the first adult in the household, 0.5 to

35Neither the European Commission nor the European Centre for Medium-Range Weather
Forecasts (ECMWF) bears responsibility for the use of Copernicus data in this report.
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individuals aged 14 years or older, and 0.3 to children under the age of 14 years
(Blanpain, 2019).

We rank infants within their birth cohort by the percentile of their household’s
adjusted disposable income. We compute the corresponding percentile for each year
from their birth year to two years later. 90% of infants in our primary sample born
between 2008 and 2016 have at least one non-missing of these three percentiles. We
define their income percentile as the average across the fiscal years in which the
infant is observed. Restricting to the percentile in the birth year would result in
attributing a percentile to only 66% of infants, forcing us to drastically limit our
sample.

Moreover, among infants with at least one attributable percentile over their first
three years, missing data about yearly adjusted income is correlated with being
at the lower end of the income distribution, as depicted in Figure A4. If we limit
the analysis to those infants for whom we only measure income in the birth year
(y-axis of the Figure), we lose more children from low-income families than from
high-income families (x-axis, when measured over up to 3 years). Specifically, this
sample excludes all children born in 2017, as no measure of parental income is
available for that year.

Table A4: Disposable parental income in 2016 Euros (precisely Niveaux de vie,
equivalised disposable income in Eurostat terms)

Decile Interval Median
1 < 10, 550 8, 648
2 10, 550 − 12, 850 11, 748
3 12, 850 − 14, 970 13, 908
4 14, 970 − 16, 990 16, 004
5 16, 990 − 19, 030 18, 026
6 19, 030 − 21, 100 20, 044
7 21, 100 − 23, 100 22, 073
8 23, 100 − 26, 350 24, 574
9 26, 350 − 31, 550 28, 472
10 > 31, 550 38, 384
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Figure A4: Household income missingness by birth year and decile of adjusted
household income. Left: Share of missing values in birth year by final adjusted
income decile. Right: Share of missing values in final adjusted income percentile
(over up to 3 yearly observation if available in fiscal years 2010 to 2016).

To complete the descriptive statistics, Figure A5 shows the characteristics of
childbirth stays by decile of adjusted household income for all non-premature
births, and Table A5 reports the risk ratio between the bottom and the top of
parental income distribution. This breakdown offers a comprehensive view of the
socioeconomic factors influencing childbirth conditions and the care received. In
addition, Figure A6 visualizes the frequency of emergency admissions for asthma
and bronchiolitis by income decile, which reveal potential disparities in health
outcomes or health care access among different socioeconomic groups.

Table A5: Risk Ratio (probability in the bottom tenth of parental income over probability
in the top tenth of parental income)

D1/D10
Birth with a significant issue (GHM) 1.04 [1.01;1.08]
Birth with at least one pathological diagnosis (DP des UM) 1.08 [1.03;1.13]
Electrocardiogram at birth 1.39 [1.23;1.56]
Neonathology at birth 1.48 [1.35;1.60]
Respiratory radiography at birth 1.75 [1.47;2.02]
Low birth weight (<2,5kg) 1.77 [1.57;1.98]
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Appendix B Treatment definition

B.1 Thermal inversions

While thermal inversions have been used as instrumental variables in many studies
due to their potential to generate as-good-as-random variations, they cannot be
treated as completely random. Specifically, thermal inversion phenomena can be
influenced by local topography, such as the presence of a deep valley, which can
initiate or amplify the phenomena (Joly and Richard, 2018). Figure B1 illustrates
how certain regions experience more thermal inversions than others over the years.

In our study, we aim to compare children born in the same municipality but at
different times, thereby controlling for this local variation. We define the “usual” or
“expected” number of days with thermal inversions by considering this long-term
local average. This is achieved using the following linear model at the municipality
and year level:

Figure B1: Share of days with thermal inversions for three example years

Nct = νc + ϕt + nct, (5)

where νc represents the long-term annual average of the number of days with
thermal inversion, ϕt is a national yearly shock, and nct is a local idiosyncratic shock.
According to its year of birth (t) and its municipality of residence (c) in its first year,
each child (i) is assigned to the predicted local long-average N i = N̂ct = ν̂c + ϕ̂t.
Figure B2 illustrates the geographical distribution of treated infants when using
the adjusted number of days with thermal inversion, for two different thresholds.
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Compared to Figure B1, this map displays a more uniform distribution of treated
cohorts than what we would have obtained if we had used the unadjusted number
of days with thermal inversion to define the treated and untreated cohorts.

Thermal inversions typically follow a seasonal pattern, with a greater occurrence
in winter. However, when these inversions are aggregated over the twelve months
following a child’s birth, this seasonality tends to fade away as illustrated in Figure
B3. Moreover, there are no clear trends based on the quarter of birth. On average,
children born in January experience 36.4 days of thermal inversions in their first
year, compared to 34.9 days for children born in April, 35.1 days for those born in
July, and 35.2 days for those born in October. At most, there is a 1.5-day difference
in total days of exposure to thermal inversion for children born in different quarters,
which is significantly less than the threshold and size of the shock considered.
However, one shortcoming of our approach is that we treat identically an additional
10 days of inversion happening in the first and the twelfth month of the child,
whereas consequences may be quite distinct.

Table 2 shows that the characteristics of treated and non-treated children
are remarkably similar. This similarity provides credibility to the assumption of
exogeneity of our quasi-experimental shock, as it suggests that the exposure to
thermal inversions is not systematically related to observable characteristics of the
children.

Figure B2: Municipality with at least one treated birth cohort over 2008 to 2017
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Figure B3: Temporal variations in the number of days with thermal inversions
quarter by quarter, and in total the next 12 months

20

40

60

80

2008 2010 2012 2014 2016 2018
Quarter of birth

A
ve

ra
ge

 n
um

be
r 

of
 th

er
m

al
 in

ve
rs

io
ns

 in
 fi

rs
t y

ea
r 

 in
 m

ai
n 

ur
ba

n 
ar

ea
s

Bordeaux

Grenoble

Lille (partie française)

Lyon

Marseille − Aix−en−Provence

Montpellier

Nantes

Paris

Rennes

Strasbourg (partie française)

Toulouse

Births in the largest urban areas. (Aire d'attraction des villes, Insee 2020)
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Table B1: Placebo treatment: average treatment effect of the quasi-experimental binary
shock of exposure to air pollution after health care use

Intermediate exposure shock Large exposure shock
n = 7 n = 10

Drug delivery for obstructive airway diseases
- before first anniversary

0.001 0.000
[-0.005;0.007] [-0.007;0.007]

Sample size 288875 309758

Hospital emergency admissions
- bronchiolitis or asthma before third anniversary

0.001 -0.001
[-0.002;0.004] [-0.005;0.002]

Sample size 220155 233953
- asthma before third anniversary

-0.0004 -0.001
[-0.002;0.001] [-0.003;0.001]

Sample size 220155 233953

- bronchiolitis before second anniversary
0.001 0.0002

[-0.001;0.004] [-0.003;0.003]
Sample size 231904 251430

The estimates in Table 1 aligns well with daily findings presented by Godzinski
and Suarez Castillo (2021), when considering an annual aggregation. According
to their study, in days when thermal inversion occurs at each hour of the day,
the mean concentration of PM2.5 rises by roughly 3 µgm−3. Additionally, other
pollutants such as carbon monoxide and nitrogen dioxide also show significant
increases. Therefore, if there is an extra 10 days with thermal inversion in a year,
the annual mean concentration of PM2.5 would increase by approximately +(10×
3)/365 ≈ +0.1 µgm−3. We find slightly higher annual estimates, which may be
explained by the fact that the daily estimates of the elasticity of PM2.5 to thermal
inversion that we use for this back-of-the-envelope calculation are conditional on
the inverse of planetary boundary layer height, an related instrument but different
from to thermal inversions.
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In Figure B5, we present a comparison of the exposure between the exposed
group to the control group as a function of n which is equivalent to the data
presented in columns (1) and (3) from Table 1. This data is broken down for
both PM2.5 data sources, supplementing the information provided in Figure 7.
Additionally, to supplement the information in Figure 8, we present in Figure B6
the data for emergency admissions, separately for bronchiolitis and asthma.

ACAG Ineris
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Figure B5: Days with Thermal inversion from birth to first anniversary and PM2.5
Exposure in first year. Notes: Infants born in January from the primary sample.
Equation 3, coefficient θn, excluding or not children with an intermediate level of
treatment.
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Figure B6: Days with Thermal inversion and Health Outcomes. Equation 2
(without XI)

Baseline exposure levels. Thermal inversions may have a greater impact on
PM2.5 concentrations in already polluted areas. Thus, one additional day with a
thermal inversion could generate a greater increase in PM2.5 exposure, thus have
stronger health impacts on those who live in large urban areas.

Our findings that the most affected children often reside in areas with higher
baseline pollution levels can be interpreted in two ways: as a result of our instru-
mental variable approach, or as living in a highly polluted area being an additional
risk factor for the effects of short-term air pollution fluctuations.

To explore the first channel, we modify (3) by including an interaction term
with the treatment Ti. This term considers whether, in the year prior to a child’s
birth, their municipality had a PM2.5 concentration above the annual average, or
if the child resides in an urban area with over 200,000 inhabitants. The outcomes
of this analysis are detailed in Table B2. We find no heterogeneity by baseline
exposure levels when considering the ACAG data source, but we do find some
evidence of a greater impact of thermal inversions in overexposed areas with a
significant interaction term of 0.453 (column (2) of Table B2).

63



Table B2: Design of the quasi-experimental treatment and exposure to air pollution
depending on baseline pollution

Additional exposure to PM2.5 in first year for those born in January
ACAG

Baseline Interacted

(1) (2) (3)

Ti 0.120 0.173 0.138
[0.022;0.22] [0.095;0.252] [0.041; 0.235]

Ti × 1{PM2.5c(i),t−1 −0.146
> ¯PM2.5c(i),t−1} [−0.346, 0.054]

Ti × 1{i lives an urban area - - −0.116
of more than 200,000 inhabitants} [−0.271, 0.039]

XI no no no
Sample 82164 82164 82164

Ineris
Baseline Interacted

(1) (2) (3)

Ti 0.244 0.116 0.251
[0.117; 0.372] [−0.011, 0.243] [0.121, 0.381]

Ti × 1{PM2.5c(i),t−1 - 0.453
> ¯PM2.5c(i),t−1} [0.161, 0.746]

Ti × 1{i lives an urban area - - 0.084
of more than 200,000 inhabitants} [-0.136; 0.303]

XI no no no
Sample 73354 65527 73354

Notes: This Table presents the results of 6 distinct regressions, with PM2.5 exposure measured from two
distinct data sources (ACAG or Ineris), and three specifications in columns. Each outcome is regressed
on the binary exposure dummy Ti = 1{n̂ > n = 7}, on ground-level weather controls, with or without
individual characteristics XI , and with municipality and year fixed effects. Standard errors are clustered
at the UERRA grid level.
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B.2 Two-sample 2SLS

We present in this section the results of Instrumental Variable (IV) estimates using
the quasi-experimental shock as an instrumental variable for PM2.5 annual exposure.
We consider the equation (3) seen as a first stage with instrument Ti for PM2.5
annual exposure of our two-sample two-stage instrumental variable estimator. We
use a second-stage related to (2) to analyze a given health outcome as given by

Yi = β ˆPMi + XW
i γW + µc + δt + ϵi, (6)

where ˆPMi was obtained from the first-stage (3) estimated for a subsample, but
we then extrapolate it to our full sample. Notably, we do not have observations
of PM2.5 exposure before their first anniversary for the majority of children in
our sample. We only have these observations for children born in January. This
constraint necessitates a nonstandard approach to IV estimation (that is, not using
the same sample for the first and the second stage) to maintain a fair sample size.

To be precise, we need to slightly modify the key identifying assumption stated
in the main text, “after controlling for municipality fixed effects, year fixed effects,
and weather variables, the local changes in the number of thermal inversions are
unrelated to changes in the health outcomes of children except through its influence
on air pollution” to “except through its influence on PM2.5”.

In addition, we must explicitly assume that the estimate we obtain for the first
stage (relationship between PM2.5 and thermal inversions) from the subsample
of children born in January would not differ significantly from the corresponding
estimates had we been able to run the estimation for all children. Given the
well-documented relationship between PM2.5 and thermal inversion, we believe
that the positive and significant relationship we found would still hold, though the
exact magnitude could potentially vary. However, given the size of the confidence
intervals obtained in the first stage, as shown in Table 1, and the consistency with
estimates from Godzinski and Suarez Castillo (2021), it is likely that such estimates
would fall within a similar range.

The two-sample two-stage instrumental variable estimator, as described in
Angrist and Krueger (1992), is asymptotically more efficient that a two-sample
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IV estimator (Inoue and Solon, 2010). Zhao et al. (2019) emphasize the key
assumption that the structural relations in the two samples should be the same: the
exposure model should be correctly specified and in particular relies on the linearity
assumption more heavily than in the one sample case. In our empirical application,
the samples are not inherently different as they do not originate from separate
populations; instead, the exposure model is estimated based on a subset. This
approach offers certain advantages but also necessitates the above assumptions.

To perform inference, we take into account the geographically clustered nature
of the data and of the treatment assignment process with a clustered pair-boostrap
procedure. We first (1) form clustered bootstrap samples by resampling X(b) =
{X

(b)
1 , · · · , X

(b)
G } with replacement B = 500 times from the original sample X =

{X1, · · · , XG}, where Xg represents all the individual data attached to the g-th
cluster, that is the UERRA grid unit (G = 4580), (2) compute on X(b) the two-
sample two-stage instrumental variable estimates β̂ (3) compute the confidence
interval at level at level α = 5% with the 2.5 and 97.5 percentiles of the estimates
in step (2).

Table B3 reports the estimates from the two-sample 2SLS, which are found
to align with the corresponding reduced-form estimates presented in Table 3, the
intention-to-treat in this IV framework. The former estimates correspond to the
latter when scaled with the first stage estimates, by a factor of 1

0.12 (source: ACAG)
or 1

0.24 (source: Ineris).36 In our primary analysis, these average treatment effects
were assessed as the consequence of an increase in PM2.5 annual exposure by 0.12
to 0.24 µg/m3, along with potential impacts of other pollutants, resulting from
approximately 10 days of substantial increase in air pollution exposure during the
child’s first year of life due to thermal inversions. The two-sample 2SLS estimates,
while bearing the caveats discussed earlier, can be directly interpreted as the causal
effect of a 1 µg/m3 increase in PM2.5 annual exposure during the first year.

36For instance, the point estimate 0.007 for outcome 4 in column (2) in Table 3 when multiplied
by 1/0.12 equals to 0.058, which is statistically close to 0.057, the corresponding estimate in the
fifth row and first column of Table B3, and equates 0.029 when multiplied by 1/0.24 whereas the
corresponding estimate in B3 is 0.024.

66



Table B3: Two-sample two-stage least square estimates with endogenous variables PM2.5
(annual mean exposure). 500 bootstraps replications.

Source: ACAG Source: Ineris
Outcome (1) (2)

Having drug delivery for obstructive airway diseases before first anniversary
0.048 [-0.017;0.167] 0.023 [-0.005; 0.053]

Hospital emergency admissions for bronchiolitis or asthma before thrid anniversary
0.057 [0.006;0.207] 0.024 [0.005; 0.062]

Hospital emergency admissions: asthma before third anniversary
0.026 [0.002;0.083] 0.011 [0.002;0.027]

Hospital emergency admissions: bronchiolitis before second anniversary
0.028 [0.002;0.11] 0.014 [0.001;0.038]

B.3 Controlling for quarter of birth

The incidence of respiratory diseases depends on infant quarter-of-birth because
quarter-of-birth is related to the age at the epidemic season onset, a risk factor
well-known for bronchiolitis (Fauroux et al., 2020). In our sample, infants born in
October are at significant higher risk of bronchiolitis emergency admission than
infant born in April, which are older than six months when the winter season occurs,
as shown in Figure B7. We first note no discernible seasonal pattern in the annual
count of thermal inversions children experience based on their quarter-of-birth, a
factor which could have indicated an incidental confounding factor. Nonetheless,
it is essential to explore how incorporating the quarter-of-birth variable might
influence our overall analysis.

We first define a new long-term average as the “expected” quarterly number of
days with thermal inversions from Ncyq = νc + ϕy + αq + ncyq, and assign to each
child i resident of municipality c a prediction of the number of “expected” days
with thermal inversions N i as the sum of N̂cqt over the four first quarters y, q of
child i. Except for this adjustment to take into account quarterly dynamics in
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Figure B7: Seasonality of Outcomes and Exposure

the prediction, exposed and unexposed cohorts are defined as before (13.4% are in
the treated group against 14.1% in our baseline model), and we obtain very close
results to Table 1 (relationship between PM2.5 and being in the exposed cohort)
and Table 3 (relationship between respiratory diseases outcomes and being in the
exposed cohort) without additional adjustment.

In Table B4, we show how our main set of results are modified when controlling
for quarter-of-births. As for emergency admission for bronchiolitis, if anything, the
quarter model in column (3) and (4) points to more precise estimates. In line with
the absence of quarter-of-birth seasonality in emergency admissions for asthma,
the point estimates are very close but precision slightly drops. Finally, the point
estimate for anti-asthma medication, already non-significant in the baseline, remains
non-significant and changes sign. To obtain a positive and significant estimates,
whereas in the baseline specification, a threshold of 10 additional days with thermal
inversion was enough, in this case, one has to choose a threshold higher than 15
days (point estimates of 0.009 [-0.002; 0.019], p-value = 0.10). All-in-all, opting for
a quarterly model has little to no implications for our results concerning emergency
admissions for respiratory diseases, but render results for anti-asthma medication
more fragile.
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Table B4: Average treatment effect of the quasi-experimental air pollution shock

Baseline Quarter-of-Birth Model
Outcome (1) (2) (3) (4)

Having drug delivery for obstructive airway diseases before first anniversary
0.003 0.003 -0.004 -0.007

[-0.003;0.009] [-0.004;0.010] [-0.010;0.002] [-0.014;0.000]
Quarter-of-birth control no no yes yes

XI no yes no yes
Sample size 336169 217859 3336169 217859

Hospital emergency admissions: bronchiolitis or asthma before third anniversary
0.005 0.007 0.004 0.004

[0.002;0.009] [0.003;0.011] [-0.000;0.007] [0.000;0.008]
Quarter-of-birth control no no yes yes

XI no yes no yes
Sample size 246075 189722 246075 189722

Hospital emergency admissions: asthma before third anniversary
0.002 0.003 0.002 0.002

[0.000;0.005] [0.001;0.006] [-0.000;0.004] [-0.001;0.005]
Quarter-of-birth control no no yes yes

XI no yes no yes
Sample size 246075 189722 246075 189722

Hospital emergency admissions: bronchiolitis before second anniversary
0.003 0.003 0.003 0.004

[0.000;0.006] [-0.000;0.006] [0.001;0.006] [0.001;0.007]
Quarter-of-birth control no no yes yes

XI no yes no yes
Sample size 277271 207825 277271 207825

Notes: This table presents the results of 16 distinct regressions, with 4 outcomes in rows and 4
specifications in columns. Each outcome is regressed on the binary treatment designed to capture
a positive variation in air pollution exposure, Ti = 1{n̂ > n = 7}, quantifying whether a child was
over-exposed to thermal inversion in its first year, on ground-level weather controls, with or without
individual characteristics XI , municipality and year fixed effects. In columns (3) and (4), a control for
quarter-of-birth is introduced. Standard errors are clustered at the UERRA grid level.

B.4 Another outcome: doctor visits.

Finally, we can consider another outcome that is not specific to respiratory diseases
but is related to children’s use of health care: doctor visits. We consider all doctor
visits, and GP and paediatrician separately and present the results in Table B5.
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For total doctor visits, we find a modest yet significant increase that remains
consistent across all four specifications. An increase of 0.1 to an average of 11.7
visits represents an increase of about 1%, which appears to be mainly driven by
an increase in visits to paediatricians, i.e. specialists, a finding consistent with the
need to first see a doctor who can diagnose and prescribe anti-asthmatic drugs. In
unreported results, we find evidence of heterogeneity in the BLP sense, but do not
succeed in separating groups of impact in the GATEs sense.

Table B5: Doctor’s visits: Average treatment effect of the quasi-experimental air pollution
shock

All Children Excluding those intermediately treated
Outcome (1) (2) (3) (4)

Visits to GP or Paediatrician before first anniversary
0.10 0.099 0.14 0.12

[0.022;0.18] [0.014;0.18] [0.041;0.25] [-0.002;0.23]
XI no yes no yes

Sample size 331811 216814 232331 146337

Visits to Paediatrician before first anniversary
0.064 0.064 0.082 0.060

[0.001;0.13] [-0.011;0.14] [0.008;0.16] [-0.037;0.16]
XI no yes no yes

Sample size 331811 216814 232331 146337

Visits to GP before first anniversary
0.037 0.035 0.062 0.056

[-0.050;0.12] [-0.062;0.13] [-0.038;0.16] [-0.063;0.18]
XI no yes no yes

Sample size 331811 216814 232331 146337

Notes: This table presents the results of 12 distinct regressions, with 3 outcomes in rows and 4
specifications in columns. Each outcome is regressed on the binary treatment designed to capture
a positive variation in air pollution exposure, Ti = 1{n̂ > n = 7}, quantifying whether a child was
over-exposed to thermal inversion in its first year, on ground-level weather controls, with or without
individual characteristics XI , municipality and year fixed effects. Standard errors are clustered at the
UERRA grid level.
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Appendix C Generic machine learning estima-
tion of heterogenous treatment ef-
fect

In this section, we discuss the methodology introduced by Chernozhukov et al.
(2023) and its application in our context. The method aims to: (1) detect any
observable heterogeneity in treatment effects; (2) determine the specific treatment
effects across different impact groups; and (3) identify covariates linked to this
heterogeneity. Given a large array of potential covariates influencing vulnerability
to treatment (Table C1), testing each for heterogeneity risks overfitting. Conversely,
limiting the analysis to a pre-selected subset of variables could omit crucial insights.
This approach systematically utilizes all available covariates to identify meaningful
heterogeneity. Its strength lies in its applicability to any machine learning algorithm
and its provision of a valid inference procedure.

Socio-economic charac. Gender
Mother age
Mother born abroad (indicator)
Decile (indicators) and percentile (linearly) of parental income
Benefit from the CMU-C

Baseline health Birth weight (indicator of low birth and linearly)
(from birth hospital stay) Gestational age (indicator of being premature and linearly)

Healthy birth
Normal Birth
Stay in the neonatology department
Respiratory or cardiovascular diagnosis
Electrocardiogram at birth
Radiography of the respiratory system at birth

Local charac. PM2.5 exposure (the year before birth)
Accessibility to GP
Accessibility to paediatrician
Type/size of the urban area (6 modalities)

Table C1: List of Z features

Each of the objectives (1), (2) and (3) is associated with estimates based on a
proxy predictor Ŝ(z) of the conditional average treatment effect s0(Z) and were
named as follows: (1) the best linear predictor of the conditional average treatment
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effect (BLP), (2) the sorted group average treatment effects or the average treatment
effects by group induced by the proxy (GATES) and (3) the classification analysis
or the average characteristics of the least and most affected units (CLANS).

We aim to characterize the conditional average treatment effect function, Z →
s0(Z) = E[Y |Z, T = 1] − E[Y |Z, T = 0]: which set of Z’s characterizes those who
are the most affected? if not all children are affected, what proportion of the children
population has a significant average treatment effect? The basic step requires to
randomly divide the sample in two, an auxiliary sample A and a main sample M .
Sample A is used to estimate a proxy (non necessarily consistent) of s0, z → SA(z),
and while using sample M , SA can be treated as a fixed map and applied to each
infant to obtain a vulnerability index, to later confirm (or not) its relevance in
term of heterogeneity of the treatment effects, in the same way we could use with
a pre-defined covariate : statistical inference is then conceptually straightforward.
However, repeating sample split requires to appeal to quantile-aggregated inference
– which aggregates inferential results by taking medians of estimates and medians
of upper and lower confidence intervals obtained from different splits.

C.1 Estimation

Let us denote each observation by i (infant). Our numerical implementation makes
use of S = 100 random splits of the data. Over each random split, we define a
main sample M and an auxiliary sample A over each half of the sample split. We
train and tune two ML algorithms (random forest and lasso) to predict: (1) the
conditional average treatment effect s0(Zi) = E[Yi|Zi, Ti = 1] −E[Yi|Zi, Ti = 0] and,
(2) the outcome for infants in the control group b0(Zi) = E[Yi|Zi, Ti = 0], using
sample A: (Yi, Ti, Zi)i∈A. We proceed by separately estimating E[Yi|Zi, Ti = 1]
and E[Yi|Zi, Ti = 0], an approach known as “T-learners”. An alternative approach
would be to use the Horvitz-Thompson transformation, multiplying the outcome
by the standardized treatment H = D−p(Z)

p(Z)(1−p(Z) , so that the expectation of HY is
the conditional average treatment effect itselft, which can directly be fitted in one
step, in an approach known as “causal regression”.

We thus obtain two proxies for these functions of interest (for each ML method):
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z → SA(z) and z → BA(z). We use them to estimate the best linear predictor
(BLP), the group-average treatment effects (GATES), and perform a classification
analysis (CLAN) as follows.

BLP. For each main sample, we estimate the best linear predictor by weighted
OLS, with weights {p̂(Xi)(1 − p̂(Xi))}−1, from the equation

Yi =α0 + α1b̂(Zi) + α2Ŝ(Zi) + β1(Ti − p̂(Xi))

+ β2(Ti − p̂(Xi))(Ŝ(Zi) − Ŝ) + λXW
i + γt + ϵi,

(7)

where Zi combines individual-level variables XI
i and exposure variables, such as PM

exposure, GP and pediatrician accessibility, and size of urban areas. We also control
for XW

i surface-level weather variables and for year-of-birth fixed effects. The best
linear predictor of s0(z) is β̂1 + β̂2Ŝ(z). It provides information about treatment
effect heterogeneity. Specifically, β̂2 is a consistent estimate for the correlation
between the sensibility to treatment, as measured by the proxy predictor, and the
true conditional average treatment effect, Cov(s0(Z), S(Z))/V ar(S(Z)). Testing
the null hypothesis β2 = 0 hence provides a way to investigate the presence of
heterogeneous treatment effects, i.e. that s0 varies with Z, and the relevance of S(Z),
i.e. that it is correlated with s0. In practice, we may include any “noise-reducing”
proxy function of Z in this equation. In practical experiment, Chernozhukov et al.
(2023) indicate that including B̂ significantly improves the precision of estimation
of the BLP. In the last version of their working paper, they also mention including
p̂(Z), and its interaction with Ŝ(Z). In further investigation, we could test whether
in our case, such modifications improve or not precision.

GATES. For each main sample, we create four groups k = 1, 2, 3, 4 of increasing
predicted average treatment effects based on the 50th, 75th, and 90th quantiles
of Ŝ(Zi). We use these groups to estimate the group-average treatment effects by
weighted OLS, with weights {p̂(Xi)(1 − p̂(Xi))}−1, from

Yi = a0 + a1b̂(Zi) + a2Ŝ(Zi) +
∑

k

γk(Ti − p̂(Xi))1 {i ∈ Gk} + λXW
i + νt + ϵi,
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where γ̂k denotes the expectation of s0 in group k, and Gk’s denote group member-
ship. By construction of Ŝ(Zi), the GATES should be such that γ̂1 ≤ γ̂2 ≤ γ̂3 ≤ γ̂4

since these parameters are interpreted as the respective average treatment effects of
each group of sensibility to the treatment. This approach delivers valuable informa-
tion about the distribution of the negative health impacts of the quasi-experimental
pollution shock across children in our data. In absence of heterogeneity or if the
proxy fails to capture it, it should be that all the GATES are statistically the same.
Here as well, we may include any “noise-reducing” proxy function of Z in this
equation. In the last version of their working paper, they also mention including
p̂(Z), and its interaction with 1{i ∈ Gk}.

CLAN. Finally, for each main sample, we investigate the compositions of the Gk

groups defined in the GATES using the vector of CLAN parameters

δ̂k = 1
nGk

∑
i∈Gk

Zi. (8)

These estimates correspond to the average characteristics of each group Gk along
the multiple dimensions of Z. They hence allow drawing a portrait of the different
groups, in particular the most affected children in G4 for which Ŝ(Zi) exceeds its
90th quantile.

C.2 Inference

Conditionally on a single split, the estimate θ̂ ∈ (β̂, γ̂, δ̂) is approximately Gaussian,
as the sample size N , leading to a partition (⌊N/2⌋, ⌊N/2⌋), goes to infinity following
standard statistical inference.

The median aggregated p-values across split to test whether one of these
estimates is distinct from zero is defined as the minimum between p+, the median
across split A of p+

A = 1 − Φ( θ̂A

σ̂A
) and p−, the median across split A of p−

A = Φ( θ̂A

σ̂A
).

Under weak assumption, the probability that this p-value, multiplied by two, is
below the level α is close to α when (⌊N/2⌋, ⌊N/2⌋) goes to infinity, that is the
standard property. In addition, under the median concentration condition, the
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factor 2 is not necessary. This condition states that the approximate median
over-the-splits t-statistics Med( θ̂A

σ̂A
) tend to concentrate more than any single-split t-

statistic θ̂A

σ̂A
, a condition that Chernozhukov et al. (2023) find mild and supported by

their computational experiments. Although they do not recommend multiplying by
2, we do so in this version for presenting p-values, which may be rather conservative.
P-values should be divided by two otherwise.

Median confidence intervals behave similarly: if the final level of coverage α

is required, without the median concentration condition, one should aggregate by
taking the median the lower and upper bound confidence interval at level α/2.
With the median concentration condition, the factor 2 is not necessary. We present
confidence intervals which may be read as 90% confidence intervals under the
conservative view or 95% confidence intervals under the median concentration
assumption.

We report their median across the splits, and their confidence intervals of
coverage 1 − α = 95%, as the median across the splits of CIs with coverage 1 − α/2.
We adapt the numerical routines from the GenericML R package (Welz et al., 2022)
to allow for propensity scores outside of [0.05,0.95], as well as random sample splits
with up to 95% of control units (90% in source codes). In our implementation, we
compare the performance of the lasso and random forest to form the two proxy
predictors.

The performance metrics are based on the two empirical counterpart of respec-
tively Λ = |β2|2Var(S(Z)) = Corr(s0(Z), S(Z))2Var(s0(Z)), and Λ̄ = E(∑K

k=1 γk1{i ∈
Gk})2 = ∑K

k=1 γ2
kP (i ∈ Gk). The first is used to choose the best algorithm for the

BLP analysis as the maximizer of the correlation between the proxy S(Z) and the
CATE s0(Z) to find heterogeneity. The second is used to choose the best algorithm
for the GATES and CLAN analysis, as the maximizer of the R2 of the regression
of s0(Z) on ∑K

k=1 γk1{S(Z) ∈ Gk}. We report these in Table C2.
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Table C2: ML performance metrics

Best BLP (Λ) Best Gates (Λ̄)
|β2|2Var(S(Z))

∑K
k=1 γ2

kP (i ∈ Gk)
Lasso Random Forest Lasso Random Forest

Having drug delivery for obstructive airway diseases before first anniversary
3.216 114.101 43.077 141.480

Number of drug deliveries for obstructive airway diseases before first anniversary
7.609 16.762 26.822 28.315

Visits to GP or Paediatrician before first anniversary
6.269 4.497 2.620 3.230

Hospital emergency admissions for bronchiolitis or asthma before third anniversary
2.680 39.627 34.438 40.815

Hospital emergency admissions for asthma before third anniversary
10.725 18.785 11.377 10.938

Hospital emergency admissions for bronchiolitis before second anniversary
1.706 179.189 10.779 34.385

Median over 100 splits, multipled by 106. For the BLP, the chosen algorithm is the
one that reaches the highest estimated Λ. For the GATES and the CLAN, the chosen
algorithm is the one that reaches the highest estimated Λ̄.

C.3 Access to healthcare: CMU-C.

Figure C1 provides the CLANs focused on variables measuring accessibility to
healthcare.
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Figure C1: CLANs of CMU-C variables. Top: Obstructive Airways Diseases -
Drug Consumption. Bottom: Emergency admission for bronchiolitis.
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