Documents de travail

N° G2020/09

Octobre 2020

Comptabilité économique de la soutenabilité climatique

Jean-Marc GERMAIN - Thomas LELLOUCH

Institut national de la statistique et des études économiques

G2020/09

Comptabilité économique de la soutenabilité climatique

Jean-Marc GERMAIN - THOMAS LELLOUCH*
Octobre 2020

Département des Études Économiques - Timbre G201 88, avenue Verdier - CS 70058 - 92541 MONTROUGE CEDEX - France Tél. : 33 (1) 87 69 59 54 - E-mail : d3e-dg@insee.fr - Site Web Insee : http://www.insee.fr

Ces documents de travail ne reflètent pas la position de l'Insee et n'engagent que leurs auteurs. Working papers do not reflect the position of INSEE but only their author's views.

* Insee-Dese - Département des études économiques

Ce travail a bénéficié de discussions utiles et de commentaires enrichissants de la part de Didier Blanchet, de deux rapporteurs dans le cadre de la soumission de ces travaux dans la revue Economie et Statistiques, ainsi que des participants au séminaire du DEE (Insee) du 05/05/2020 et notamment Xavier Timbeau, qui a discuté la présentation.

Comptabilité économique de la soutenabilité climatique

Résumé

Respecter les engagements climatiques qui découlent des accords de Paris sur le climat nécessite des moyens financiers importants que l'on évalue ici à l'aide d'un modèle macroéconomique combinant un critère de répartition intergénérationnelle de l'effort climatique et des hypothèses sur l'efficacité des technologies de décarbonation. Les résultats montrent que pour la France, la trajectoire actuelle d'émissions de gaz à effet de serre n'est pas soutenable, au sens où pour atteindre l'engagement de neutralité carbone en 2050, le niveau annuel de dépenses pour le climat devrait augmenter de manière très substantielle, à 4.5 % du PIB contre 1.9 % actuellement. Ces évaluations permettent d'en déduire un prix social du carbone ou valeur de l'action climat, significativement réévaluée à la hausse par rapport aux évaluations précédentes, dans le sillage des résultats de la commission Quinet en 2019. De telles évaluations de trajectoire d'émissions et de prix social du carbone pourraient constituer le point d'entrée d'une comptabilité économique environnementale qui intègre la dégradation du patrimoine naturel induite par les activités économiques

Mots-clés : Soutenabilité, changement climatique, prix du carbone, épargne nette ajustée

Economic accountability of climate sustainability

Abstract

Respecting the Paris Agreements commitments, which derive from the Paris Agreements on climate, requires the commitment of significant financial resources, which are evaluated here using a macroeconomic model combining a criterion of intergenerational distribution of the climate effort and assumptions on the effectiveness of decarbonisation technologies. They show that for France, the current greenhouse gas emissions trajectory is unsustainable, in the sense that in order to reach the carbon neutrality commitment in 2050, the annual level of climate spending would have to increase very substantially, to 4.5% of GDP from the current 1.9%. TIn relation to annual emissions, these evaluations make it possible to deduce a social price of carbon or a value for climate action, which has been increased significantly compared to previous evaluations, in the wake of the results of the Quinet committee in 2019. Such evaluations of the emissions trajectory and the social carbon price could be the entry point for environmental economic accounting that includes the degradation of natural assets caused by economic activities.

Keywords: Sustainablity, climate change, carbon price, adjusted net savings

Classification JEL: Q01, Q54, Q56, E01, E21, O13

Table des matières

Intr	oduction	4
1.	Le réchauffement climatique : quelques éléments de contexte	5
2.	Evaluation de la soutenabilité climatique : détour par la modélisation	8
(Production et émissions de gaz à effet de serre	9
(Fonction de dommages et optimum climatique	10
(Technologies d'atténuation et décarbonation de l'économie	11
(Optimalité et équité intergénérationnelle	15
(Soutenabilité climatique et trajectoires optimales	16
3. et le	Résultats : des tendances carbone incompatibles avec les engagements climatiques pour la e monde	
(Trajectoires de réduction des émissions de CO2 en France	17
(Des dépenses climat optimales entre 80 et 100Md€ annuels pour la France	20
(Les résultats au niveau mondial	22
(De l'inventaire à l'empreinte carbone	22
4.	Extension au cas général : résolution analytique et stratégies d'épargne	24
(La dynamique d'accumulation du capital	24
(Le programme d'optimisation du planificateur social	25
(Résolution du problème du planificateur	26
(L'équilibre stationnaire post 2050 et les conditions initiales	28
(Méthode de la bissection	29
(Résultats : variantes et stratégies d'épargne	31
5.	Un nouveau prix du carbone rehaussé, en phase avec l'objectif de neutralité carbone	34
(Les différentes notions de prix social du carbone	34
(Estimations du prix social du carbone pour la France et le monde	39
(Comptabilité du prix du carbone	41
(Des pistes pour définir un concept de dette climatique	42
6. s'aյ	Une épargne nette ajustée du coût social climatique désormais négative, signe d'un morppauvrit progressivement	nde qui
(Soutenabilité forte, soutenabilité faible	44
(Un cadre stylisé de soutenabilité faible	46
(Prise en compte d'un prix de la décarbonation en plus d'un prix du carbone	48
(Application : une évaluation de l'épargne nette ajustée en France et dans le monde	49
(Application : évaluation de la richesse inclusive, intégrant la dette climatique	52
Cor	nclusion	54
RE	FERENCES	56
ΑN	NEXE · Programmation du modèle sous Python	59

Introduction

Alors que la température mondiale a connu une augmentation très nette depuis les années 1980, le consensus scientifique est dorénavant établi pour reconnaître l'impact des activités humaines sur le réchauffement climatique, à travers les émissions de gaz à effet de serre (GES). En retour, le réchauffement climatique va engendrer des dommages sur les sociétés humaines et les milieux naturels, et les risques de dommages abrupts et irréversibles sont croissants avec le degré du réchauffement.

Dans ce contexte, le cadre international de lutte contre le changement climatique a été considérablement renforcé ces dernières années, avec notamment les accords de Paris en 2015 (COP21) qui définissent un objectif partagé de limitation de la hausse de la température moyenne de la planète « nettement en dessous de 2°C par rapport aux niveaux préindustriels ». Cet objectif s'appuie notamment sur les travaux du GIEC (GIEC, 2015), qui montrent que les risques de dommages deviennent très élevés dans les scénarios impliquant une augmentation de la température au-delà de 2°C. Les différentes nations commencent également à prendre chacune des engagements en fixant des cibles de réduction d'émissions de GES à un certain horizon. S'agissant de la France, l'objectif de neutralité carbone en 2050 a été fixé par la loi en 2019 et les objectifs climatiques se traduisent par des stratégies nationales bas carbone (SNBC), qui sont constituées d'une trajectoire de réduction des émissions de GES et de mesures à mettre en œuvre pour atteindre cet objectif. Elles donnent lieu à des décrets d'application qui fixent par période triennale des budgets carbones (quantités annuelles d'émissions à ne pas dépasser). L'ampleur des efforts à accomplir pour parvenir à ces cibles, leur répartition dans le temps et les conséquences sur le niveau de vie et sa soutenabilité restent des points débattus.

Ainsi, la question de la soutenabilité climatique de la croissance se pose et la comptabilité économique environnementale a précisément pour objectif de fournir les données qui permettent d'analyser cette question essentielle. Contrairement aux domaines traditionnels de la comptabilité nationale, où l'on mesure les valeurs, les prix et les volumes, la matière environnementale se caractérise par l'absence de prix ou par le fait que ces derniers ne reflètent pas la valeur des actifs (les ressources naturelles, la biodiversité, le climat...) ni celle des passifs (la pollution, le réchauffement climatique). La comptabilité économique environnementale consiste à remplacer les prix de marché par une valeur sociale. À cet égard, l'accord de Paris constitue un tournant au sens où l'objectif des sociétés humaines, en matière climatique, peut désormais être considéré comme fixé : limiter le réchauffement climatique à 2°C et pour cela atteindre la neutralité carbone à horizon 2050. Dans le langage de la comptabilité économique environnementale, cet accord constitue la référence permettant de donner une valeur au carbone.

Traduire économiquement notre objectif climatique partagé suppose d'être capables de prévoir les différentes trajectoires économiques et climatiques possibles en fonction des efforts entrepris par chacun, et donc nécessite un détour par la modélisation. À l'aide d'un modèle macroéconomique, construit sur la base d'hypothèses réalistes sur les technologies de décarbonation et la répartition des efforts entre générations, nous évaluons les trajectoires optimales de réduction d'émissions pour la France et le monde, ainsi qu'une mesure de l'effort annuel d'atténuation du changement climatique. Ce modèle permet également de déterminer une valeur du carbone en France, revisitant ainsi les résultats du rapport de la commission Quinet en 2019. En réévaluant significativement à la hausse le prix du carbone au regard des évaluations précédentes, le rapport Quinet a constitué un moment important sur le débat relatif à la valorisation sociale de l'action pour le climat. Nos résultats vont encore plus loin dans ce sens et conduisent à considérer les prix Quinet comme un minimum au regard de l'objectif de neutralité carbone en 2050.

La modélisation de trajectoires de réduction des émissions de GES nous permet d'évaluer la soutenabilité climatique. Plus complexe est la mesure de la soutenabilité au sens général. Le rapport

Stiglitz en 2009 avait d'ailleurs renoncé à cette ambition et recommandé de séparer les deux dimensions de la soutenabilité économique et de la soutenabilité environnementale, écartant donc les approches de type richesse inclusive ou épargne nette ajustée qui tentent d'évaluer la soutenabilité globale en faisant masse de l'ensemble des « capitaux » économiques et naturels qui sont transmis d'une génération à la suivante. Les progrès sur le prix du carbone et l'estimation des technologies de décarbonation nous invitent néanmoins à revisiter le sujet, en réévaluant la soutenabilité globale en France et dans le monde, lorsque la dégradation du capital naturel est valorisée aux nouvelles estimations du prix du carbone.

Après quelques rapides éléments de contexte sur le réchauffement climatique (1.), nous décrivons un modèle simplifié d'économie du climat (2.). Nous décrirons ensuite les résultats d'un cas particulier du modèle permettant d'évaluer la soutenabilité climatique en comparant la trajectoire effective de réduction des émissions GES, à celle que nécessiterait le respect des objectifs fixés par les accords de Paris et en mesurant l'ampleur de l'effort à accomplir (3.), puis nous expliciterons la résolution analytique du cas général du modèle (4.). Nous nous pencherons également sur les estimations de valeur sociale de l'action pour le climat qui en découlent (5.), puis nous aborderons la question de la soutenabilité faible, à travers une évaluation, au plan national comme mondial, de l'épargne nette ajustée, intégrant une valorisation financière des dommages climatiques, et partant, de la richesse inclusive (6.), avant de conclure.

1. Le réchauffement climatique : quelques éléments de contexte

L'augmentation de la température mondiale est aujourd'hui très nette (figure 1). L'écart par rapport à la moyenne de la période de référence préindustrielle 1850-1900 est faiblement marqué jusqu'au milieu des années 1930, puis devient légèrement positif jusqu'au milieu des années 1970 avant d'augmenter nettement depuis. Sur les 30 dernières années, la température mondiale a augmenté de près de 0,2 °C en moyenne par décennie. Le réchauffement climatique touche l'ensemble de la planète, mais son intensité diffère selon l'endroit considéré. Il s'accompagne d'autres phénomènes naturels importants, comme l'élévation du niveau de la mer, l'acidification des océans ou la diminution de leur teneur en oxygène dissous.

1,2 1,0 0,8 0,6 0,4 0,2 0,0 -0,2 -0,4 1850 1870 1890 1910 1930 1950 1970 1990 2010 Température mondiale Moyenne glissante sur 10 ans

Figure 1 - Évolution de la température mondiale (écart à la moyenne 1850-1900 en °C)

Source: Hadley Center; calcul des auteurs

Les causes du changement climatique sont dorénavant clairement établies par la communauté

scientifique internationale. D'un point de vue physique, c'est la concentration dans l'atmosphère des gaz à effet de serre (GES), qui réchauffe la terre en piégeant et en réfléchissant vers le sol une partie du rayonnement infrarouge initialement émis par la surface terrestre suite au rayonnement solaire. Si l'effet de serre constitue d'abord un phénomène naturel indispensable à la vie terrestre, les activités humaines ont considérablement amplifié son impact, avec notamment l'explosion des émissions de GES depuis la seconde moitié du 20° siècle. Ainsi d'après le GIEC, « il est extrêmement probable » que les émissions anthropiques (i.e. d'origine humaine) de GES aient été la cause principale du réchauffement climatique observé depuis 1950. Hors UTCATF¹, les émissions annuelles brutes mondiales de GES sont passées de 24,3 GtCO2eq en 1970 à 51,2 GtCO2eq en 2018 (figure 2), soit une augmentation de plus de 110 % en moins de 50 ans. La tendance mondiale est à la hausse malgré une stagnation en 2019 et une baisse en 2020 du fait de la crise du COVID19 ; baisse très probablement temporaire car uniquement dûe à la réduction exceptionnelle d'activité économique. Les évolutions sont très variées selon les différentes régions du monde : les émissions ont baissé de près de 20 % entre 1970 et 2018 dans l'Union européenne et ont augmenté modérément aux États-Unis (+ 13 % sur la même période) ; elles ont en revanche explosé dans certains pays émergents, notamment en Chine (+ 580 % sur la même période qui est devenu le pays le plus émetteur de la planète en termes absolus. L'analyse des émissions de GES par habitant et par unité de PIB produite donne également des informations sur la structure mondiale des émissions, notamment sur les inégalités mondiales.

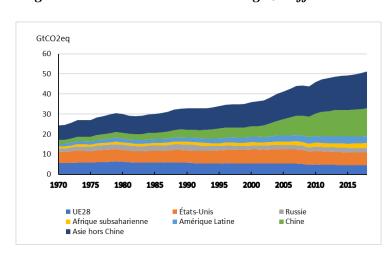


Figure 2 - Émissions mondiales de gaz à effet de serre

Source : base de données Edgar ; calcul des auteurs

Le réchauffement climatique va induire des dommages sur les sociétés humaines et les milieux naturels, avec des risques de dommages irréversibles. Ces dommages se manifestent sous de très nombreuses formes : affaiblissement des écosystèmes, augmentation des évènements climatiques extrêmes, réduction de la sécurité alimentaire mondiale, incidences sur la santé humaine, perte de capacité de travail et de productivité, baisse des services d'infrastructures, destruction de capital physique, déplacement de populations et conflits potentiellement violents fondés sur l'accès aux ressources. Plusieurs scénarios de réchauffement ont été testés par le GIEC et les risques deviennent très élevés dans

¹ Utilisation des terres, changement d'affectation des terres et la foresterie (UTCATF): Catégorie qui regroupe les émissions et absorption de GES découlant directement des activités humaines liées à l'utilisation des terres, leurs changements d'affectation (par exemple déforestation ou urbanisation de terres agricoles) et à la forêt. Au niveau mondial, le secteur est émetteur net de GES pour environ 5GtCO2éq par an sur 2000-2010 (données GIEC). En France, le secteur est un puits net de carbone, à -31,9 Mt CO2éq en 2017 (données CGDD).

les scénarios impliquant une augmentation de la température au-delà de 2 °C. Ces risques ne sont pas répartis uniformément et sont généralement plus grands pour les pays à faible revenu.

La situation est déjà particulièrement critique puisque, la plupart des GES mettant très longtemps à se dissoudre dans l'atmosphère, les émissions d'aujourd'hui vont affecter le climat pendant tout le siècle prochain au moins. D'après le dernier rapport du GIEC (groupe d'experts intergouvernemental sur l'évolution du climat), la concentration actuelle est telle que nous sommes déjà à une augmentation de 1,1 °C par rapport à l'ère préindustrielle. « Inverser » le mouvement supposerait d'avoir des émissions nettes négatives, à savoir que les puits de carbone naturels de la planète (forêts, océans) et les technologies d'élimination du dioxyde de carbone (captage et stockage) soient supérieurs au flux d'émissions brutes d'origine anthropique (i.e. d'origine humaine). À ce stade, c'est très loin d'être le cas.

Le contexte mondial de lutte contre le changement climatique a été considérablement renforcé ces dernières années. En particulier, l'accord de Paris en 2015 prévoit de limiter l'élévation de la température moyenne de la planète « nettement en dessous de 2 °C par rapport aux niveaux préindustriels ». Respecter l'accord de Paris revient donc à se donner un niveau de concentration maximum de GES à ne pas dépasser : autrement dit, cela définit l'existence d'un budget carbone au niveau mondial, correspondant à la quantité maximale de GES d'origine anthropique pouvant être émise dans le futur.

Or, en l'état, les tendances d'émissions de GES sont très loin de respecter les objectifs fixés au niveau mondial et le budget carbone est déjà en épuisement rapide. D'après le GIEC, il restait au 1er janvier 2018 un budget carbone de 570GtCO2eq (respectivement 1 170 GtCO2eq) pour une probabilité de 66 % de parvenir à limiter le réchauffement planétaire à + 1,5 °C (respectivement + 2 °C). La poursuite des tendances actuelles, conduirait à dépasser ce budget carbone dès l'année 2032 (respectivement 2045), sous l'hypothèse d'une croissance en volume du PIB mondial de 2,5 % par an en moyenne sur 2020-2050 (mais avec un ralentissement progressif sur la période) et d'un recul de l'intensité carbone de l'ordre de 1,1 % par an en phase avec les récentes évolutions. On se placerait alors dans un scénario de température largement au-delà des + 2 °C prévus par l'accord de Paris (figure 3), avec par conséquent des risques très importants de dommages abrupts et irréversibles sur les sociétés humaines et les milieux naturels. Les trajectoires actuelles d'émissions ne sont donc pas soutenables sur le plan climatique, au sens où elles sont incompatibles avec le respect des engagements internationaux. Respecter les cibles supposerait de réduire massivement les émissions de GES par rapport aux tendances actuelles. À titre d'exemple, il faudrait réduire les émissions mondiales de GES de plus de 5 % par an pour parvenir à la neutralité carbone en 2050. En dehors de périodes très exceptionnelles et probablement limitées dans le temps comme celle de la crise de la Covid-19 et la chute du PIB mondial qu'elle entraîne, ce seuil est hors de portée sans une transformation majeure des modes de production et des habitudes de consommation. Ceci pose fondamentalement la question de la soutenabilité de notre modèle de croissance sur le plan climatique notamment.

base 100 en 1990
250
200
150
100
1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050
Observé — Tendanciel — Objectif +1,5°C — Objectif +2°C

Figure 3 - Scénarios d'émissions mondiales de gaz à effet de serre

Lecture : en 2050, le prolongement des tendances actuelles impliquerait des émissions à hauteur de 237 % du niveau de 1990, tandis que le respect de la cible de +2 °C conduirait à des émissions en 2050 à hauteur de 91 % du même niveau. Source : base de données Edgar ; calcul des auteurs.

2. Evaluation de la soutenabilité climatique : détour par la modélisation

Évaluer la soutenabilité de la trajectoire de développement économique consiste fondamentalement à se projeter dans l'avenir à moyen et long terme et exige, en conséquence, un recours à la modélisation. Il existe de nombreux modèles, nationaux comme internationaux, qui intègrent, de manière périphérique ou plus centrale, les préoccupations environnementales. Ils peuvent comprendre plusieurs centaines d'équations et ont tous leur utilité pour simuler, à court ou moyen terme, l'impact de mesures ciblées ou sectorielles. Leur sophistication a aussi un coût, qui est de rendre plus difficilement identifiables les hypothèses qui déterminent fondamentalement leurs résultats. Comme l'indiquait Robert Solow en introduction de sa « Contribution à la théorie de la croissance économique » (Solow, 1956), la force d'un modèle économique réside parfois moins dans sa complexité que dans sa capacité à formuler des hypothèses centrales offrant le bon compromis entre simplicité et réalisme. C'est sur ces hypothèses centrales, qui constituent le cœur du réacteur des modèles intégrés économie-climat, que nous nous concentrons ici (Figure 4).

Nous présentons donc ici une extension du modèle de Solow, adapté pour faire du taux d'épargne le résultat d'un choix optimal (cf modèle de Ramsey-Cass-Koopmans) et pour intégrer les dommages climatiques causées par les émissions de GES.

Production

Bien-être

Dépense climat

Consommation

Décarbonation

COP21

Réchauffement
climatique

Figure 4 : les principaux déterminants du modèle

♦ Production et émissions de gaz à effet de serre

Dans cet esprit de focalisation sur les facteurs critiques, nous considérons ici un modèle macroéconomique stylisé d'une économie avec capital et travail comme facteurs de production et une fonction de production à rendements d'échelle constants de type Cobb-Douglas : $Y_t = K_t^{\alpha}(A_t * L_t)^{1-\alpha}$. La quantité de travail L_t , qui s'identifie ici à la population, et le progrès technique A_t sont exogènes et croissent suivant une loi exponentielle respectivement aux taux n et γ^2 . Pour faciliter l'analyse, nous travaillons directement par unité de travail efficace en utilisant les lettres minuscules. Il ressort donc une nouvelle équation de production de la forme suivante :

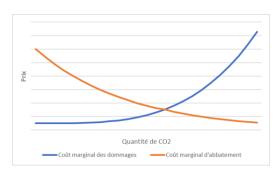
$$y_t = \frac{Y_t}{A_t L_t} = \left(\frac{K_t}{A_t L_t}\right)^{\alpha} = k_t^{\alpha} = f(k_t)$$
 (1)

Le modèle intègre la dimension climatique à travers essentiellement deux éléments :

- (i) les activités économiques sont à l'origine d'émissions de gaz à effet de serre $E_t = \sigma_t Y_t$, où σ_t représente l'intensité carbone de l'économie correspondant à la quantité d'émission nécessaire pour produire l'équivalent d'un euro;
- (ii) des dépenses climat D_t , en faveur des technologies de décarbonation, peuvent être mises en œuvre par les agents économiques chaque année pour réduire l'intensité carbone, et donc limiter la croissance des émissions. Ces dépenses viennent réduire d'autant la consommation. Nous définissons ainsi $\Lambda_t = D_t/Y_t$ comme la part des dépenses climat dans le PIB, désigné dans l'étude par l'effort climat. La loi d'évolution de l'intensité carbone en fonction de l'effort climat est décrite ci-dessous dans une souspartie dédiée.

-

² Pour le modèle mondial, le taux de croissance annuel de la population diminue progressivement au cours du temps, pour arriver à une population mondiale d'environ 10Md d'habitants en 2050.


♦ Fonction de dommages et optimum climatique


Une des questions centrales consiste à évaluer la cible optimale d'émissions de GES. Les travaux pionniers de Nordhaus (1977), qui construit un modèle dynamique intégré de changement climatique et de l'économie (DICE pour *Dynamic Integrated model of Climate and Economy*), donnent des premiers éléments de réponse. En exprimant précisément la fonction de dommages en fonction de la température mondiale, ce type de modèle permet de calculer une trajectoire optimale, économique comme climatique. La cible d'émissions de gaz à effet de serre apparaît comme endogène à l'ensemble du modèle : il s'agit de l'approche coût-bénéfices (Figure 5a).

Si cette approche est naturelle d'un point de vue théorique, elle est particulièrement difficile à mettre en œuvre en pratique en raison de la très grande difficulté de valorisation monétaire des dommages climatiques. Il existe des coûts marchands (comme l'érosion de la productivité, la destruction de capital productif), mais également des coûts non marchands (comme la perte de biodiversité, la destruction d'écosystèmes) beaucoup plus difficiles à valoriser correctement. Plus encore, au-delà des dommages marginaux, se pose la question des risques de dommages graves et irréversibles, voire d'effondrement, qui ne sont généralement pas pris en compte du tout. Il en résulte une sous-estimation des dommages et, partant, des recommandations de politique économique qui s'accommodent du réchauffement climatique au-delà du raisonnable. Il en est ainsi de la fonction de dommages du modèle DICE, certes quadratique en fonction de la température, mais avec un coefficient tellement faible que l'optimum climatique est atteint pour une température de l'ordre de +4°C par rapport aux niveaux préindustriels, ce qui semble particulièrement optimiste, notamment au regard des derniers travaux du GIEC.

Sur ce plan, il y a un avant et un après 2015. Les travaux du GIEC ont permis de former un consensus scientifique sur les conséquences du réchauffement climatique et la nécessité de contenir de réchauffement depuis l'ère préindustrielle à 2°C, ce qui implique un plafond d'émissions à un certain horizon temporel. D'autres modèles considèrent donc comme donnés les objectifs de limitation de la hausse de température fixés par la communauté internationale (GIEC, accords de Paris...), et donc de réduction des émissions de GES. C'est notamment le cas, par nécessité, des modèles nationaux, les équilibres climatiques n'ayant de sens qu'au niveau mondial. Cette seconde catégorie de modèles est utilisée pour évaluer les trajectoires nationales et/ou mondiales. Le principe consiste à se fixer un objectif tutélaire exogène de réduction des émissions, puis de chiffrer la trajectoire de dépenses nécessaire pour atteindre cette cible. La fonction de dommage est donc définie implicitement par la cible climatique : avant d'atteindre la cible les dommages sont nuls ou faiblement croissants ; ils deviennent infinis ou échappent à toute quantification si la cible est dépassée. Nous parlerons alors d'approche coût-efficacité (Figure 5b).

Figures 5a et 5b : Approches coût-bénéfices et coût-efficacité

Lecture: La figure 5a montre la forme des courbes de coût marginal des dommages (croissant avec la quantité de CO2 émis) et d'abattement (décroissant avec la quantité de CO2 émis). La figure 5b montre une nouvelle forme pour la courbe de coût des dommages, qui devient infini à partir d'un certain seuil d'émission, correspondant à l'épuisement du budget carbone.

Pour la France, la cible climatique est aujourd'hui définie par la loi énergie-climat de 2019. Il s'agit d'un objectif de zéro émissions nettes (ZEN), i.e. la neutralité carbone, d'ici 2050, à obtenir en combinant une division des émissions par un facteur d'environ F=7 par rapport au niveau de 1990 et un doublement des capacités du puits carbone³, le faisant passer de 40 à 80 millions de tonnes de CO2 équivalent par an. Cet objectif succède à un premier objectif de division des émissions par un facteur F=4 à l'horizon 2050 en comparaison des émissions de 1990, défini par la loi de transition énergétique de 2015.

♦ Technologies d'atténuation et décarbonation de l'économie

La difficile question de la valorisation des dommages étant écartée par la définition *ex ante* d'un objectif de réduction d'émission, c'est bien **l'évolution des technologies de décarbonation de l'économie qui devient une hypothèse centrale du modèle**. Quel est le coût des technologies de réduction des émissions de GES, dit « coût d'abattement », qu'il va falloir mettre en œuvre ? Autrement dit, quelle est loi d'évolution, d'ici à 2050, de l'intensité carbone de l'économie en fonction des dépenses climat ?

Il existe un large consensus autour de l'idée que plus l'intensité carbone est faible, plus la réduction des émissions est coûteuse, tout simplement parce que les techniques de décarbonation les moins coûteuses sont mises en œuvre les premières. Ceci suppose que le taux de décroissance de l'intensité carbone va dépendre positivement de l'effort climat. On peut alors définir une forme simplifiée $\sigma_{t+1} = \sigma_t - \varepsilon \sigma_t \Lambda_t$, qui implique donc que pour un même niveau d'effort climat, l'intensité carbone diminue de moins en moins au cours du temps. Cette relation entre taux de croissance de l'intensité carbone et dépense climat n'étant pas forcément linéaire, nous allons traiter le cas général suivant :

$$\sigma_{t+1} = \sigma_t - \varepsilon * g(\sigma_t) * \Lambda_t \tag{2}$$

où ε est un paramètre liant l'évolution de l'intensité carbone à l'effort climat et g est une fonction croissante que l'on prendra égale à $g(\sigma_t) = \sigma_t^\theta$ pour la résolution du modèle. θ représente donc ici le degré de non-linéarité ($\theta=1$ représente le cas linéaire décrit plus haut). Disposer d'évaluations aussi fiables que possible des paramètres ε et θ nous permettra de renforcer la robustesse des résultats, notamment concernant l'évaluation d'une valeur sociale du carbone. En pratique, deux approches sont théoriquement possibles pour une telle évaluation. La première est macroéconomique et économétrique. Elle consisterait à procéder à des régressions inter-temporelles et inter-pays. Malheureusement, à ce jour, l'absence de données suffisantes sur la dépense climat ne le permet pas. Cela souligne à quel point

³ Réservoir qui stocke, par un mécanisme naturel ou artificiel, le carbone atmosphérique. Les puits carbone sont essentiellement les océans, les forêts ainsi que les projets de capture et de séquestration du CO2.

il serait utile que des progrès soient réalisés très vite dans l'établissement d'une comptabilité économique environnementale. Le cadre existe, il s'agit du System of Environnemental Economic Accounting (SEEA), ensemble de normes définies par la commission statistique de l'ONU et calqué dans son architecture sur le SNA (System of National Accounts) qui régit les comptabilités publiques des nations.

Au-delà de la disponibilité des données, il n'est pas nécessairement très robuste de faire des extrapolations hors échantillon, à savoir de fonder notre estimation des paramètres sur une régression réalisée dans les conditions actuelles correspondant à un certain niveau d'émission et aux technologies utilisées aujourd'hui, puis d'appliquer la valeur de ces paramètres sur toute la période jusqu'en 2050, à un moment où la neutralité carbone devra être atteinte et le paysage des technologies de décarbonation aura considérablement évolué. Ainsi, pour éviter ce problème, nous préférons évaluer nos paramètres en dressant la liste des technologies connues aujourd'hui et en les plaçant par ordre de déploiement vraisemblable.

L'autre approche est ainsi microéconomique et paramétrique à partir des courbes de coût d'abattement moyen des différentes technologies de décarbonation de l'économie. Comme son nom l'indique, cette méthode consiste à calculer le rapport coût/efficacité de chaque technologie (l'isolation des logements, l'éolien, la voiture à hydrogène, etc...), c'est à dire le rapport entre l'ensemble des coûts de mise en œuvre et le total des émissions évitées. Cette méthode est mise en œuvre en France par le Ministère de l'Environnement à l'aide du modèle TITAN (anciennement D-CAM), qui classe les technologies par ordre croissant de coût et en déduit une courbe mettant en regard coût unitaire et potentiel total d'abattement (figure 6). La partie droite du graphique reprend, en vertical, la courbe d'abattement marginal de la France; la partie gauche le déploiement dans le temps des technologies.

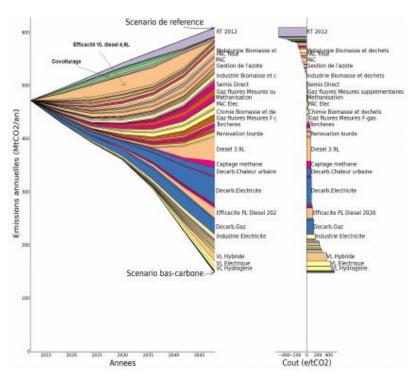


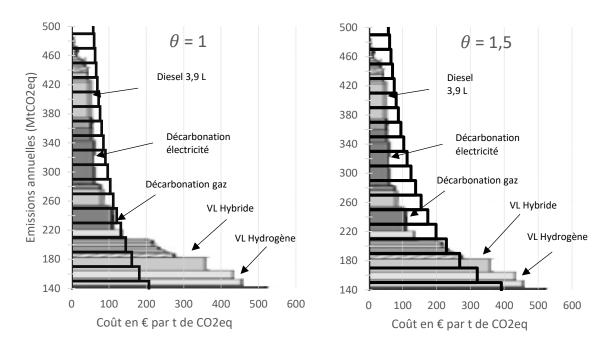
Figure 6 : Courbe dynamique de coût d'abattement moyen

Source: CGDD

Les figures 7a et 7b comparent les coûts moyens d'abattement issus des études technico-économiques avec ceux obtenus par notre hypothèse d'évolution de l'intensité carbone (ci-après noté M-CAM) pour les deux cas $\theta = 1$ ou 1,5.

Pour tracer cette courbe M-CAM résultant de notre équation macro-technologique, on fait le raisonnement suivant.

- Nous nous plaçons dans un scénario à PIB constant et nous faisons l'hypothèse ici que la dépense climat est constante en point de PIB : $\Lambda_t = \Lambda_{eq}$. L'intensité carbone suit la loi d'évolution suivante : $\sigma_{t+1} = \sigma_t \varepsilon * \Lambda_{eq} \sigma_t^{\theta}$.
- Supposons qu'un effort additionnel de η point de PIB soit engagé une année t_0 et notons $\tilde{\sigma}_s$ et \tilde{E}_s la nouvelle trajectoire carbone. Alors la première année, l'intensité carbone se retrouve diminuée de la quantité suivante : $\tilde{\sigma}_{t_0+1} = \sigma_{t_0+1} \varepsilon \eta \sigma_{t_0}^{\theta}$. De proche en proche, cette quantité va venir impacter les valeurs successives de $\tilde{\sigma}_s$, mais on peut considérer qu'à partir de la seconde itération, ce terme devient négligeable (car $\sigma_t < 1$, $\theta > 1$ et $\eta \ll 1$), si bien qu'on peut approximer notre nouvelle trajectoire de l'intensité carbone, par : $\tilde{\sigma}_s = \sigma_s \varepsilon \eta \sigma_{t_0}^{\theta}$. On obtient donc, le PIB étant supposée constant : $E_s \tilde{E}_s = \varepsilon \eta \sigma_{t_0}^{\theta} Y_{t_0}$
- Le coût moyen d'abattement de cet investissement η , que nous noterons MCAM (macro-CAM), est égal par définition à la valeur de cet investissement divisée par la somme des émissions futures évitées, amorti à un taux δ correspondant à la dépréciation de l'investissement climat, soit : $MCAM = \eta Y_{t_0} / \int_{t_0}^{+\infty} (E_s \tilde{E}_s) e^{-\delta s} ds$.


$$\operatorname{Or}: \int_{t_0}^{+\infty} (E_s - \tilde{E}_s) e^{-\delta s} \, ds = \varepsilon \eta \sigma_{t_0}^{\theta} Y_{t_0} \int_{t_0}^{+\infty} e^{-\delta s} \, ds = \varepsilon \eta \sigma_{t_0}^{\theta} Y_{t_0} e^{-\delta t_0} * \frac{1}{\delta}$$

$$\operatorname{D}' \circ \mathring{\mathbf{u}}:: MCAM(E) = \frac{\delta e^{\delta t_0}}{\varepsilon \sigma_{t_0}^{\theta}} = \frac{\delta e^{\delta t_0} Y_{t_0}^{\theta}}{\varepsilon} * \frac{1}{E^{\theta}}.$$

• On retrouve bien une forme de la courbe d'abattement MCAM en $\frac{1}{E^{\theta}}$, correspondant à la figure 7.

Nous testons ici la loi d'évolution de l'intensité carbone pour une valeur de $\varepsilon\sigma_{t_0}^{\theta}$ fixée à 1,5. Cette valeur se base sur une évaluation du ratio entre taux de décroissance de l'intensité carbone et dépense climat au cours de la dernière décennie : l'intensité carbone s'est en effet réduite de 2,6% par an en moyenne au cours des dix dernières années, tandis que la dépense climat moyenne entre 2011 et 2018 s'établit autour de 1,8%. Ce test tend à valider tant la nature de l'équation d'atténuation, que la valeur du paramètre ε . Par exemple, les technologies prévues par la SNBC dans la zone d'émissions annuelles autour de 150 MtCO2eq (telles que les véhicules légers à hydrogène) ont un coût moyen d'abattement de 450 euros, proche du coût moyen macroéconomique pour $\theta=1$ (370 euros). De manière générale, notre hypothèse d'évolution est cohérente avec les évaluations microéconomiques disponibles, ce qui nous conforte sur la robustesse des résultats de cette étude.

Figures 7a et 7b : Comparaison des courbes d'abattement moyen technico-économique (D-CAM) et macroéconomique (M-CAM) pour les cas $\theta = 1$ et $\theta = 1, 5$.

Lecture: les barres pleines représentent les coûts moyens d'abattement des différentes technologies D-CAM calculés par le CGDD; les barres creuses retracent le coût moyen d'abattement correspondant à notre équation macro-technologique $\frac{\dot{\sigma}_t}{\sigma_t} = -\varepsilon \sigma_t^{\theta-1} \Lambda_t$ (courbe M-CAM pour Macro CAM).

Source: CGDD 2018 pour D-CAM, calculs des auteurs.

Il est néanmoins clair que, dans une logique de mise en place d'une comptabilité économique environnementale, l'estimation du paramètre ε doit être au cœur des attentions et faire l'objet d'une actualisation permanente sur la base d'une confrontation avec la progression des connaissances sur les technologies de décarbonation et de leur rapport coût-efficacité. En effet, la valeur du paramètre ε dépend de la composition de cet effort entre les différents secteurs et de la bonne mise en œuvre des politiques publiques correspondantes à ces dépenses. Ces politiques recouvrent des réalités très différentes selon l'outil choisi et le secteur concerné (efficacité énergétique des bâtiments et des transports, énergies renouvelables, infrastructures durables, nucléaire, procédés industriels...). Ainsi, une évaluation différenciée du paramètre ε pour chacun des secteurs constitue un prolongement naturel de ces travaux.

Nous retiendrons par la suite comme scénario central la valeur de θ =1, qui semble une hypothèse raisonnablement crédible et permet de dégager des règles simples de soutenabilité, et une variante avec une valeur de θ = 1,5, qui épouse encore d'avantage le profil fortement croissant du rapport coûtefficacité des technologies de décarbonation potentiellement déployables d'ici 2050.

Certaines études supposent par ailleurs la découverte d'une technologie dite «de dernier ressort» (ou « backstop »), permettant d'absorber les gaz à effet de serre, déployable à grande échelle, et constituant pour partie une alternative à la réduction des émissions. De telles technologies, notamment la bioénergie

avec captage et stockage du carbone (BECSC), sont actuellement expérimentées. Elles visent à générer des émissions dites négatives de CO2 en interceptant le rejet de CO2 dans l'atmosphère et en le redirigeant vers des sites de stockage géologique. Néanmoins, le chemin à parcourir pour l'utilisation généralisée d'une telle technologie reste très long, ce qui rend cette possibilité plutôt incertaine à un horizon de moyen terme. Par ailleurs, il n'y a pas de consensus sur le coût d'une telle technologie, les estimations dans la littérature allant d'une centaine à plusieurs milliers d'euros la tonne de CO2, ni sur la possibilité d'un déploiement à grande échelle. Compte tenu de notre horizon d'étude à 2050 relativement proche eu égard au temps d'industrialisation d'une telle technologie, nous formons l'hypothèse que son utilisation restera marginale.

Optimalité et équité intergénérationnelle

Une fois la cible climatique définie, il s'agit de déterminer le chemin vers cette cible, en tenant compte de l'équité intergénérationnelle de la trajectoire de dépenses climat permettant la réduction des émissions. Quelles générations devront payer pour le climat? Préfère-t-on faire la totalité de l'ajustement dès maintenant, quitte à baisser notre consommation par tête aujourd'hui, puis retomber sur une trajectoire croissante pour la suite, ou souhaite-t-on lisser l'ajustement sur la première décennie par exemple, si on a une préférence pour le présent plus importante?

Il est d'usage, dans les modèles, de formaliser cette question en se plaçant dans le cadre posé par Hotelling (1931) sur l'analyse économique des ressources épuisables. La règle d'Hotelling stipule que la rente tirée d'une ressource épuisable doit évoluer de manière exponentielle, à un taux égal au taux d'intérêt, jusqu'à épuisement de la ressource. Le taux d'intérêt R est quant à lui déterminé par l'équation canonique d'Euler⁴, qui résulte d'un programme d'optimisation à la Ramsey du flux d'utilité présent et futur de la consommation $\sum_{t=0}^T \beta^t u(c_t)$, où c_t est la consommation par unité de travail efficace, u une fonction concave et $\beta=1/(1+\rho)$ un facteur d'actualisation qui traduit la préférence pour le présent. Pour fixer les idées, avec un taux de préférence de 2%, un progrès technique de 1%, un taux de croissance de la population de 1% et une élasticité de l'utilité de la consommation de 0,5, l'équation canonique d'Euler aboutit à un taux R de 5%.

Cette approche débouche sur deux écueils. Tout d'abord, si les budgets carbone alloués à chaque pays en vertu de l'accord de Paris s'apparentent à une ressource épuisable, le fait qu'il existe des technologies de décarbonation, revient à donner la possibilité aux pouvoirs publics d'« étendre » en quelque sorte la ressource. La règle d'Hotelling ne s'applique donc pas directement, mais cet écueil se lève facilement en intégrant au programme optimal la variable de contrôle complémentaire que constitue l'action pour le climat. Le second écueil est une forme de contradiction entre la méthode et l'objectif. L'objectif, depuis le rapport Brundtland (1987), est de promouvoir le développement durable, défini comme un mode de développement qui répond aux besoins des générations présentes sans compromettre la capacité des générations futures de répondre aux leurs. Il est paradoxal dans ce contexte de définir le programme économique correspondant comme la maximisation de la satisfaction intertemporelle des générations actuelles.

_

 $^{^4}$ $R = \rho + n + \tau \gamma$ où ρ est le taux de préférence pour le présent, n le taux de croissance de la population γ celui du progrès technique, tandis que τ est l'inverse de l'élasticité de la fonction d'utilité.

La doctrine Brundtland correspond plutôt à l'idée, formalisée par Atkinson et alii (2012), qu'une trajectoire soutenable est une trajectoire où le bien-être ne doit pas décroitre. Si on assimile la satisfaction monétaire de la génération t à $V_t = [C_t/L_t]/(1+\rho)^t$, alors, comme à l'état stationnaire C_t/L_t croit au taux γ , $V_t = [C_0/L_0] * [(1+\gamma)/(1+\rho)]^t$ est croissant dès lors que ρ est inférieur à γ , et décroissant dans le cas contraire. Plus les générations actuelles sont impatientes et plus le progrès technique est faible, plus les générations futures sont défavorisées. Si les pouvoirs publics visent un développement durable à la Brundtland, ils peuvent l'exprimer en fixant dans l'utilité collective un paramètre $\rho = \gamma$. Une manière relativement simple d'exprimer cette idée est de définir le programme des pouvoirs publics comme la détermination du niveau des variables de contrôle (dépenses climat Λ_t et taux d'épargne s_t) permettant de maximiser dans une logique Rawlsienne⁵ le bien-être monétaire, assimilé à la consommation par tête actualisée de la génération la moins bien lotie. En termes analytiques, il s'agit de maximiser l'utilité intertemporelle définie par : $\max_{\Lambda_t, s_t} \{\min_t [C_t/L_t]/(1+\rho)^t\}$, où ρ est un paramètre prenant en compte les effets sur le bien-être monétaire ressenti du seul passage du temps (Easterlin, 1974).

Lorsque ce paramètre est égal à la croissance du progrès technique et que le taux d'épargne est constant sur la période, alors ce programme d'optimisation maximisation conduit également à un ratio Λ_t de dépenses climat sur le PIB constant sur la période. Dans ce cas précis, le chemin optimal vers la cible épouse une notion intuitive d'équité générationnelle, selon laquelle **l'effort demandé à chaque date suit une répartition uniforme au cours du temps.** Il s'agirait donc de réaliser l'ajustement dès la période initiale, ou à tout le moins le plus rapidement possible, puis que toutes les générations aient ensuite une dépense climat constante en points de PIB.

Une autre façon de comprendre cette règle est de se placer dans un scénario qui ne préjuge pas d'un progrès technique non encore avéré pour financer la lutte contre le réchauffement climatique. En termes formels, il s'agit de maximiser la consommation par tête de la génération la moins bien lotie, sous l'hypothèse $\gamma=0$. Fixer $\rho=\gamma$ en toute circonstances, c'est protéger les générations futures contre le risque que la croissance future ne soit pas au rendez-vous : c'est parce qu'on n'est pas certain que nos enfants seront plus riches que nous qu'on ne peut pas se permettre de repousser l'ajustement.

♦ Soutenabilité climatique et trajectoires optimales

Avec les hypothèses décrites ci-dessus (cible d'émission exogène, loi d'évolution de l'intensité carbone et critère d'équité intergénérationnelle), nous sommes outillés pour examiner la question de la soutenabilité sous ses différents aspects, climatique comme économique. La dernière partie reviendra sur un cadre plus général de la soutenabilité, tandis que cette partie et la suivante s'attacheront au concept de soutenabilité climatique de l'économie que nous définirons selon une approche équité/efficacité de la manière suivante. Une trajectoire soutenable du point de vue du climat est une trajectoire qui satisfait aux deux conditions suivantes :

• le respect, à horizon 2050, d'un objectif plafond d'émissions annuelles de GES ;

_

⁵ Heal, G.M. (1998), , « Valuing the future : economic theory and sustainability », Columbia University Press, USA discute les tenants et les aboutissants d'une telle démarche.

• une répartition dans le temps de l'effort pour le climat qui préserve les générations futures

On qualifiera ces trajectoires de soutenables optimalement, ou plus synthétiquement de trajectoires optimales, lorsque ces deux conditions sont saturées.

La notion de soutenabilité développée ici se distingue de celle de Arrow, Dasgupta et alii (2012) au sens où nous parlons de trajectoire soutenable - ou à bien-être soutenu - et non de soutenabilité au sens général de la littérature économique. Autrement dit, il s'agit plus de comprendre si le chemin que nous sommes en train d'emprunter devrait conduire à une perte de bien-être pour les générations futures, plutôt que de se demander s'il existe encore un chemin permettant que le bien-être – lié à la consommation par unité de travail efficace selon la fonction d'utilité retenue – ne baisse pas. La notion de trajectoire soutenable nous semble ainsi mieux correspondre aux questions de politiques économiques et climatiques posées à nos générations.

3. Résultats : des tendances carbone incompatibles avec les engagements climatiques pour la France et le monde

Trajectoires de réduction des émissions de CO2 en France

Nous décrivons pour commencer les résultats correspondant au cas particulier suivant, qui nous semble le plus robuste et cohérent :

- $\theta = 1$ sur les technologies de décarbonation, c'est-à-dire, rappelons-le, où les dépenses climat atténuent l'intensité carbone de la production selon la relation $E_{t+1}/Y_{t+1} = E_t/Y_t (1 \varepsilon \Lambda_t)$; cette hypothèse prend en compte l'idée générale d'une baisse de l'intensité carbone de plus en plus difficile sans rentrer dans le détail de la spécification;
- le taux d'épargne est supposé constant dans le temps, en phase avec les évolutions historiques récentes.
- l'effort climat est lui aussi supposé constant en point de PIB, ce qui est cohérent avec les objectifs d'une vraie prise en compte des générations futures sans myopie court-termiste

Dans le cas particulier décrit ci-dessus, la trajectoire optimale de réduction des émissions de GES est retracée sur la figure 8 pour les objectifs facteurs 4 et 7 qui ont été successivement définis par la loi. Le graphique trace également la trajectoire tendancielle établie sous l'hypothèse d'une croissance de 1,5% l'an et d'une baisse de l'intensité carbone correspondant au maintien de l'effort climat actuel et la trajectoire AMC telle que notifiée à la Commission européenne (scénario avec mesures complémentaires envisagées mais non encore votées). Les cumuls des émissions par sous période sont également fournis en niveau dans la figure 9. On précise que les émissions dont il s'agit sont dans tous les cas les émissions sur le territoire national, encore appelées « inventaire national ». Ces émissions sont celles qui font l'objet d'engagements internationaux et c'est à ce titre qu'elles sont retenues dans cet article, mais elles sont à distinguer de la notion d'« empreinte carbone », qui mesure les émissions liées à notre mode de vie, incluant donc les émissions de gaz à effets de serre associées à nos importations.

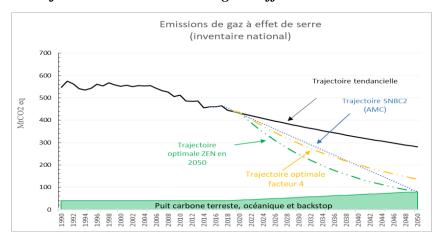


Figure 8 - Trajectoires de réduction des gaz à effet de serre en France

Lecture : Sous l'hypothèse de réduction d'un facteur 4 des émissions à l'horizon de 2050, les émissions de 2030 devraient représenter 53 % de celles de 1990. A la même date, ce pourcentage devrait être de 45 % pour une cible de zéro émissions nettes en 2050 alors que la trajectoire tendancielle conduit à prévoir un ratio de 68 %.

Source: CITEPA, calculs des auteurs

Les réalisations passées et la trajectoire tendancielle apparaissent nettement au-dessus des deux trajectoires optimales facteur 4 et 7 et des budgets prévus par les SNBC. Le premier budget de la SNBC-1 a été légèrement dépassé (458MtCO2 contre 440MtCO2 programmé), et surtout le scénario tendanciel divergerait ensuite nettement des trajectoires programmées : 2030 se situerait à 68 % du niveau de 1990 au lieu des 57 % de la SNBC-2 et 2050 serait 3,5 fois au-dessus de l'objectif de neutralité carbone (281 MtCO2eq contre 80 MtCO2eq programmés). Par ailleurs, le scénario AMC notifié à la Commission européenne respecterait l'objectif de neutralité carbone, mais avec un rythme quasi-linéaire, et donc différent du scénario optimal d'équité intergénérationnelle défini précédemment. Le scénario quasi-linéaire correspond à des préférences collectives accordant une prise en compte moins importante du bien-être des générations futures (cf. cas général de la résolution analytique présenté partie 4).

⁶Si l'on prend comme année de référence 2018 (GES=445MtC02eq) et comme objectif un facteur 4 par rapport à 1990, soit 140 MtCO2eq; F=3,3.

Figure 9 : Budgets carbone programmés, tendanciels et optimaux par sous-période

Période	Emissions programmées (stratégie bas carbone)	Emissions effectives et tendancielles	Emissions optimales (facteur 4 en 2050).	Emissions optimales (neutralité en 2050)
2015-2018 (1er budget*)	440	458	458	458
2019-2023 (2 ^{ème} budget**)	422	427	417	408
2024-2028 (3 ^{ème} budget**)	359	397	346	311
2029-2033 (4 ^{ème} budget**)	300	369	285	234
2034-2038 (AMC***)	244	343	235	177
2039-2043 (AMC***)	185	320	194	133
2044-2048 (AMC***)	127	298	160	101
2050 (AMC***)	80	281	137	80

SNBC2015 **SNBC2019 ***Projection. gouv. 2019 Avec Mesures Complémentaires

Source: Gouvernement, calculs des auteurs

Cette règle d'apparence comptable ne l'est pas entièrement : il s'agit bien d'aller d'un point A à un point B dans un temps T, mais avec un rythme de progression découlant de la règle d'équité définie plus haut, constante en pourcentage et donc, en niveau, plus rapide au début et plus lente à la fin que la ligne droite. Elle est néanmoins très utile pour fixer les idées et ordres de grandeur puisqu'elle nous inique de combien il faudrait immédiatement et durablement baisser les émissions pour revenir sur une trajectoire soutenable (de manière analogue aux indicateurs de soutenabilité en finances publiques, comme le \underline{tax} \underline{gap}).

Règle n°1: une trajectoire soutenable est une trajectoire où les émissions de GES se réduisent au moins au taux $\Gamma = F^{1/T} - 1$, où F est le facteur cible de réduction des émissions de CO2 et T le nombre d'années jusqu'à l'objectif

Prendre la variante $\theta=1,5$ sur les technologies de décarbonation supposerait une répartition de l'effort légèrement modifiée (Figure 10). Dans ce cas, la règle qu'on vient d'énoncer ne s'applique pas, le taux de réduction n'est pas constant, et il faut avoir recours aux simulations. Sans surprise néanmoins, le profil baissier de la nouvelle trajectoire est plus accusé en début de période.

Trajectoire tendancielle (théta = 1.5)

300

Efficacité calibrée sur theta = 1

Efficacité calibrée sur theta = 1,5

2018

Figure 10 : Trajectoires optimales vers la neutralité carbone en fonction de l'efficacité des technologies de décarbonation

Source: CITEPA, calculs des auteurs

On peut revenir ici sur les préconisations formulées dans le rapport Stiglitz pour la mesure de la soutenabilité (Stiglitz *et al.*, 2009). Il recommandait que les « aspects environnementaux de la soutenabilité fassent l'objet d'une batterie d'indicateurs physiques incluant un indicateur signalant clairement dans quelle mesure nous approchons de niveaux dangereux d'atteinte à l'environnement ». Le suivi des émissions de GES répond parfaitement à cet objectif pour ce qui concerne l'enjeu climatique et il véhicule un message qui apparaît ici **sans appel** : sur le plan climatique, notre trajectoire n'est pas soutenable. La France, qui n'est pourtant pas la plus mal placée parmi les pays les plus riches, émet dix fois plus de GES (439 MtCO2eq) qu'elle n'en absorbe (40MtCO2). Les projections montrent une tendance probablement baissière dans les années à venir, mais nettement insuffisante pour un retour à l'équilibre à l'horizon nécessaire. Au niveau mondial, la situation apparaît encore plus critique : la tendance est haussière alors qu'il faudrait diviser d'un facteur 5 les émissions à horizon 2050 pour contenir le réchauffement à 1,5°C.

♦ Des dépenses climat optimales entre 80 et 100Md€ annuels pour la France

Les trajectoires de retour à la neutralité carbone ayant été établies, notre modèle permet de chiffrer directement les coûts à payer pour les respecter. Pour la France, les dépenses annuelles associées à la trajectoire optimale s'élèveraient à 4,5% du PIB, soit autour de 100 milliards d'euros⁷, ce qui représente

-

⁷ Très précisément 105 milliards en 2019, qui évolueraient ensuite comme le PIB en valeur.

un facteur deux et demi par rapport à la dépense actuelle évaluée, pour l'Etat, les entreprises et les ménages, à un peu plus de 40 milliards d'euros en 2018 (1,9% du PIB) par l'Institut de l'économie pour le climat (I4CE). Il s'agit d'un effort important, mais pas hors d'atteinte : rapporté à la population, le montant annuel est d'environ 1500€ contre 600€ actuellement. Dans un scénario plus optimiste sur l'efficacité des technologies de décarbonation ($\varepsilon = 2$), on obtiendrait des dépenses annuelles de l'ordre de 3,4% du PIB. Au total, cela suppose des dépenses climat additionnelles entre 40 et 60 Md€ chaque année par rapport à l'effort actuel. Ces estimations sont légèrement supérieures à celles de l'institut I4CE, qui estime que ces investissements annuels devraient être accrus de 15 à 18Md€ sur la période 2019-2023, et de 32 à 41Md€ sur la période 2024-2028. Elles sont également dans la fourchette haute de celle de la Commission européenne qui dans sa communication « Clean Planet for All » de 2018 estime entre 175 et 290Md€ les dépenses climat additionnelles dans l'UE28 pour réaliser la neutralité carbone, soit rapportée à la taille de l'économie française des dépenses climat additionnelles entre 25 et 42 Md€, mais ces scénarios prévoient l'arrivée progressive de technologies backstop sur la période.

Nous pouvons, là encore, mettre en évidence pour les économies à l'état stable une règle simple entre l'effort national carbone optimal et la croissance de l'économie. Rappelons en effet que dans ce cas et lorsque $\theta=1$, le taux constant Γ de réduction des émissions de GES est égal à $\varepsilon \Lambda-g$. Par suite, l'effort qui assure le respect de la cible est de $\Lambda=[g+\Gamma]/\varepsilon$. Cette relation nous enseigne par exemple que l'effort actuel de 1,9% du PIB, s'il n'était pas accentué dans les années à venir, ne serait compatible avec la neutralité carbone en 2050 qu'en cas de décroissance du PIB au rythme de 2,7% l'an⁸.

Règle n°2: une trajectoire soutenable est une trajectoire où la dépense pour le climat est au moins égale à $[g + \Gamma]/\varepsilon$ % du PIB, où g est le taux de croissance du PIB, Γ le taux-cible de réduction des émissions et ε un facteur d'efficacité des technologies de décarbonation fixé à 1,5 dans l'état des connaissances.

Ces résultats sont sensibles aux hypothèses retenues, notamment concernant les technologies de décarbonation, la règle de répartition intergénérationnelle de l'effort, mais aussi concernant le taux de croissance de l'économie considéré comme exogène dans ce modèle. Le tableau illustre la sensibilité du niveau de l'effort annuel nécessaire en fonction des scénarios de croissance et d'efficacité énergétique⁹. Ainsi, la dépense climat annuelle peut passer de l'ordre de 65 Mds d'euros de 2018 (croissance nulle et efficacité optimiste) à 165 Mds d'euros de 2018 (croissance de 1,5 % et efficacité prudente).

-

⁸ En effet, $g = \varepsilon \Lambda - \Gamma = 1.5 * 1.9\% - 5.6\% = -2.75\%$

 $^{^{9}}$ On teste les résultats pour une valeur de ε allant de 1 (scénario prudent) à 2 (scénario optimiste), le scénario dit «central» correspondant à $\varepsilon = 1,5$.

Figure 11 : Sensibilité des dépenses climat (en % du PIB et en Md€ de 2018) aux hypothèses de croissance et d'efficacité énergétique

Scénario de croissance Scénario d'efficacité énergétique	1,5%	1,0%	0,0%
Prudent	6,9 % (157Md€)	6,4 % (147Md€)	5,6 % (129Md€)
Central	4,5 % (104Md€)	4,3 % (97Md€)	3,7 % (85Md€)
Optimiste	3,4 % (77Md€)	3,2 % (72Md€)	2,8 % (63Md€)

Lecture : Pour un scénario prudent d'efficacité énergétique (ϵ =1) et un scénario de croissance nulle, la dépense climat optimale compatible avec l'objectif de neutralité carbone en 2050 est de 5,6% du PIB chaque année, soit 129 milliards d'euros de 2018.

Source : base de données CITEPA ; calcul des auteurs.

♦ Les résultats au niveau mondial

Au niveau mondial, la fixation d'une cible de neutralité carbone en 2050 permettrait le respect des accords de Paris, puisque le rapport spécial du GIEC sur les conséquences d'un réchauffement planétaire de 1,5 °C de 2018 montre que les émissions nettes anthropiques doivent tomber à zéro d'ici à 2050 pour un réchauffement global limité à 1,5 °C, ou d'ici à 2075 pour un réchauffement limité à 2 °C.

Nous pouvons donc également construire une trajectoire optimale de réductions des émissions au niveau mondial¹⁰ résultant de notre modèle, que l'on ajuste avec les données initiales correspondant aux valeurs mondiales. Contrairement à l'économie nationale, la croissance mondiale ne peut être considérée comme stationnaire : certaines économies, notamment la Chine, sont en rattrapage, tandis que d'autres poursuivent leur transition démographique. La croissance va donc se ralentir notablement à horizon 2050, de 0,5% dans notre modèle pour une moyenne de 2,5% sur l'ensemble de la période de projection 2020-2050. Au final, bien que le facteur de réduction des émissions pour atteindre la neutralité carbone soit légèrement inférieur à celui qui est requis pour la France, l'effort climat mondial serait du même ordre et même légèrement supérieur à celui à entreprendre nationalement, en points de PIB : notre modèle aboutit à un taux d'effort climat de 5,1% du PIB mondial, à comparer aux 4,5% au niveau national. En revanche, le changement d'échelle est beaucoup plus important, la dépense mondiale pour le climat étant en toute vraisemblance actuellement inférieure à 1% du PIB mondial¹¹.

♦ De l'inventaire à l'empreinte carbone

Les émissions de GES considérées dans ce texte sont les émissions générées par la production réalisée sur le territoire national, encore appelées « inventaire national ». C'est en ces termes que sont formulées

¹⁰Nous retenons une valeur moyenne de 10Gt de CO2 pour le puit carbone mondial, ce qui constitue un plancher. En effet le GIEC a estimé à entre 5 et 13 Gt les émissions absorbées annuellement par le puit terrestre, et à entre 6 et 12 celles absorbées par le puit océanique ; par ailleurs le changement d'affectation des terres (déforestation) a un impact évalué à entre 2 et 6 Gt. Cf « Les chiffres du climat 2018, CGDD, p. 14.

 $^{^{11}}$ 681 milliards de dollars en 2016 selon le rapport 2018 du Standing Committee on Finance (SCF) de la Conference of the Parties (COP) de la CCNUCC, pour un PIB mondial de 76 000 milliards de dollars soit 0,9%. A noter que ce chiffre est cohérent avec une valeur de \mathcal{E}_M =1,5 puisqu'elle implique une réduction de l'intensité carbone du 0,9x1,5=1,25 l'an ce qui est peu ou prou la tendance observée (-1,2% l'an au cours sur la période 2008-2018).

les stratégies nationales bas carbone car, depuis le protocole de Kyoto, c'est sur ces émissions que portent les engagements internationaux. Cette notion d'inventaire carbone se distingue d'une autre notion, l'empreinte carbone, qui mesure toutes les émissions liées à notre mode de vie. Le passage de l'inventaire à l'empreinte s'obtient en retirant les émissions de CO2 des biens et services destinés à l'exportation et en ajoutant ceux provenant des importations. L'empreinte carbone mesure ainsi l'ensemble des émissions liées à notre mode de vie. Il représente notre contribution nette totale à l'ensemble des émissions mondiales.

Au sein des émissions mondiales, l'empreinte carbone 2019 de la France est de 739 MtCO2eq, soit une part de 1,4%, pour un inventaire de 439 Mt; 431 Mt sont importées pour 131 Mt exportées, soit un bilan net carbone des échanges extérieurs de 300 Mt. Faible en 1990 (48 Mt CO2 soit 8% de l'empreinte carbone), le contenu en CO2 des échanges n'a cessé d'augmenter pour atteindre les 40% en 2019 (figure 9). Au total, alors que l'inventaire carbone est en baisse depuis le milieu des années 2000, l'empreinte est restée stable. Ceci signifie que le mode de vie des ménages en France n'a pas suffisamment changé et que les émissions produites sur le territoire ont été substituées progressivement par des émissions importées. Pour mesurer l'empreinte carbone, l'équation $E_t = \sigma_t * Y_t$ devient $E_t = \sigma_{t,FR} * (Y_t - X_t) + \sigma_{t,Monde} * M_t$, où X et M représentent respectivement les exportations et les importations françaises, supposées stables en pourcentage du PIB.

La distinction entre inventaire et empreinte est fondamentale pour analyser la question du réchauffement climatique. L'externalité du réchauffement présente une dimension mondiale, dans la mesure où, quelle que soit l'origine géographique de l'émission, elle impacte toute la planète. Ainsi, la résolution du problème passe par une baisse simultanée de l'inventaire carbone de tous les pays, ce qui implique nécessairement une baisse des empreintes carbones. C'est ainsi que pour la France, la stratégie nationale bas carbone vise non seulement la neutralité carbone à horizon 2050, mais aussi la réduction de l'empreinte carbone. Réduire l'inventaire sans réduire l'empreinte conduirait à délocaliser le problème sans le résoudre.

En projection, la poursuite des tendances tant nationale que mondiale aboutirait, sans surprise, à une stabilité de l'empreinte carbone malgré la baisse de 1% l'an des émissions nationales. Dans le cas d'un respect de la neutralité carbone à horizon 2050, tant nationalement qu'au niveau mondial, l'empreinte convergerait vers l'inventaire national. Nous représentons aussi les scénarios intermédiaires type où la France respecterait ses engagements mais serait seule à le faire (scénario « France ZEN + Monde BAU »), celui où le reste du monde respecterait ses engagements mais pas la France (scénario « France BAU + Monde ZEN ») et celui où tout le monde respecterait ses engagements (scénario « France ZEN + Monde ZEN »).

_

¹²Concrètement le scénario facteur 7 pour la France et BAU pour le monde.

¹³Neutralité carbone pour le monde et BAU pour la France.

GES "importés"

GES émis

GES émis

GES émis

Emissions (BAU)

Empreinte nationale

- - - France BAU+Monde ZEN

France ZEN+Monde BAU

France ZEN+Monde BAU

Figure 12 - Inventaire et empreinte carbone de la France

Sources: INSEE, CITEPA, calculs des auteurs

4. Extension au cas général : résolution analytique et stratégies d'épargne

On se place maintenant dans le cas plus général où le taux d'épargne est endogène, et où les préférences collectives peuvent accorder un poids plus ou moins important aux générations futures. Le temps est considéré ici comme une variable discrète $t=0,1,\ldots,T$.

♦ La dynamique d'accumulation du capital

A chaque période, l'économie produit un bien qui peut soit être consommé, soit être épargné et donc investi en capital physique. C_t désigne la quantité de bien consommée à chaque période t, tandis que s_t désigne le taux d'épargne, c'est-à-dire la part de la production annuelle qui est investie en capital physique. Le capital physique est durable mais il se déprécie à chaque période au taux $\delta \in [0; 1]$.

A chaque période, les dépenses climat viennent réduire d'autant la consommation totale, soit :

$$C_t = Y_t - s_t Y_t - D_t = (1 - s_t - \Lambda_t) Y_t$$

Nous supposons que $K_0 > 0$ est un stock exogène donné de capital initial. Le stock de capital total suit ensuite la loi d'évolution :

$$K_{t+1} = K_t + s_t Y_t - \delta K_t = K_t (1 - \delta) + Y_t (1 - \Lambda_t) - C_t$$

En passant en quantité par unité de travail efficace, on obtient :

$$(1+g)k_{t+1} = f(k_t) * (1 - \Lambda_t) - c_t + (1 - \delta)k_t$$
 (3)

où $1 + g = (1 + n)(1 + \gamma)$ et $c_t = C_t/A_tL_t$ la consommation par unité de travail efficace.

♦ *Le programme d'optimisation du planificateur social*

Nous supposons ici l'existence d'un planificateur social omniscient qui cherche à maximiser le bien-être social de l'économie. Une autre option serait de résoudre le problème via un équilibre concurrentiel décentralisé des différents agents économiques. On identifie ici le bien-être social à une forme d'utilité intertemporelle des ménages, en fonction de la consommation par unité de travail efficace et d'un facteur d'actualisation β à définir en fonction de l'équité intergénérationnelle souhaitée.

On a : $\beta = \frac{1}{1+\rho}$, où ρ désigne un paramètre prenant en compte les effets sur le bien-être monétaire ressenti du seul passage du temps.

Cette utilité intertemporelle peut donc prendre la forme suivante :

$$U = \sum_{t=0}^{T} \beta^{t} * u(c_{t}) = \sum_{t=0}^{T} \beta^{t} * \frac{(c_{t})^{1-\tau}}{1-\tau}$$
 (4)

où $\tau > 0$ détermine la courbure de la fonction d'utilité instantanée u définie par la forme suivante de type CRRA (« constant relative risk aversion »):

$$u(x) = \frac{x^{1-\tau}}{1-\tau}$$

et vérifie u' > 0 et u'' < 0.

u' > 0 implique que le consommateur préfère plus que moins.

u'' < 0 implique que l'utilité marginale décroît avec le niveau de consommation

Le paramètre τ désigne l'inverse de l'élasticité de substitution intertemporelle. Plus τ est grand, plus l'utilité marginale décroît vite lorsque c_t augmente, c'est-à-dire que l'agent a moins intérêt à dévier par rapport à un profil de consommation uniforme. Lorsque $\tau \to 0$, on arrive à une fonction d'utilité instantanée linéaire, tandis que le cas $\tau \to +\infty$ correspond au cas d'une élasticité de substitution intertemporelle nulle, c'est-à-dire un cas limite où l'utilité ne dépend que de la plus petite valeur, correspondant ainsi au cas particulier du maximin présenté en partie 2.

Pour simplifier, nous utilisons la notation vectorielle suivante : $\vec{X} = (X_0, ..., X_t)$, correspondant à une allocation sur l'horizon considéré de la quantité X.

Le planificateur doit déterminer à chaque période la consommation, le stock de capital, le niveau des dépenses climat et l'intensité carbone de l'économie. Autrement dit, il s'agit de déterminer une allocation de $\{\vec{c}, \vec{k}, \vec{\Lambda}, \vec{\sigma}\}$ pour maximiser (4) sous les contraintes (2) et (3). Formellement, nous avons donc deux variables d'état - le capital par unité de travail efficace \vec{k} et l'intensité de carbone de l'économie $\vec{\sigma}$ - et deux variables de contrôle - la consommation par unité de travail efficace \vec{c} et l'effort climat $\vec{\Lambda}$.

♦ Résolution du problème du planificateur

Posons $\vec{\mu} = (\mu_0, ..., \mu_T)$ et $\vec{\nu} = (\nu_0, ..., \nu_T)$ 2 séquences de multiplicateurs de Lagrange positifs ou nuls.

Pour trouver une allocation optimale, nous définissons la Lagrangien comme suit :

$$\mathcal{L}(\vec{c}, \vec{k}, \vec{\Lambda}, \vec{\sigma}, \vec{\mu}, \vec{v}) = \sum_{t=0}^{T} \{ \beta^{t} u(c_{t}) + \mu_{t}(f(k_{t})(1 - \Lambda_{t}) + (1 - \delta)k_{t} - c_{t} - (1 + g)k_{t+1}) + \nu_{t}(\sigma_{t}(1 - \varepsilon\sigma_{t}^{\theta - 1}\Lambda_{t}) - \sigma_{t+1}) \}$$

puis résolvons le problème min-max suivant : $\min_{\vec{\mu}, \vec{v}} \left(\max_{\vec{c}, \vec{k}, \vec{\Lambda}, \vec{\sigma}} \mathcal{L}(\vec{c}, \vec{k}, \vec{\Lambda}, \vec{\sigma}, \vec{\mu}, \vec{v}) \right)$

Il s'agit donc d'abord d'annuler les dérivées partielles du Lagrangien. Notre fonction d'utilité et les contraintes satisfont les conditions assurant que les conditions de second ordre sont respectées pour une allocation qui respecte les conditions nécessaires du premier ordre. Nous avons donc les **conditions du premier ordre** suivantes :

en
$$c_t$$
: $\beta^t u'(c_t) - \mu_t = 0$ pour tout $t = 0, 1, ..., T$ (5)
en k_t : $\mu_t[(1 - \delta) + f'(k_t) * (1 - \Lambda_t)] - \mu_{t-1}(1 + g) = 0$ pour tout $t = 1, 2, ..., T$ (6)
en Λ_t : $-\mu_t * f(k_t) + \nu_t \varepsilon * \sigma_t^\theta = 0$ pour tout $t = 0, 1, ..., T$ (7)
en σ_t : $-\nu_t * (1 - \varepsilon\theta\sigma_t^{\theta-1}\Lambda_t) + \nu_{t-1} = 0$ pour tout $t = 1, 2, ..., T$ (8)

Les **conditions terminales** sont la neutralité carbone en 2050 et le capital par unité de travail efficace sur un nouvel état stationnaire à T+1 (l'état stationnaire post-2050 est traité au paragraphe suivant):

$$k_{T+1} = k_{eq}$$

$$\sigma_{T+1}Y_{T+1} = E_{2051}$$

Posons r_t^g le taux d'intérêt net (vert) : $r_t^g = f'(k_t) * (1 - \Lambda_t) - \delta$

En combinant (5) and (6), on obtient :

$$u'(c_t) \left[\frac{1 + r_t^g}{1 + \rho} \right] = u'(c_{t-1}) * (1 + g) \text{ pour tout } t = 1, 2, ..., T$$

Soit en dérivant la fonction d'utilité instantanée :

$$(c_t)^{-\tau} \frac{1 + r_t^g}{1 + \rho} = (c_{t-1})^{-\tau} (1 + g)$$
 pour tout $t = 1, 2, ..., T$

On obtient ainsi la **règle d'Euler verte** :

$$c_{t} = c_{t-1} \left[\frac{1 + r_{t}^{g}}{(1+\rho)(1+g)} \right]^{1/\tau} = c_{t-1} \left[\frac{1 + r_{t}^{g}}{(1+\rho)(1+g)} \right]^{1/\tau} \quad \text{pour tout } t = 1, 2, \dots, T$$
 (9)

Lorsque $\tau \to +\infty$, la règle d'Euler verte devient : $c_t = c_{t-1}$, c'est-à-dire une consommation par unité de travail efficace constante dans le temps. On retombe bien sur l'approche maximin présentée dans la partie 2, avec $\rho = \gamma$ et une quantité $[C_t/L_t]/(1+\rho)^t$ constante

Une autre approche consiste à considérer non pas le taux pur de préférence pour le présent de l'approche utilitarienne, mais le taux auquel la consommation par tête est actualisée et auquel la littérature se réfère sous le terme de taux d'escompte social de Dasgupta, Maler et Barrett (1999). Cela revient à inclure dans la fonction d'utilité instantanée le paramètre d'escompte, soit :

$$U = \sum_{t=0}^{T} u \left(\beta^t \frac{C_t}{L_t} \right)$$

Lorsque $\tau \to +\infty$, la règle d'Euler verte devient alors : $c_t = \frac{1+\rho}{1+\gamma}c_{t-1}$, ce qui revient au cas précédent lorsque $\rho = \gamma$.

En combinant (7) and (8), on obtient pour tout t=1,2,...,T:

$$1 - \varepsilon \theta \sigma_t^{\theta - 1} \Lambda_t = \frac{\nu_{t-1}}{\nu_t} = \frac{\mu_{t-1}}{\mu_t} * \frac{f(k_{t-1})}{f(k_t)} * \left(\frac{\sigma_{t-1}}{\sigma_t}\right)^{\theta} \quad \text{pour tout } t = 1, 2, ..., T$$

Comme:
$$\frac{\sigma_{t-1}}{\sigma_t} = 1 - \varepsilon \sigma_{t-1}^{\theta-1} \Lambda_{t-1}$$
 et: $\frac{\mu_{t-1}}{\mu_t} = \frac{1 + r_t^g}{1 + g}$

alors, on obtient la règle d'arbitrage climatique:

$$\frac{1 - \varepsilon \theta \sigma_t^{\theta - 1} \Lambda_t}{\left(1 - \varepsilon \sigma_{t-1}^{\theta - 1} \Lambda_{t-1}\right)^{\theta}} = \frac{1 + r_t^g}{1 + g} * \left(\frac{k_{t-1}}{k_t}\right)^{\alpha}$$

Pour $\theta = 1$,

$$\frac{1-\varepsilon\Lambda_t}{1-\varepsilon\Lambda_{t-1}} = \frac{1+r_t^g}{1+g} * \left(\frac{k_{t-1}}{k_t}\right)^{\alpha} = \frac{\alpha k_t^{\alpha-1} * (1-\Lambda_t) + (1-\delta)}{1+g} * \left(\frac{k_{t-1}}{k_t}\right)^{\alpha}$$

Cette équation nous indique comment entre deux périodes, l'évolution de l'effort climat est relié à l'évolution du capital par unité de travail efficace. Plus précisément, cette règle d'arbitrage traduit le raisonnement économique suivant. Plaçons-nous sur un sentier d'équilibre, et à un instant t-1 diminuons la dépense climat d'un certain montant η . A consommation constante, cette quantité est utilisée pour augmenter le stock de capital en t+1 de $(1+r_t^g)\eta$, quantité que l'on utilise ensuite pour les dépenses de décarbonation en t+1 afin de revenir sur le sentier d'équilibre.

Ceci se démontre analytiquement :

- A l'instant t, l'intensité carbone s'écrit : $\frac{E_t}{Y_t} = \frac{E_{t-1}}{Y_{t-1}} \left[1 \varepsilon \left(\Lambda_{t-1} \frac{\eta}{Y_{t-1}} \right) \right]$
- Soit en t+1: $\frac{E_{t+1}}{Y_{t+1}} = \frac{E_t}{Y_t} \left[1 \varepsilon \left(\Lambda_t + \frac{\eta(1+r_t^g)}{Y_t} \right) \right] = \frac{E_{t-1}}{Y_{t-1}} \left[1 \varepsilon \left(\Lambda_{t-1} \frac{\eta}{Y_{t-1}} \right) \right] \left[1 \varepsilon \left(\Lambda_t + \frac{\eta(1+r_t^g)}{Y_t} \right) \right]$
- Si on était resté sur le sentier d'équilibre initial, l'intensité carbone en t+1, s'écrit :

$$\frac{E_{t+1}}{Y_{t+1}} = \frac{E_{t-1}}{Y_{t-1}} (1 - \varepsilon \Lambda_{t-1}) (1 - \varepsilon \Lambda_t)$$

• En développant et en identifiant les termes en η , on obtient bien la règle d'artbitrage climatique :

$$(1 - \varepsilon \Lambda_{t-1}) \varepsilon \frac{(1 + r_t^g)}{Y_t} = (1 - \varepsilon \Lambda_t) \varepsilon \frac{1}{Y_{t-1}}, \text{ soit} : \frac{1 - \varepsilon \Lambda_t}{1 - \varepsilon \Lambda_{t-1}} = \frac{1 + r_t^g}{1 + g} * \left(\frac{k_{t-1}}{k_t}\right)^{\alpha}$$

Alternativement, on peut forcer la contrainte Λ_t = constante, ce qui correspond à un effort climat qui serait fixé ex-ante par les pouvoirs publics, et non déterminé par une règle d'arbitrage avec la rentabilité du capital. Dans un tel cas, les agents peuvent toujours ajuster leur taux d'épargne, i.e. leur consommation, pour maximiser l'utilité intertemporelle.

Au final, on dispose donc d'un cadre englobant notre scénario de référence permettant d'évaluer des stratégies alternatives d'épargne et de décarbonation.

♦ L'équilibre stationnaire post 2050 et les conditions initiales

A l'état stationnaire post 2050, toutes les quantités sont constantes ou croissent à taux constant. Nous nous plaçons dans une situation où le capital par unité de travail efficace a atteint sa valeur d'équilibre et reste constant $k_t = k_{eq}$. Ainsi, la production par unité de travail efficace est également constante $y_t = y_{eq} = k_{eq}^{\alpha}$, donc le PIB par tête croît au rythme du progrès technique γ et le PIB croît au rythme g.

La quantité c_t/c_{t-1} étant constante, l'équation (9) implique que le taux d'intérêt $r_t^g = r_{eq}^g$ est constant, c'est-à-dire que la quantité $f'(k_t)*(1-\Lambda_t)$ l'est également, tout comme donc l'effort climat $\Lambda_t = \Lambda_{eq}$ en point de PIB. En utilisant l'équation (3) d'accumulation du capital, on en déduit qu'en réalité la consommation par unité de travail efficace $c_t = c_{eq}$ est nécessairement constante à l'état stationnaire.

Cela nous donne d'après l'équation d'Euler, l'égalité suivante :

$$(1+\rho)(1+n)(1+\gamma)^{\tau} = 1 + r_{eq}^g = 1 + f'\big(k_{eq}\big)\big(1-\Lambda_{eq}\big) - \delta$$

Soit en développant la fonction f':

$$k_{eq} = \left(\frac{\alpha (1 - \Lambda_{eq})}{(1 + \rho)(1 + n)(1 + \gamma)^{\tau} - (1 - \delta)}\right)^{\frac{1}{1 - \alpha}}$$

Analysons maintenant l'équilibre stationnaire concernant les émissions de gaz à effet de serre, l'objectif étant de maintenir les émissions E_t constantes au niveau du puits carbone. Ceci implique que l'intensité carbone σ_t décroît au même rythme que la production Y_t , soit g.

Nous avons donc deux cas. Dans notre scénario central où $\theta = 1$, on en déduit d'après l'équation (2) une valeur d'équilibre pour l'effort climat :

$$\Lambda_{eq} = \frac{g}{\varepsilon (1+g)}$$

On obtient alors pour le cas français une valeur d'environ 1% d'effort climat, c'est-à-dire une valeur significativement plus basse que l'effort climat qu'il faudrait faire chaque année à partir d'aujourd'hui pour atteindre la neutralité carbone en 2050, qui s'élève à environ 4,5% du PIB. Néanmoins, pour réduire la concentration de CO2 dans l'atmosphère, le GIEC invite les Etats à passer par une période durable d'émissions nettes négatives après l'atteinte de la neutralité carbone, avant de revenir à l'état stationnaire. Nous traduisons cette recommandation par le maintien d'un effort climat à 4,5% après 2050, c'est-à-dire égale à sa valeur optimale le long de la trajectoire de transition. On en déduit que $\Lambda_{eq} = 4,5\%$ et donc la valeur correspondante de k_{eq} , ce qui nous fixe la condition terminale.

Lorsque $\theta > 1$, les exigences de décarbonation sont plus importantes et la relation entre effort climat et décroissance de l'intensité carbone est non linéaire d'après l'équation 2. Il faudrait donc augmenter en permanence l'effort climat Λ_t à partir de l'atteinte de la neutralité carbone pour maintenir un taux de décroissance de l'intensité constant égale au taux de croissance de l'économie. A long terme, il faudra donc consacrer l'intégralité de la production en dépense climat, ce qui n'est pas possible. Autrement dit si $\theta > 1$, toute trajectoire impliquant une croissance du PIB n'est pas soutenable à long terme.

Concernant les conditions initiales, nous fixons une valeur du capital initial K_0 correspondant à sa valeur le long d'un état stationnaire où le taux d'épargne initial s_0 est assimilé à celui de la règle d'or de Ramsey (sans effort climat), c'est-à-dire :

$$k_0 = \left(\frac{s_0}{(1+n)(1+\nu) + \delta - 1}\right)^{\frac{1}{1-\alpha}}$$

L'objectif est en effet de construire, à partir de l'état initial, un compte central qui se concentre les effets liés à la stratégie de décarbonation. C'est le cas ici puisque l'état initial est un état stable n'impliquant pas de variation de la stratégie d'épargne en l'absence de considération climatique.

♦ Méthode de la bissection

Nous utilisons une méthode dite de la bissection pour calculer une allocation optimale et une séquence de multiplicateurs de Lagrange associés. Nous utilisons cette méthode alternativement pour trouver une valeur optimale de c_0 et de Λ_0 .

Pour c_0 , la méthode est la suivante :

Les conditions de premier ordre pour le problème du planificateur, soit les équations (3), (5), et(6), forment un système de relations de récurrence avec deux conditions limites:

- k_0 est donné comme condition initiale
- $k_{T+1} = k_{eq}$ est une condition terminale également donnée

Nous n'avons en revanche pas de condition initiale pour le multiplicateur de Lagrange μ_0 . Si c'était le cas, résoudre le problème aurait été simple. Etant donné μ_0 et k_0 , on peut calculer c_0 grâce à l'équation (5), puis k_1 grâce à l'équation (3) et enfin μ_1 grâce à l'équation (6). Nous pouvons ensuite itérer et calculer les éléments restants de \vec{c} , \vec{k} , $\vec{\mu}$.

Mais nous n'avons pas de conditions initiales pour μ_0 , donc cela ne fonctionnera pas.

Une simple modification appelée « *shooting algorithm* » devrait en revanche fonctionner. Il s'agit d'un cas particulier de l'algorithme « *guess and verify* » et fonctionne de la manière suivante :

- Tester une valeur pour le multiplicateur de Lagrange initial μ_0 .
- Appliquer l'algorithme simple décrit ci-dessus.
- ullet En déduire la valeur conséquente pour k_{T+1} et vérifier si on obtient la valeur recherchée k_{eq}
- Si c'est le cas, le problème est résolu.
- Si $k_{T+1} > k_{eq}$, baisser la valeur de μ_0 et recommencer.
- Si $k_{T+1} < k_{eq}$, augmenter la valeur de μ_0 et recommencer.

A la fin on parvient à converger et on arrive à la bonne valeur de μ_0 . En réalité, on peut tester directement les valeurs de c_0 plutôt que μ_0 , car les deux sont en bijection (l'une est fonction directe de l'autre et inversement).

Un cas particulier de cet algorithme est la méthode de la bissection. Puisqu'on connaît les bornes de notre consommation initiale (comprise nécessairement entre 0 et la production initiale), on peut appliquer la méthode ci-dessous en ajustant selon le signe de $k_{T+1}-k_{eq}$ la borne inférieure ou la borne supérieure, de manière à réduire de moitié à chaque itération la longueur du segment où c_0 doit se trouver.

Etant donné que dans notre cas de modèle climatique, nous avons à déterminer les valeurs initiales à la fois de de c_0 et de Λ_0 , il est possible d'utiliser alternativement la méthode la bissection pour ces deux valeurs et ainsi converger progressivement vers les deux valeurs optimales.

La résolution du modèle, et en particulier à l'aide de cette méthode de la bissection, est mise en œuvre dans le cadre d'un programme Python (cf. annexe).

♦ Résultats : variantes et stratégies d'épargne

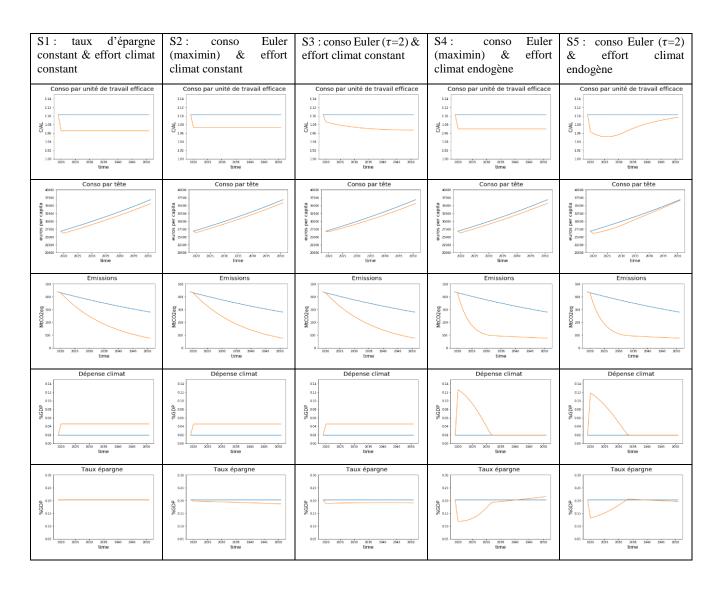
Nous examinons à l'aide de ce modèle plusieurs variantes qui s'affranchissent de l'hypothèse d'un taux d'épargne constant et font varier les règles d'évolution de la consommation et de l'effort climat.

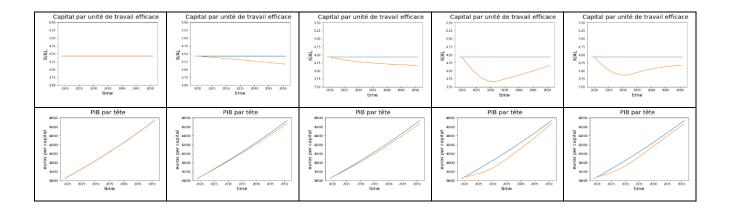
La première colonne de la figure 11 ci-après (scénario S1) correspond aux trajectoires que nous avons décrites jusqu'ici : dès lors que le taux d'épargne exogène est constant, le PIB comme le capital restent sur leur sentier de croissance régulière, d'où un ratio K/AL constant, où AL représente le travail augmenté du facteur de progrès technique. De même, par construction, la consommation par unité de travail efficace reste constante après l'ajustement initial, ce qui implique un niveau de vie actualisé $V_t = \beta^t C_t/L_t$ constant, avec $\beta = 1/(1+\rho)$.

Les scénarios S2 et S3 maintiennent l'hypothèse d'un taux d'effort climatique constant, mais avec un taux d'épargne endogène qui varie au cours du temps. Plus précisément, ce taux d'épargne est la résultante du choix de consommation découlant d'un programme d'optimisation intertemporelle. Les deux scénarios diffèrent dans le choix de la fonction d'utilité qui sera maximisée, et en particulier le choix du paramètre de l'élasticité de substitution intertemporelle.

Le scénario S2 correspond au cas limite $\tau \to +\infty$, c'est-à-dire une optimisation de type maximin qui implique une consommation par unité de travail efficace constante, une fois l'ajustement initial réalisé (la règle d'Euler verte devient : $c_t = c_{t-1}$). La consommation chute lors de l'ajustement initial, mais légèrement moins que dans le scénario S1 de référence du fait d'une désépargne. Le taux d'épargne se réduit ensuite progressivement pour amener le capital sur son nouvel état régulier, ce qui se traduit par un léger décrochage progressif du PIB par tête par rapport à la trajectoire de référence S1.

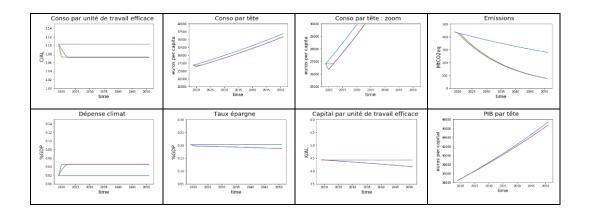
Le scénario S3 correspond à une fonction d'utilité où τ est fini¹⁴ impliquant une substitution entre consommation présente et future (contrairement à l'approche Brundtlandienne des pouvoirs publics qui correspond à τ infini). En fonction des paramètres, la consommation est reportée dans le futur ou avancée en début de période – ici, avec nos paramètres, la règle d'Euler implique une consommation par unité de travail efficace décroissante entre 2020 et 2050, soit une consommation plus importante en début de période. Les consommateurs choisissent de réduire plus fortement leur épargne en début de période pour lisser la perte de consommation engendrée par un effort climat constant sur toute la période.


Les scénarios S4 et S5 rendent endogène le taux d'effort climat, à travers une règle d'arbitrage entre les dépenses climat et la rentabilité du capital. Nous avons ajouté comme contrainte, par réalisme, un taux d'effort plancher égal au taux d'effort climat initial. De la même manière que entre S2 et S3, la différence entre les scénarios S4 et S5 réside dans la règle d'évolution de la consommation par unité de travail efficace, résultant soit d'un programme d'optimisation de type maximin $(\tau \to +\infty)$ dans S4, soit d'un programme où on autorise la substitution intertemporelle de la consommation $(\tau = 2)$ dans S5. Si le point d'arrivée de ces scénarios est le même que les précédents tant concernant les émissions que le capital cible, des arbitrages dans le temps peuvent être opérés entre investissement, effort climat et consommation. La trajectoire optimale correspond ici à une décarbonation beaucoup plus rapide que dans les deux scénarios précédents, avec une neutralité carbone atteinte à horizon 2030. Ceci s'explique notamment par la règle d'arbitrage climatique qui implique une décroissance de l'effort climat lorsque le capital par unité de travail efficace diminue, ce qui est le cas en début de période. L'effort climat est


 $^{^{14}}$ τ fixé à 2, valeur standard de la littérature (cf. Document de travail de l'INSEE, N° G2020/03, A welfare based estimate of « real feel GDP » for Europe and the USA.)

donc beaucoup plus élevé en début de période jusqu'à la neutralité carbone, et revient à son niveau initial ensuite; cet effort est amorti, symétriquement, par une réduction immédiate du taux d'épargne, avant qu'il ne se rapproche de sa trajectoire initiale. La croissance du PIB par tête, comme du capital par tête, est ralentie, avant, lorsque la décarbonation est accomplie, de reprendre son cours vers le nouvel état régulier. Cette dernière trajectoire, de par l'ampleur des ajustements qu'elle implique, n'est sans doute pas la plus probable, mais elle a le mérite de montrer la possibilité, sans pénaliser les niveaux de vie, en agissant sur le taux d'épargne, d'une réduction plus rapide des émissions de CO2 – et donc, limitant davantage, le réchauffement climatique.

Lorsque $\theta > 1$, les exigences de décarbonation sont plus importantes et la relation entre effort climat et décroissance de l'intensité carbone et non linéaire. Ainsi, l'effort climat initial nécessaire serait encore plus élevé que dans les scénarios où $\theta = 1$.


Figure 13 : Trajectoires économiques et climatiques pour la France selon différents scénarii d'épargne et d'effort climat

Tous les scénarios présentés ici affichent une réduction de la consommation par tête la première année lors de l'ajustement initial, du fait d'une augmentation significative de l'effort climat (le choc négatif sur la consommation pouvant être atténué par des comportement de désépargne en début de période). Ce choc initial sur la consommation est ensuite largement compensé par une augmentation de la consommation par tête tendanciellement au rythme du progrès technique. Néanmoins, pour prévenir le risque que la croissance soit moins forte que prévue, ou la décarbonation plus chère, il y a bien un intérêt à avancer les efforts climats en début de période. Si notre fonction d'utilité nous invite à faire la totalité de l'effort dès la première année, il peut exister d'autres trajectoires possibles pour annuler le choc négatif de départ sur la consommation. Nous construisons donc un nouveau scénario (S6) où l'effort climat serait plus progressif en début de période, de manière à maintenir la consommation par tête à son niveau initial (figure 14). Dans un tel scénario, l'effort climat augmenterait progressivement sur les 4 premières années pour atteindre un plateau (légèrement supérieur à celui du scénario de référence) lui permettant de respecter la neutralité carbone en 2050. Cela correspond à une fonction d'utilité intertemporelle différente de celle présentée plus haut, qui implique que la totalité de l'effort doit être fait la première année. Un lissage de la marche d'escalier pourrait ainsi correspondre à un scénario alternatif permettant d'éviter un choc négatif sur la consommation par tête en début de période.

Figure 14 : Comparaison des scénarios S2 (augmentation de l'effort climat dès la première année) et S6 (augmentation de l'effort climat lissé sur les 4 premières années)

Enfin, il convient de se demander quelle serait la trajectoire en l'absence de progrès technique. En effet, dans une logique de développement durable, il n'est pas équitable de justifier une contribution des générations futures à l'effort en tablant sur un hypothétique développement du progrès technique au rythme actuel, d'autant que ce dernier pourrait être affecté négativement par la décarbonation de l'économie. Nous construisons donc un dernier scénario S7 correspond au cas du scénario S2 présenté ci-dessus, mais avec un progrès technique nul sur toute la période. La mise en œuvre de l'effort climat la première année conduit à un choc négatif sur la consommation par tête en début de période. Ce choc ne sera jamais compensé par la suite car en l'absence de croissance du progrès technique, la consommation par tête reste ensuite constante sur toute la période de simulation.

Figure 15 : Scénario S7 sans progrès technique

5. Un nouveau prix du carbone rehaussé, en phase avec l'objectif de neutralité carbone

♦ Les différentes notions de prix social du carbone

A partir des évaluations de coût global des stratégies de décarbonation, il est ensuite possible de déterminer un prix du carbone.

On sait que les mécanismes de marché ne sont que de peu d'utilité pour donner une valeur au coût des émissions de CO2. La raison fondamentale est que le CO2 n'a pas de coût d'extraction, contrairement par exemple aux industries gazières et minières : parce qu'il ne se vend, ni ne s'achète, le CO2 n'a pas de prix. Il existe bien, depuis 2005, un marché européen de quotas de CO2, le Système d'Echange de Quotas d'Emissions (SEQE). Mais d'une part, il concerne seulement 5000 entreprises environ, représentant 45% des émissions, et d'autre part, les quotas qui leur sont alloués sont insuffisamment contraignants pour que le prix sur ce marché puisse refléter une valeur sociale. Ainsi, entre 2013 et 2018, les quotas de CO2 appelés UEA (European Union Allowances) se sont négociés à autour de cinq euros la tonne de CO2 (figure 16). En outre resserrer des quotas, et étendre le champ des entreprises couvertes comme l'a fait l'UE entre 2013 et 2018, s'avère peu efficace pour donner aux prix de marché du CO2 une valeur plus conforme à son coût social. L'une des raisons est que, en l'absence d'une tarification mondiale du carbone, i.e dont le montant devrait être au moins égal au prix du carbone, la délocalisation d'activités intensives en CO2 reste toujours une échappatoire.

20.00 12.50 Source: MarketsInsider, euros par tonne de CO2

Figure 16 - Valeur de marché des quotas européens d'émissions (EUA)

Lorsque les marchés ne sont pas en mesure de fixer un prix représentant la valeur d'un bien ou d'un service, les pouvoirs publics s'y substituent. C'est bien sûr le cas de tout ce qui concerne les services publics; mais aussi les secteurs réglementés comme celui de l'énergie. À quel niveau alors fixer ce prix

dans le cas du carbone ? Il faut en revenir aux fondamentaux de l'économie du climat. Les émissions de CO2 ont un coût parce qu'elles sont responsables du réchauffement climatique, et donc induisent des dommages sur l'économie. L'action pour le climat à une valeur parce qu'en investissant dans les technologies de décarbonation, elle évitera aux générations futures de subir les conséquences négatives,

maintenant très bien documentées, de la hausse de la température, ou de devoir payer, seules, les réparations des dommages causés par les générations antérieures.

Ce principe général posé, le terme de prix « social » du carbone peut recouvrir un grand nombre de notions qu'il convient d'appréhender avec vigilance dans les comparaisons, comme dans l'usage qui peut être fait des valeurs estimées par les modèles. Parler de prix social nécessite avant tout de clarifier ce que l'on entend par social, autrement dit quel est l'objectif fixé par la société en matière climatique, auquel la fixation de ce prix public peut contribuer. Nous avons argumenté que, depuis l'accord de Paris de 2015, l'heure n'est plus aux arbitrages coûts/bénéfices. L'objectif est clairement de limiter à 2°C et si possible 1,5°C la hausse de température, et pour cela de parvenir à zéro émission nette au plus tard en 2050. Un prix peut être vu comme un ratio entre une valeur et un volume : se référer à la COP21 comme norme sociale fixe le numérateur du prix du carbone. En effet, il convient de se référer à des coûts de réparation, équitablement répartis, et permettant d'atteindre la cible bas carbone convenue, approche

que nous avons qualifiée d'équité/efficacité. En somme, ce qui constitue ici le caractère social du prix du carbone, est la volonté que cette grandeur reflète la valeur pour la société de l'action pour le climat, au sens d'un effort justement réparti permettant d'atteindre la cible bas carbone recherchée.

Cela étant posé, il convient de fixer le dénominateur. Ici, ce qui est déterminant est l'usage auquel on destine ce prix du carbone. Il y a essentiellement deux approches : une approche « comptable » fondée sur le financement de la décarbonation nécessaire pour atteindre la neutralité carbone, et une approche « coût » fondée sur la valeur monétaire que la collectivité donne aux actions permettant d'éviter l'émission d'une tonne de CO2 équivalent.

- L'approche « comptable » conduit à diviser la dépense climat par les émissions courantes. Elle est simple à interpréter dans le cas d'une politique climatique qui prendrait la forme exclusive d'une contribution carbone, intégralement affectée au financement de dépenses publiques de décarbonation. Ce prix social du carbone, via la contribution, permettrait à la puissance publique de financer par subvention les investissements climat nécessaires à l'atteinte de la neutralité carbone. Mais on peut aussi imaginer d'autre situations, par exemple le cas où l'économie est constituée d'agents homogènes soumis à un système de quotas d'émissions carbone, dont le volume est en réduction selon la trajectoire optimale de réduction des émissions telle que projetée plus haut. Alors pour financer l'effort climat nécessaire pour respecter les quotas d'émissions, chaque agent devra engager chaque année des efforts de décarbonation de son activité, à hauteur du prix social du carbone ainsi défini par quantité de CO2 émis. Finalement, ce prix social du carbone répond à la question : à quel prix faut-il facturer, explicitement ou implicitement, le carbone pour atteindre la cible ZEN dans un effort justement réparti ?
- L'approche « coût » consiste à se demander quel est le coût de la tonne de carbone évitée sur la trajectoire optimale? Il s'agit donc diviser la dépense climat optimale par le flux cumulé des émissions actuelles et futures évitées. Ce prix social du carbone correspond d'un point de vue théorique au coût marginal d'abattement, à savoir la division d'un coût d'investissement climat par les émissions évitées sur la durée de vie dudit investissement. S'il était assimilable à une taxe, cela déclencherait des évolutions des investissements et des comportements des agents économiques vers des modes non carbonés, via un arbitrage des agents économiques entre le maintien des émissions couplé au paiement de la taxe et la mise en œuvre de dépenses technologiques permettant d'éviter l'émission, et donc la taxe. C'est bien l'optique du rapport de la commission Quinet qui vise à intégrer la dimension climatique dans la mesure du coût socio-économique des investissements.

Les deux notions sont bien évidemment liées, et peuvent être mise en cohérence ; l'usage n'est pas le même. A la marge, à budget carbone fixé, ces deux notions sont équivalentes : si on émet une tonne de plus, il faut accepter un surcroit de dépenses permettant d'éviter une tonne d'émissions cumulées dans le futur. Sur l'ensemble des émissions, cela dépend des paramètres qu'on fixe, et notamment de la manière dont on définit le facteur d'actualisation.

Pour s'en convaincre, développons ici un exemple stylisé d'une économie émettant, au point de départ, 500 MtC02, qu'elle doit réduire à zéro émission nette en 30 ans avec l'hypothèse d'une bio-capacité à terme de 100 MtCO2, soit une réduction de 400MtCO2 sur la période. Nous nous plaçons dans le cas, pour simplifier, où le PIB est constant. Pour retrouver la neutralité carbone, nous supposons que les acteurs ont à disposition dix technologies, notée T1 à T10, chacune d'un potentiel d'abattement des émissions de CO2 – permanent – de 40 MtCO2, pour un coût croissant (de 131 milliards pour T1 à 469

pour T10) tel que précisé dans la figure 17 ci-dessous. A des fins de simplification, nous faisons l'hypothèse ici que les technologies sont déployées par période triennale, qui correspond par ailleurs à la périodicité des budgets carbone fixées par décret.

La première notion de prix du carbone – l'approche « comptable » – consiste à diviser les dépenses climat par le niveau d'émission courant. La seconde notion – l'approche « coût » – consiste plutôt à diviser la somme des coûts par la somme des émissions évitées, avec un facteur d'actualisation r déterminé :

$$P0^{Ti} = \sum [C_s^{Ti}/(1+r)^s] / \sum [E_s^{Ti}/(1+r)^s]$$

Compte tenu de notre hypothèse d'une dépense immédiate (ligne 1 de la figure 17) produisant un effet d'abattement permanent (ligne 2), ce prix est égal à rC_{Ti}/E_{Ti} (voir ligne 3 du tableau). C'est la notion de coût marginal d'abattement (CAM) développée plus haut (cf partie 2). Le choix du taux d'actualisation est crucial et s'explique notamment par le fait que les émissions évitées diminuent au cours du temps, au fur et à mesure que le capital formé par l'investissement climat se déprécie (par exemple, l'usure progressive des travaux de rénovation d'une fenêtre). La figure 17 donne un exemple d'un facteur d'actualisation de 5%, qui correspond à la valeur du taux de dépréciation du capital physique pris dans nos simulations.

Figure 17 : Exemple stylisé d'un modèle à technologies discrètes

Technologie d'abattement	T1	T2	Т3	T4	T5	Т6	T7	Т8	Т9	T10	Moyenne annuelle
Coût total sur 3 ans (Md€)	131	143	156	173	193	219	253	298	365	469	80
Abattement (MtCO2)	40	40	40	40	40	40	40	40	40	40	40
P0=ΣCoût / ΣtCO2 (r=5%)	164	178	195	216	241	274	316	373	456	586	

Lecture : La technologie T7 a un cout de mise en œuvre de 253 Md€ sur une période de 3 ans, soit un coût annuel moyen de 84Md€.

Source: Calcul des auteurs

Dans une logique d'équité/efficacité, et afin, au-delà de l'atteinte de l'objectif ZEN en 2050, de limiter au maximum le cumul des émissions, les technologies devraient être déployées de la moins à la plus coûteuse, et de sorte, compte tenu de notre définition de l'équité, que la dépense pour le climat soit la même à chaque période. Cela suppose de déployer sur la période 2020-2022 l'intégralité de la technologie T1 et 76% de la T2; sur la deuxième période triennale, les 24% de T2, l'intégralité de la T3 et 29% de la T4...et ainsi de suite (cf figure 18, lignes « Techno »)). On vérifie bien (colonne « total ») que le coût par période triennale est constant (240 milliards, soit trois fois le montant moyen annuel de 80 milliards d'euros). Les émissions de CO2 sont décroissantes, et comme dans notre modèle, la décroissance est plus rapide en début de période. En effet, les technologies déployées étant moins coûteuses, elles peuvent être, à effort constant, déployées plus rapidement au début, et en contrepartie plus lentement à la fin.

Figure 18 : Exemple stylisé (suite) : déploiement des technologies et prix du carbone

		T1	T2	T3	T4	T5	Т6	T7	Т8	Т9	T10	Total	Emissions (Mt)	P1=D/E	P2=ΣD/ΣE (r=5%)	P2=ΣD/ΣE (r=10%)	P2=ΣD/ΣE (r=15%)
2020	CO2												500		5%	10,0%	15%
2020-	Techno	100%	76%														
2020-	Md€	131	108									240		480	170	341	511
2022	MtCO2	-40	-30									-70	430				
2023-	Techno		24%	100%	29%												
2025	Md€		34	156	50							240		559	197	393	590
2023	MtCO2		-10	-40	-11							-61	369				
2026-	Techno				71%	61%											
2028	Md€				123	117						240		651	228	455	683
2020	MtCO2				-29	-24						-53	316				
2020	Techno					40%	75%										
2029-	Md€					76	163					240		759	262	525	787
2031	MtCO2					-16	-30					-46	270				
2022	Techno						25%	73%									
2032-	Md€						55	184				240		887	305	610	914
2034	MtCO2						-10	-29				-39	231				
2025	Techno							27%	58%								
2035-	Md€							68	172			240		1040	355	709	1064
2037	MtCO2							-11	-23			-34	197				
2020	Techno								42%	31%							
2039-	Md€								127	114		240		1220	408	816	1224
2041	MtCO2								-17	-12		-29	168				
20.42	Techno									66%		1					
2042-	Md€									240		240		1433	456	912	1368
2044	MtCO2									-26		-26	141				
20.45	Techno									3%	49%						
2045-	Md€									11	229	240		1701	579	1157	1736
2047	MtCO2									-1	-20	-21	120				
20.40	Techno										51%						
2048- 2050	Md€										240	240		1990	586	1172	1758
2030	MtCO2										-20	-20	100				

Source : Calcul des auteurs

Revenons sur cette base aux différentes trajectoires de prix. Le prix P1, correspondant à l'approche « comptable » rapporte la dépense pour le climat aux émissions courantes ; c'est l'optique « contribution climat », son taux augmente, pour maintenir l'effort constant, au fur et à mesure que « l'assiette », les émissions courantes, se réduisent. Insistons bien sur la lecture qui peut être faite d'un prix du carbone construit de cette manière : il ne signifie pas qu'il faille fixer le niveau de la contribution carbone aux valeurs de P1. Dans la pratique, les politiques pour le climat prennent des formes très variées, allant de la taxe carbone aux quotas d'émissions en passant par l'imposition de normes thermiques pour les bâtiments dont le coût est couvert pour partie par les propriétaires et pour partie par des aides publiques type réduction d'impôt, au financement de transports en commun par les collectivités locales et leurs autorités de transport. C'est bien la totalité de ces efforts, rapportés aux émissions courantes, qui doit correspondre à P1. Prenons le cas d'une politique qui serait financée à hauteur de deux tiers directement par les ménages et les entreprises et un tiers par les pouvoirs publics ; alors la contribution carbone optimale correspondrait au tiers de P1, soit dans l'exemple stylisé 160€ en début de période et 660€ en fin de période.

Le prix P2, correspondant à l'approche « coût », rapporte la dépense au flux cumulé d'émissions évitées, ce cumul étant calculé en prenant en compte un taux d'actualisation. Cette définition correspond à ce que l'on a appelé, dans la partie 2, le coût marginal d'abattement dynamique (D-CAM). Contrairement au coût marginal d'abattement (CAM), qui est lié aux technologies, il s'agit bien là d'une trajectoire de prix associée à un déploiement des technologies répondant à une logique d'équité/efficacité. Ce prix ne peut pas servir de référence pour établir le montant d'une taxe carbone, sauf à calibrer, sans grande logique derrière, le taux d'actualisation pour que les deux trajectoires soient les plus proches possibles.

Il correspond plutôt à une politique publique qui consisterait à fixer un prix tutélaire (par exemple 170 euros sur 2020-2022) et demander (ou contraindre) les acteurs de mettre en œuvre toutes les technologies qui ont un coût du flux de CO2 évité inférieur à ce prix tutélaire. Plutôt qu'une logique de financement de la transition énergétique que sous-entend le prix P1, le prix P2 répond plus à une logique d'incitation des agents économiques envers la mise en œuvre de technologies de décarbonation. En fixant la chronique de prix selon le prix P2, les technologies seront déployées dans l'exemple stylisé selon le tableau de marche de la figure 18. La réglementation doit porter dans ce cas autant sur le prix que sur le taux d'actualisation, ce dernier étant aussi important que le premier comme les variantes de la figure 12 ter avec r = 5%, 10% et 15%.

Estimations du prix social du carbone pour la France et le monde

Nous nous référerons ici à la première des deux notions, l'approche « comptable », qui rapporte l'effort équitable aux émissions courantes. En effet, il s'agit de l'approche qui nous semble la plus opérante et robuste, étant donné l'incertitude sur la mesure du flux cumulé des émissions actuelles et futures évitées, et notamment son actualisation. En termes formels, si l'on note $d_t^{CO_2} = D_t^{v}/E_t$ la dépense pour le climat de l'année t rapportée à la quantité de CO2 émis, nous définirons le prix social du carbone $P_t^{CO_2}$ comme étant la dépense unitaire pour le climat correspondant à la trajectoire optimale : $P_t^{CO_2} = \hat{d}_t^{co2}$.

Le sens de la notion de valeur sociale de l'action climat – ou de coût social du carbone – ayant été précisé, son calcul découle directement de sa définition puisque cette valeur doit vérifier en tout point de la trajectoire optimale l'égalité : $P_t^{co2}E_t = \Lambda_t Y_t$. Ainsi posée, le prix social du carbone selon l'approche « comptable » s'établirait pour la France à environ 250 euros en 2020, 500 euros en 2030, 1010 euros en 2040 et 2050 euros en 2050 pour l'objectif de neutralité carbone (figure 19). Les modèles utilisés nationalement comme ceux auxquels recourt le GIEC tendent d'ailleurs à produire des évaluations encore plus élevées.

Nos estimations pour l'objectif de neutralité carbone correspondent à un quasi-doublement de la valeur sociale du carbone par rapport à l'objectif facteur 4 qui prévalait jusqu'en 2018. On peut le comprendre aisément si l'on en revient à la formation de cette valeur dans une logique d'efficacité/équité : puisque $P_t^{co2}E_t = \Lambda_t Y_t$, on peut décomposer le ratio des prix P_t^{F7}/P_t^{F4} comme un produit $[\Lambda^{F7}/\Lambda^{F4}] \times$ $[E_t^{F4}/E_t^{F7}] \times [Y_t^{F7}/Y_t^{F4}]$. Dans un scénario où les deux trajectoires PIB seraient les mêmes, on a bien $P_{2050}^{F7}/P_{2050}^{F4} = 7/4 \times [\Lambda^{F7}/\Lambda^{F4}]$. Comme l'effort Λ^{F7} est de toute évidence plus élevé¹⁵ que Λ^{F4} , correspondant à un facteur 4, P_{2050}^{F7} est approximativement égal à $2 \times P_{2050}^{F4}$. Insistons pour dire que ce doublement du prix ne signifie pas pour autant, un doublement de la dépense optimale climat, dans le même temps, la trajectoire de réduction des GES est aussi plus rapide.

Si l'on mesure maintenant le prix social du carbone, au sens de l'approche « coût » – i.e. sur une logique similaire à celle de la commission Quinet - et avec un facteur d'actualisation de 5% sur la mesure des émissions futures évitées, nous obtenons les valeurs de 127 euros en 2020, 258 euros en 2030, 522 euros en 2040 et 1057 euros en 2050. Les ordres de grandeurs sont très proches de ceux proposés par le rapport Ouinet (Ouinet, 2019), à savoir 250 euros en 2030, 500 en 2040 et 775 euros en 2050 pour ce même objectif de neutralité carbone¹⁶. Nos simulations tendent donc à valider la très forte revalorisation qu'a

¹⁵ Pour la France, Λ^{F7} =4,5% et Λ^{F4} = 3,5%. Donc $\Lambda^{F7}/\Lambda^{F4}$ = 4,5/3,5=+28% et $P_{2050}^{F7}/P_{2050}^{F4}$ = $\frac{7}{4}$ × [4,5/3,5] = 2,25. ¹⁶Si la commission Quinet réévalue le prix social du carbone à l'aune du nouvel objectif de neutralité, elle a estimé que la

constitué le rapport Quinet par rapport aux estimations communément admises antérieurement, comme par exemple celle proposée en 2017 par la commission Stiglitz-Stern qui était de 70 à 100€ en 2030 (Stiglitz et al., 2017) ¹⁷., sans parler des valeurs encore retenues par la Banque Mondiale (World Bank, 2006) ou le PNUDD (UNU-IHDP, 2012), 30 \$ ou 25.5 €, pour le calcul de l'épargne nette et de l'épargne nette ajustée sur lesquelles on revient plus loin, qui paraissent hors d'échelle. À titre de comparaison également, sur le marché européen des droits à polluer, la tonne de CO2 s'échangeait autour de 25 euros début 2020.

Figure 19 - Évaluations du prix de la tonne de CO2 pour l'objectif de neutralité carbone en 2050

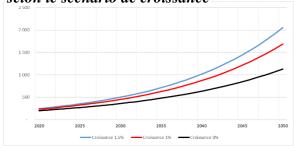
Figure 19 - Évaluations du prix de la tonne de CO2 pour l'objectif de neutralité carbone en 2050

	2020	2030	2040	2050
Valeurs nationales Fr	ance (€/tCO2e	q)		
Résultats du modèle				
Approche "comptable"	247	501	1 014	2 052
(pour mémoire avec l'objectif Facteur 4)	188	320	547	937
Approche "coût" (taux d'actualisation de 5%)	127	258	522	1 057
Estimations commission Quinet 2019 (approche "coût")	88	250	500	775
Estimations modèles utilisés par la commission Quinet				
Modèle ThreeME		143	1 128	2 389
Modèle NEMESIS		185	784	1 934*
Modèle POLES		351	845	3 513
Modèle TIMES		288	465	2 451
Valeurs mondiale	s (\$/tCO2eq)			
Résultats du modèle				
Approche "comptable"	85	189	422	942
Estimations GIEC				
Objectif +1,5°C		334	585	1 026
Objectif +2°C		164		518

^{*} Valeur pour 2045.

Source: commission Quinet (2019); calculs des auteurs.

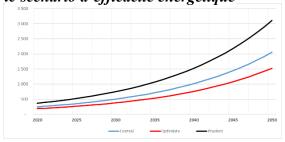
Source: commission Quinet (2019), calculs des auteurs


Comme pour l'évaluation des dépenses climat, le niveau du prix social du carbone dépend des hypothèses retenues. Les figures 20 et 21 illustrent cette sensibilité du prix en fonction des scénarios de croissance et d'efficacité énergétique.

-

robustesse des résultats des modèles technico-économiques et macro-sectoriels utilisés s'émoussent à partir de l'horizon 2040, voire 2030, et a donc décidé de plafonner le prix ensuite au regard des incertitudes technologiques à moyen terme.

¹⁷ Les auteurs ont néanmoins pris soin de préciser que leur estimation ne recouvrait qu'une partie de la valeur sociale du carbone : "This commission concludes that the explicit carbon-price level consistent with achieving the Paris temperature target is at least US¤40-80\$ by 2020 and US\$50-100\$ by 2030, provided a supportive environment policy is in place".


Figure 20: Évolution du prix du CO2 selon le scénario de croissance

Lecture : Pour un scénario central d'efficacité énergétique (E =1,5), le prix de la tonne de CO2 en 2040 est de 1014ϵ (respectivement de 871€ et 636€) pour une croissance annuelle de 1,5% (respectivement de 1% et 0%).

Source : base de données CITEPA ; calcul des auteurs

Figure 21: Évolution du prix du CO2 selon le scénario d'efficacité énergétique

Lecture : Pour un scénario central de croissance (1,5% annuel), le prix de la tonne de CO2 en 2040 peut varier de 758€ à 1524€ selon que le scénario d'efficacité énergétique est optimiste ($\varepsilon = 2$),

Source : base de données CITEPA ; calcul des auteurs

Enfin, nous estimons un prix mondial du carbone, qui n'est a priori pas le même que le prix national. En effet, si l'on repart de la définition de la valeur sociale du carbone, le ratio entre le niveau mondial et le niveau national s'écrit¹⁸ : $P_t^{MD}/P_t^{FR} = [\Lambda^{MD}/\Lambda^{FR}][\sigma_t^{FR}/\sigma_t^{MD}]$. Or si, on l'a vu, les efforts climat mondiaux et nationaux représentent une proportion du PIB comparable (respectivement 5,1% et 4,5%), il n'en va pas de même de l'intensité carbone (ratio CO2/PIB), qui est de 720g/€ de PIB¹9 au niveau mondial contre 189g/€ en France soit un rapport de 1 à 3,8. La valeur mondiale ressort de nos simulations à 189\$ la tonne de CO2 en 2030, et 422\$ en 2040, et 942\$ en 2050, globalement en cohérence avec les simulations du GIEC. En effet, les valeurs moyennes GIEC pour l'objectif de limitation à 1,5°C (i.e. scénario avec une probabilité de 33% de dépasser les 1,5°C), objectif qui nécessiterait d'atteindre la neutralité carbone en 2050, ressortent à 330\$ en 2030 et 585\$ en 2040, et 1026\$ en 2050.

Comptabilité du prix du carbone

Poursuivant notre entreprise d'expression de règles simplifiées dans l'hypothèse de croissance stable au taux g, nous pouvons établir deux nouvelles règles concernant la valeur sociale de l'action pour le climat, au sens de l'approche « comptable ». Pour obtenir une réduction Γ des émissions à une date donnée, il faut en effet, si le PIB croit au taux g, une réduction de l'intensité carbone de la production au rythme de $d\sigma/\sigma = \Gamma + g = r$. Ceci requiert, dès lors que $d\sigma/\sigma = -\Lambda \varepsilon$, une dépense climat constante en points de PIB de $\Lambda = r/\varepsilon$. À la date initiale la dépense est ainsi de $\Lambda Y_0 = r Y_0/\varepsilon$ et donc un prix initial, qui est égal à la dépense initiale rapportée aux tonnes de GES émis, $P_0^{co2} = (r/\varepsilon) \times (Y_0/E_0)$. À une date quelconque, ce même prix sera en $P_t^{co2}=(r/\varepsilon)\times(Y_t/E_t)=(rY_0e^{gt})/(\varepsilon E_0e^{-\Gamma t})$ soit encore $P_t^{co2} = P_0^{co2}e^{rt}$ et un prix qui croit donc au taux r, cette croissance reflétant la difficulté croissante à poursuivre la réduction des émissions à mesure que l'intensité carbone s'abaisse. On peut donc énoncer deux nouvelles règles.

 $^{^{18}}$ En effet, $P_t^{MD,FR}=\Lambda^{MD,FR}\,Y_t/E_t^{MD,FR}=\Lambda^{MD,FR}/\sigma_t^{MD,FR}$ 19 Le ratio est de 613g/\$, soit, sous l'hypothèse de dollar à 0,85 euro, 720g/€.

<u>Règle n°3</u>: à la date initiale, la valeur sociale du carbone est au moins égale à $P_0^{co2} = (r/\varepsilon) \times (Y_0/E_0)$, où Y_0 et E_0 sont respectivement le PIB et les émissions de CO2 initiales

Règle n°4: le long de cette trajectoire, la valeur sociale du carbone suit une loi de progression exponentielle au taux $r=g+\Gamma$ où g est le taux de croissance du PIB et Γ le pourcentage de réduction annuel des émissions cible²⁰

Cette dernière règle s'apparente à une règle d'Hotelling qui stipule que le prix d'une ressource rare doit évoluer de manière exponentielle pour compenser la raréfaction. Elle en précise le taux d'évolution. Dans le cas français, ce taux est de 7,4% pour l'objectif facteur 7 et 5,5% pour l'objectif facteur 4. À titre de comparaison, la commission Quinet retient un taux de 7,2% entre 2030 et 2040 et les moyennes des simulations utilisées par le GIEC correspondant à r=5,5% entre 2030 et 2050 21 (cf. figure 19) ; a contrario, les taux sous-jacents de TIMES, POLES, NEMESIS, ThreeME sont nettement plus élevés (entre 12 et 13% pour les trois premier et 16% pour ThreeME) témoignant soit d'une règle d'équité moins favorable aux générations futures soit d'une vision plus optimiste concernant la progressivité des coûts de décarbonation, soit une combinaison des deux effets.

♦ Des pistes pour définir un concept de dette ou d'engagement climatique

Une utilisation possible de cette valorisation du carbone est la construction d'un indicateur de dette ou d'engagement climatique. Il s'agit d'une des façons possibles de synthétiser l'ampleur de l'effort à réaliser dans le domaine climatique : il y a essentiellement deux façons de construire ce concept de dette.

On peut dans un premier temps se placer dans une approche prospective, c'est-à-dire s'intéresser aux coûts à payer dans le futur pour revenir à la trajectoire cible, soit à la somme cumulée actualisée des dépenses climat futures pour parvenir à la cible. Autrement dit, il s'agit du montant de ressources financières qu'il faudrait avoir en réserve pour respecter la cible sans avoir à ponctionner les revenus futurs. C'est une notion importante car elle traduit l'idée que chaque euro non dépensé en investissement climat aujourd'hui se reportera sur les générations futures. Nous préférons parler ici plutôt de dette climatique implicite²² pour désigner cet indicateur. C'est en effet une notion prospective, analogue à la notion d'engagements implicites utilisée pour d'autres types de dépenses publiques comme les retraites, l'équivalent actualisé du flux de dépenses futures nécessaires à honorer un engagement donné. Ainsi, l'engagement de neutralité carbone en 2050 constitue un engagement implicite à un certain montant de dépense climat à cet horizon. Dans le scénario de neutralité carbone en 2050, avec un taux de préférence pour le présent égal à taux de croissance de l'économie, la dette climatique implicite s'élève à environ 150 % du PIB de 2018, et peut se mesurer au premier ordre

_

 $^{^{20}\}Gamma = F^{1/T} - 1$, voir plus haut.

²¹Conseil d'analyse stratégique, février 2019.

²²La dette implicite est une somme cumulée à ne pas confondre avec l'effort d'atténuation annuel. A titre d'analogie, si l'on fait la différence entre l'effort d'atténuation annuel en point de PIB et l'effort effectivement réalisé aujourd'hui, on se rapproche de la notion de tax gap ou d'écart de financement actualisé qui traduit le montant en points de PIB d'amélioration du solde structurel qu'il faudrait effectuer de manière pérenne pour ramener la dette publique sur une trajectoire soutenable.

simplement par le nombre d'années pour atteindre la neutralité multipliée par la dépense climat annuelle en point de PIB.

Une autre approche pour la « dette climatique » serait de nature rétrospective, et constituerait à mesurer une forme de « dette climatique héritée » : il s'agirait alors de mesurer les coûts non payés du passé, car c'est souvent en ces termes qu'on exprime la charge que l'inaction passée conduit à léguer aux générations futures. Cette dette n'ayant pas de créancier ni de débiteur, sa définition est normative. Néanmoins, dès lors que l'on définit pour l'avenir, une valeur de l'action climat, celle-ci est un candidat naturel pour la valeur de l'insuffisance des efforts passés. Nous proposons en conséquence de définir l'endettement climatique comme la somme des émissions nettes passées valorisées au prix social actuel du carbone²³, au sens de l'approche « comptable ». Ceci correspond à l'idée simple que, peu importe le moment où le CO2 a été émis, il contribue de la même manière au dérèglement climatique²⁴ et donc doit être valorisé au même niveau. L'endettement supplémentaire une année donnée est liée à l'insuffisance de l'effort climat par rapport à la trajectoire optimale. Par construction de l'indicateur, nous multiplions les émissions nettes passées par le prix social du carbone : il s'agit donc d'utiliser ici l'approche « comptable ». Un choix conventionnel doit-être fait sur la date à partir de laquelle sont cumulées ces émissions passées et on peut par exemple retenir la date de 1990 qui correspond au point de départ des engagements du protocole de Kyoto. Ces émissions passées présentent un coût pour les générations actuelles et futures, soit le coût des dommages à venir sur l'économie du fait du réchauffement, soit le coût de l'abattement nécessaire pour éviter ces dommages. Ce concept peut également être rapproché de l'idée de dette que les pays développés, pollueurs « historiques », auraient accumulée vis-à-vis des pays de développement plus récent, une question fondamentale pour la question de la répartition des efforts de décarbonation au niveau mondial. Il ressort un chiffrage de l'endettement climatique depuis 1990 de 3475 Mds€, soit proche lui aussi de 150 % du PIB et représentant un peu plus de 50000 € par habitant (Figure 22).

Les évolutions de ces deux indicateurs ne sont pas sans lien. En effet, chaque année les coûts non payés (se traduisant en émissions brutes positives) vont venir s'ajouter aux coûts à payer pour retrouver la neutralité carbone. Ils pourraient ainsi faire l'objet d'un suivi année après année, fondé sur un prix du carbone officiel fixé par la puissance publique, et actualisé à chaque changement de base des comptes nationaux. En effet, l'indicateur de dette climatique peut être un outil de pilotage de la puissance publique dans une optique d'équité/efficacité : il permet à la fois de mesurer l'écart à la cible de neutralité carbone et la juste répartition de l'effort entre les générations, un effort insuffisant une année devant être compensée la ou les années suivantes.

_

Formellement, à la date t, on définit sa variation cumulée $\Delta D_t^{T_0}$ par rapport à une date initiale T_0 par $\Delta D_t^{T_0} = \int_{T_0}^t P_t^{CO_2}(E_S - \bar{E}) ds$ où E_S sont les émissions de GES à la date s et $P_t^{CO_2}$ le prix social du carbone pris à sa valeur courante

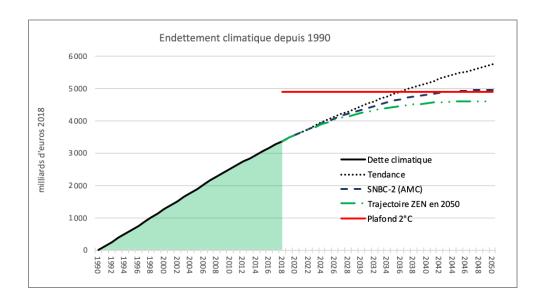


Figure 22 - Endettement climatique depuis 1990 au sens de l'approche rétrospective

Source : calculs des auteurs

6. Une épargne nette ajustée du coût social climatique désormais négative, signe d'un monde qui s'appauvrit progressivement

♦ Soutenabilité forte, soutenabilité faible

A la question de savoir si le régime actuel d'émissions est compatible avec le respect des engagements nationaux, la réponse est donc clairement non. Nous sommes loin de la trajectoire cible des émissions de gaz à effet de serre. Si on considère que le non respect de ces engagements expose de fait à des risques environnementaux majeurs, on peut dire que nous consommons plus de ressources naturelles que la nature n'est capable de le supporter. En dehors de quelques climato-septiques, cette appréciation est largement partagée : la notion dite de soutenabilité forte du développement économique, qui exige que chaque génération laisse un capital naturel, physique et humain au moins égal, dans chacune de ces dimensions, à celui dont elle a hérité, n'est pas assurée sur la dimension environnementale.

Est-il utile de compléter ce message pas des indicateurs mesurant ce que la littérature qualifie de soutenabilité « faible » ? C'est ce que font les indicateurs agrégeant les évolutions de ces différents types d'actifs, laissant place à l'idée que la baisse d'un type actif pourrait être compensée par la hausse d'un autre. En réalité, ce n'est pas le cas du climat, si les dommages sont irréversibles, car alors une dégradation marquée de l'environnement ne pourra pas être compensée par une accumulation de capital physique. C'est ce constat qui invite à retenir plusieurs indicateurs de soutenabilité, isolant notamment ceux dont l'impact est vital pour l'homme (pollution, réchauffement climatique) comme le proposait le rapport Stiglitz. Cela n'empêche pas néanmoins de s'intéresser aussi aux indicateurs de soutenabilité élargie.

Enrichir la comptabilité nationale d'indicateurs de ce type est une problématique ancienne et les propositions pour le faire n'ont pas manqué. Sur le plan conceptuel, Hicks introduit dès 1946 la notion

de vrai revenu, qu'il définit comme la consommation maximale autorisée sans dégrader le stock de capital, qu'on peut donc interpréter comme un concept de consommation soutenable. La notion de soutenabilité a également été popularisée et mise à l'agenda international par la commission Brundtland (1987), qui l'a définie comme l'impératif de « subvenir aux besoins de la génération actuelle sans compromettre la capacité des générations futures à en faire de même ». C'est à cette période que Cobb et Daly (1989) introduisent un indicateur du bien-être durable, l'ISEW, Indicator of Sustainable Economic Welfare, intégrant le coût des dégradations de l'environnement, mais aussi prenant en compte la question des loisirs et du capital humain. Connu encore sous le nom de PIB vert à la suite de la publication du rapport de John et Clifford Cobb (1994), l'ISEW est l'une des premières alternatives au PIB ou au PNB traditionnels à avoir été utilisée par certains pays tels que le Canada, le Royaume-Uni ou l'Autriche, ou encore par des ONG. Ainsi, l'ONG Friends of the Earth calcule depuis 2001, avec la New Economic Foundation et le Centre for Environmental Strategy de l'université du Sussex, son propre indice ISEW pour le Royaume-Uni. Kubiszewski et al. (2013) proposent une évaluation de cet indicateur de progrès véritable au niveau mondial et concluent à une diminution à compter de 1978, alors que le produit intérieur brut (PIB) mondial avait plus que triplé depuis 1950. Néanmoins, le PIB vert ne répond pas à la question de la soutenabilité globale. Pour cela, « ce dont nous avons besoin », comme le soulignait le rapport Stiglitz, « c'est d'une évaluation de la distance qui sépare notre situation actuelle des objectifs soutenables (...) en d'autres termes, nous avons besoin d'indicateurs de sur-consommation ou de sous-investissement », ces deux notions étant entendues dans un sens large.

Mesurer ainsi la soutenabilité, c'est précisément l'objectif qu'a poursuivi la Banque mondiale depuis les années 2000 en calculant un indicateur d'épargne nette « ajustée » pour la plupart des pays (Banque Mondiale, 2006, 2011, 2018). C'est aussi l'objectif des *Inclusive Wealth Report* publiés régulièrement par l'ONU sous l'égide du PNUDD, et qui évaluent la richesse des nations et du monde intégrant capital physique, humain et naturel (PNUDD, 2012, 2014, 2018). Ces travaux s'appuient sur l'idée Hicksienne qu'une trajectoire soutenable, définie comme une trajectoire où le bien-être monétaire –*comprehensive wealth*- ne décroit jamais²⁵, est une trajectoire où l'épargne nette ajustée est toujours positive²⁶. Concrètement, l'épargne nette ajustée (ENA) calculée par la Banque Mondiale peut s'écrire sous la forme EP - CCF + EDU - ENV où EP est l'épargne nationale brute, CCF la consommation de capital fixe, EDU la dépense d'éducation²⁷, ENV le coût des dommages environnementaux. Cinq facteurs sont pris en compte pour ce dernier : la raréfaction des ressources forestières, pétrolières et minières, le réchauffement climatique et la pollution de l'air.

Un cadre stylisé de soutenabilité faible

Pour établir le lien entre épargne nette ajustée, richesse inclusive, et soutenabilité²⁸, Arrow et alii (2012) définissent une trajectoire de développement économique soutenable comme une trajectoire où le bienêtre ne baisse pas.

Plus formellement, on peut définir le bien-être intertemporel à la date t comme :

$$V(t) = \int_{t}^{+\infty} u(C_s)e^{-\rho(s-t)}ds$$

où C_t est la consommation et $u(C_t)$ est le flux de bien-être associé

Ainsi, une trajectoire soutenable est une trajectoire où dV(t)/dt est toujours positif. Une des hypothèses clés de Arrow et alii est que V(t) ne dépend que du stock initial de capital (productif et humain) \vec{K}_t , et des ressources naturelles N_t , autrement dit que :

$$V(t) = \int_{t}^{+\infty} u(C_s)e^{-\rho(s-t)}ds = \hat{V}(\vec{K}_t, N_t, t)$$

Il ne s'agit pas de dire que seuls les stocks d'actifs déterminent les trajectoires économiques, puisqu'elles dépendent aussi des technologies, des valeurs et préférence des individus et des institutions. Mais il s'agit de traiter ces dernières comme exogènes. La condition est vérifiée sur une trajectoire optimale sous contrainte dynamique, mais le cadre se veut plus général.

On a donc:

$$\frac{d\hat{V}(\vec{K_t}, N_t, t)}{dt} = \frac{\partial \hat{V}}{\partial \vec{K_t}} \dot{\vec{K}_t} + \frac{\partial \hat{V}}{\partial N_t} \dot{N_t} + \frac{\partial \hat{V}(t)}{\partial t}$$

Le développement est alors soutenable à un instant t si cette quantité est positive, soit si :

$$\frac{d\hat{V}(\vec{K_t}, N_t, t)}{dt} = \vec{p_K} \dot{\vec{K_t}} + p_N \dot{N_t} + \frac{\partial \hat{V}(t)}{\partial t} > 0$$

où \vec{p}_K et p_N sont respectivement les prix implicites du capital (physique, humain) et des ressources naturelles, définis formellement comme $\vec{p}_K = \partial \hat{V}/\partial \vec{K}$, $p_N = \partial \hat{V}/\partial N$. Le facteur $\partial \hat{V}(t)/\partial t$ correspond au gain d'utilité lié au seul passage du temps.

On peut montrer que si $u(C_t) = C_t$ alors $p_K \dot{K}_t = Y_t - C_t - \delta K_t = EN_t$.

La variation de la fonction de bien-être intertemporel, en l'absence de dégradation environnementale, est égale à l'épargne diminuée de la dépréciation du capital, ce qui correspond en comptabilité nationale à l'épargne nette EN_t .

Par extension, on définit l'épargne nette ajustée ENa_t comme l'épargne corrigée à la baisse par le coût des dégradations environnementales soit :

$$ENa_t = Y_t - C_t - \delta K_t + p_N \dot{N}_t$$

Une trajectoire soutenable est donc une trajectoire le long de laquelle l'épargne nette ajustée est positive. Dans l'hypothèse où le bien-être n'augmente pas par le seul fait du passage du temps, en dehors de l'accumulation des facteurs, la condition de soutenabilité s'écrit alors :

$$ENa_t = EN_t + p_N \dot{N}_t > 0.$$

Ce cadre d'analyse est également au cœur de la notion de richesse inclusive (« inclusive wealth ») développée à l'initiative du PNUDD dans le cadre du Sustainable Development Solution Network (UNU-HDPI (2012)). La richesse inclusive \widehat{W} est définie comme :

$$\widehat{W} = \vec{p}_K \cdot \vec{K}_t + p_N N_t + p_t t$$

où p_t est la valeur implicite du temps définie comme $p_t = \partial \hat{V}(t)/\partial t$ que l'on prendra égale à 0 pour la suite.

Comme $d\widehat{W}/dt_{\vec{p}_K,p_N,p_t=cte}=d\widehat{V}(\vec{K}_t,N_t,t)/dt$, une trajectoire soutenable le long de laquelle le niveau de bien-être est soutenu est une trajectoire où la richesse inclusive, à prix implicites constants, ne décroit jamais. Ce cadre théorique a le mérite de préciser les conditions pour que l'épargne nette ajustée soit un indicateur pertinent de soutenabilité : il faut calculer le prix implicite p_N et déterminer sa loi d'évolution, qui ne peut se fonder sur la seule observation du passé mais nécessite un travail de projection.

Dans notre cas, la perte de bien-être liée aux émissions de gaz à effet de serre – le coût des dommages – a été définie comme l'effort monétaire d'atténuation D_t^{ν} nécessaire pour atteindre la neutralité carbone à horizon 2050 – coût de réparation –, sous l'hypothèse d'une répartition équitable de cet effort dans le temps.

Par construction, on a donc : $d\hat{V} - p_K \dot{K}_t = -D_t^{\nu}$.

Par suite, on a :
$$p_N \dot{N}_t = -P_t^v = -P_{t_0}^{CO_2} \times E_{t_0}$$
, soit encore $p_N(\bar{E} - E_{t_0}) = -P_{t_0}^{CO_2} \times E_{t_0}$

où \overline{E} est la capacité du puit carbone terrestre et océanique, E_{t_0} les émissions à la date de référence où le prix est considéré comme constant et $P_{t_0}^{co2}$ la valeur correspondante du prix social du carbone selon l'approche « comptable ».

Ceci s'écrit aussi $p_N = P_{ref}^{CO_2} = P_{t_0}^{CO_2} \times 1/(1-\bar{E}/E_{t_0})$ ce qui signifie que la valeur de l'action climat $P_{t_0}^{CO_2}$ telle que calculée précédemment peut être utilisée comme fondement du prix implicite des émissions cumulées de CO2, modulo le léger rebasage sur les émissions nettes.

Finalement, l'épargne nette ajustée est égale à la différence entre l'épargne nette et la valeur des émissions nettes au prix social du CO2 de l'année de référence :

$$ENa_t = EN_t - P_{ref}^{CO_2}(E_t - \bar{E})$$

Lors d'une année t, un effort climat supplémentaire vient donc augmenter l'épargne nette ajustée. En effet, cet effort supplémentaire est compensé par une sous consommation à épargne nette inchangée ; mais cet effort vient diminuer les émissions de GES et donc diminuer le terme d'ajustement de l'épargne nette. Cet exemple montre qu'une formule alternative de l'épargne nette ajustée consiste à soustraire de l'épargne nette la variation de la dette climatique au sens prospectif défini plus haut.

En prenant le capital reproductible comme numéraire, la richesse inclusive peut quant à elle s'écrire :

$$\widehat{W} = K_t + P_{ref}^{CO_2} N_t^{cli}$$

où $P_{ref}^{CO_2}$ est le prix implicite du carbone d'une année de référence - que nous fixerons dans nos simulations à 2019 - et N_t^{cli} le « capital » climatique.

Si l'on prend comme référence 1990, $N_t^{cli} = \sum_{1990}^t (\bar{E} - E_t)$ et alors la richesse élargie \widehat{W} est tout simplement égale à la différence entre le capital reproductible K_t et la dette climatique ΔD_t^{1990} telle que nous l'avons définie précédemment au sens rétrospectif.

♦ Prise en compte d'un prix de la décarbonation en plus d'un prix du carbone

En réalité, dans notre modèle, l'hypothèse de Arrow & alii n'est pas vérifiée. En effet, l'utilité ne dépend pas uniquement des stocks de capital physique et de capital naturel, mais également du stock de technologies vertes installées dans l'économie, que l'on note KV, lui-même fonction décroissante de E. Un niveau élevé d'émissions initiales signifie toutes choses égales par ailleurs, un appareil productif dont la décarbonation est peu avancée, rendant d'autant plus difficile le retour à la neutralité carbone dans un budget carbone prédéterminé. Ainsi :

$$V(t) = V(K_t, N_t, KV_t(E)) = V'(K_t, N_t, E_t)$$

D'où : $dV = p_K dK + p_N dN + p_{AB} dE = p_K dK - p_N (E - \bar{E}) + p_{AB} dE$, où $p_K = \partial V / \partial K$, $p_N = \partial V / \partial N$ et $p_{AB} = \partial V / \partial K + \partial K V / \partial E$, où p_K et p_N sont des prix positifs et p_{AB} une valeur négative $(\partial KV / \partial E < 0)$ correspondant au prix d'abattement des émissions de CO2 liées à la mise en œuvre des technologies vertes.

Sur une trajectoire à E constant (dE=0), on retrouve le cas particulier de Arrow et alii : $dW=p_KdK-p_N(E-\bar{E})$. Dans les autre cas, étant donné que la perte éventuelle d'utilité est liée à la mauvaise répartition de l'effort dans le temps (l'objectif étant en toutes circonstances atteint), p_NdN doit aussi être égal à l'insuffisance d'investissement verts, c'est-à-dire notre prix du carbone multiplié par les émissions courantes. Sur la trajectoire optimale, on a donc : $p_NdN=-p_{AB}dE$. D'où : $dW=p_KdK=Y_t-C_t-\delta K_t=EN_t$.

Comme entre 1990 et 2020 les émissions sont restées globalement stables (dE =-20% sur 30 ans), on peut utiliser l'approximation dE = 0 et donc dW = $p_K dK - p_N (E - \bar{E})$ pour l'analyse rétrospective de l'épargne nette ajustée et de la dette climatique. En analyse prospective, le facteur dE peut être ajouté avec : $p_{AB} = -p_N dN/dE = -\frac{p_N (E - \bar{E})}{\Gamma_{*E}} = -\frac{p_N}{\Gamma}*(1 - \bar{E}/E)$. Ainsi, sur une trajectoire où les émissions se réduisent, mais pas suffisamment, l'épargne nette ajustée reste inférieure à l'épargne nette, les deux ne coïncidant que lorsqu'on se trouve sur la trajectoire optimale. Si on décarbone plus vite que la trajectoire optimale, la richesse inclusive augmente plus vite que l'accumulation de capital. On dispose ainsi d'un outil comptable qui permet de jauger l'effort de chaque génération par rapport à une répartition équitable.

♦ Application : une évaluation de l'épargne nette ajustée en France et dans le monde

En termes quantitatifs, l'épargne nette ajustée mondiale est évaluée par la Banque mondiale à 10,7% en 2016, pour une épargne brute de 25,9%. La principale correction tient à la prise en compte de la dépréciation du capital, qui mobilise 16,7% du PIB mondial ; les dégradations environnementales sont prises en compte à hauteur de -2,6% du PIB. On le voit avec ces chiffres, les correctifs apportés par la Banque Mondiale pour mesurer les dégradations environnementales, malgré la largeur apparente du spectre des dommages pris en compte, sont très faibles au niveau mondial. Ils sont quasiment imperceptibles dans le cas de la France : le chiffrage de l'ENA est de 7,1%, avec une épargne brute de 20,3%, de laquelle est déduit 17,7% de consommation de capital fixe, soit 2,6% d'épargne nette ; les dépenses d'éducation jouent en positif pour 4,9 points de PIB, tandis que l'environnement, en négatif, joue pour -0,4%, c'est-à-dire de manière quasi marginale.

En particulier, la valorisation financière du réchauffement climatique est très largement sous-estimée. En effet, jusqu'en 2014, les évaluations de la Banque mondiale se sont reposées sur des travaux de Frankhauser (1995), 5,5 dollars la tonne de CO2. En 2014, la Banque mondiale a procédé à une revalorisation importante du prix social du carbone, le portant à 30 \$ la tonne de CO2 ²⁹, mais cette valeur reste très inférieure aux estimations plus communément admises comme nous l'avons longuement développé plus haut. Il s'agit donc de réexaminer ici cette question à la lumière des nouvelles évaluations du prix social du carbone que l'on vient de passer en revue.

Nous nous concentrons ici sur les questions climatiques. La trajectoire de développement est soutenable

_

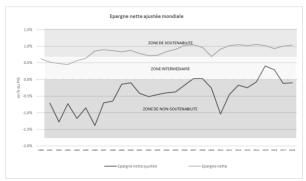
si l'épargne nette ajustée est positive, soit :

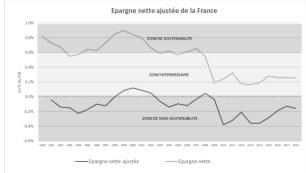
$$ENa_t = Y_t - C_t - \delta K_t + p_N \dot{N}_t > 0$$

où Y_t , C_t , K_t , N_t désignent respectivement le PIB, la consommation, le capital reproductible et le capital naturel, et δ le taux de dépréciation du capital.

Comme $\dot{N}_t = \bar{E} - E_t$ et $p_N = P_{ref}^{co2}$, la condition de soutenabilité s'écrit :

$$ENa_t = EN_t - P_{\text{Ref}}^{CO_2}(E_t - \bar{E}) > 0$$


Par ailleurs, l'épargne nette ajustée intègre, en déduction, une prise en compte de la croissance de la population car nous retenons la soutenabilité au sens de la non décroissance de la richesse inclusive par tête. Cette dernière est croissante si et seulement si : $\Delta \widehat{W}_t > W \times \dot{N}/N$.


La condition de soutenabilité instantanée s'écrit donc : ENa_t >0,

avec
$$\widehat{\text{EN}}a_t = \text{EN}_t - P_{\text{Ref}}^{\text{CO}_2}(E_t - \bar{E}) - W \times \dot{N}/N$$
.

Ainsi calculée, l'épargne nette nationale et mondiale est retracée sur le graphique ci-après. Les données sont issues de la base de données de la Banque Mondiale pour ce qui concerne l'épargne nette EN_t et les émissions de gaz à effet de serre E_t ; le puit carbone \overline{E} est calé sur la SNBC-2 au niveau national³⁰, et reste constant égal à 10 GtCO2eq au niveau mondial. A des fins de simplification, le prix du carbone retenu pour la France et le monde est la valeur moyenne GIEC rétropolée en 2019 soit 180 dollars la tonne de CO2eq (ou 153 euros), c'est-à-dire un prix $P_{Ref}^{CO_2} = P_{2019}^{CO_2} * 1/(1 - \overline{E_{2019}}/E_{2019})$ de 200 euros la tonne de CO2eq.

Figure 23a et 23b - Épargne nette ajustée en France et dans le monde

Source: World Bank Data, calculs des auteurs

Lecture : Les différentes zones s'appliquent à la courbe d'épargne nette ajustée. La zone de soutenabilité correspond en moyenne à une zone d'accroissement simultanée du capital naturel et du capital physique (soutenabilité forte et faible). Dans la zone de non soutenabilité, d'une part le capital naturel baisse, et d'autre part les coûts de réparation sont supérieurs à l'augmentation des revenus (non soutenabilité forte et faible). Dans la zone intermédiaire, l'épargne nette ajustée est positive mais en-deça de la valeur moyenne de l'épargne nette – cela signifie que le capital naturel est globalement en baisse (soutenabilité faible mais non forte).

L'épargne nette ajustée apparaît alors négative au niveau mondial. Même si, après avoir atteint un point bas proche de -13% en 1996, elle s'est redressée depuis notamment en raison de la montée en puissance de l'économie chinoise dont le taux d'épargne est élevé, elle reste en moyenne significativement négative sur les deux dernières décennies. En France, l'épargne nette ajustée est également négative depuis le début des années 1990. À rebours des conclusions de la Banque mondiale³¹, la croissance apparaît donc comme n'étant pas soutenable, même au sens dit « faible » du terme c'est à dire en considérant les substitutions entre capital physique et capital naturel. Non seulement, nous utilisons plus de ressources que la nature n'est capable d'en régénérer, mais aussi les richesses que nous laissons ne compensent pas les coûts de réparations des dommages climatiques.

La principale raison de l'écart avec les estimations de la Banque Mondiale se trouve dans une différence d'appréciation de la valeur du carbone. La Banque mondiale prend en compte également, contrairement au présent article, l'accumulation du capital humain, valorisé à hauteur des dépenses publiques d'éducation. Ce choix peut sembler optimiste au sens où il semble plus adapté de recourir à des méthodes d'inventaire permanent, réduisant considérablement l'impact sur l'épargne ajustée notamment lorsque l'âge de fin d'étude cesse de progresser comme c'est le cas en France depuis deux décennies (cf Mélonio et alii (2011)). En outre, il est plus que probable que la valorisation positive de l'accumulation du capital humain serait largement plus que contrebalancée par la prise en compte négative de la perte de

_

biodiversité -l'autre préoccupation majeure en matière environnementale- ne modifiant pas le message de non-soutenabilité de la trajectoire économique actuelle.

♦ Application : évaluation de la richesse inclusive, intégrant la dette climatique

A ce concept de flux peut être associé le concept en stock que constitue la richesse inclusive. Elle se définit comme la somme des différentes formes de capital pondérée par le prix implicite de chacun d'entre eux. Ici nous considérons le capital physique et le « capital » climatique. En prenant le capital comme numéraire, la richesse inclusive peut ainsi s'écrire :

$$\widehat{W} = K_t + P_{t_0}^{co2} N_t^{cli}$$

où $P_{t_0}^{co2}$ est le prix implicite du carbone d'une année de référence t_0 - que nous fixerons par la suite à 2018 - et N_t^{cli} le « capital » climatique.

Le stock de capital est construit par inventaire permanent à partir de 1975, c'est -à-dire en supposant un ratio capital/output de 2,8 en 1975. Ce calcul s'effectue en utilisant les données d'épargne nette de la Banque Mondiale.

Comme $K_t - K_{1975} = \int_{1975}^t \dot{K}_s ds$, en notant à nouveau l'épargne nette $EN_s = Y_s - C_s - \delta K_s$ l'épargne nette, on peut écrire : $K_t = K_{1975} + \int_{1975}^t EN_s ds$.

Pour calculer K_{1975} , on utilise le fait qu'à l'état stationnaire, on a : $\frac{K}{L} = \frac{s}{g+\delta}$, avec en 1975 : s=23%, g=3% et $\delta = 5\%$.

Le climat est pris en compte à compter de 1990. Il s'agit là d'un choix normatif en cohérence avec celui que nous avons retenu pour l'évaluation de la dette climatique et bien sûr au choix des COP depuis Kyoto d'en faire la référence de l'ensemble des processus qui leur sont associés. En supposant que les gaz à effet de serre, une fois dans l'atmosphère, y restent indéfiniment, et donc que $\dot{N}_s^{cli} = \bar{E} - E_s$, on a alors $N_t^{cli} = \int_{1990}^t (\bar{E} - E_s) ds$.

On peut considérer aussi qu'à partir de cette date, la lutte contre le réchauffement climatique est devenue un objectif social, et que le fait de continuer à émettre plus de GES que la planète ne peut en absorber et devenu une dette pour les générations futures. Une autre option serait de remonter plus en amont, au moment où les GES ont dépassé la capacité du puit carbone monde, c'est à dire dans les années 1950-1960.

Richesse par habitant intégrant la dette climatique (France)

120 000

110 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100 000

100

Figures 24a et 24b - Richesse inclusive nationale et mondiale

Source: World Bank Data, calculs des auteurs

La richesse inclusive réajustée par habitant s'élève en 2019 environ à 57 500 euros en France et 15 500 dollars au plan mondial, pour une richesse (capital) de respectivement 109 000 euros (France) et 37 000 dollars (Monde). L'écart représente la valeur financière de l'endettement carbone depuis 1990, au sens de l'approche rétrospective. Dans un cas comme dans l'autre, la richesse, élargie aux ressources naturelles (ici le climat) est en baisse, plus accentuée en France depuis la crise de 2008 en raison de la baisse de l'épargne brute ; la baisse étant plus atténuée au niveau mondial, en raison de l'émergence chinoise.

Par construction, la richesse inclusive est la somme cumulée dans le temps de l'épargne nette ajustée. En effet :

$$\widehat{W}_t = K_{1975} + \int_{1975}^t E N_s ds - P_{2019}^{co2} \int_{1990}^t (E_s - \overline{E}) ds,$$

soit :
$$\widehat{W}_t - \widehat{W}_{1990} = \int_{1990}^t ENa_s ds$$
.

L'épargne nette ajustée mesure la soutenabilité instantanée ; ce qui est intéressant en soi. Mais une année d'épargne nette négative peut être compensée l'année suivante par une année positive ; la richesse inclusive rend compte des évolutions sur la moyenne et longue durée. Dans notre construction, il existe une relation très simple entre richesse inclusive, capital et dette financière climatique : la première est tout simplement la différence des deux autres : $\widehat{W}_t = K_t - \Delta D_t^{1990}$.

Ces derniers résultats apportent un éclairage nouveau aux travaux qui concluaient à la soutenabilité de la plupart des pays riches, sur le fondement de ces indicateurs d'épargne nette ajustée et de richesse inclusive. Un prix du carbone correctement calibré aboutit en effet à la conclusion inverse.

* *

*

Conclusion

Nous nous sommes attachés, dans cet article, à réévaluer la question de la soutenabilité climatique du développement économique, au plan national pour la France, comme mondial. Sur le plan théorique, des progrès considérables ont été réalisés depuis la fin des années 1990, avec une étape importante autour des travaux de la commission Stiglitz en 2008.

Dans le langage des théories du bien-être et de la soutenabilité, la COP21 et ses déclinaisons continentales et nationales ont donné une valeur sociale à l'action pour le climat. Les sociétés considèrent désormais les émissions de CO2 au-delà des capacités d'absorption terrestre et océanique comme un coût pour les générations futures. Et ceci donne aux efforts d'atténuation une valeur, la valeur de l'action climat. L'autre facteur essentiel pour juger de la soutenabilité climatique est de nature technico-financière. Traduire en termes financiers des objectifs de réduction des émissions de CO2 nécessite de connaître le coût des techniques et technologies au regard de leur potentiel de décarbonation de l'économie. Sur ce plan, aussi, les grandeurs commencent désormais à être mieux établies, contribuant à fiabiliser les modèles macro-sectoriels comme technico-économiques.

Partant, nous avons proposé un cadre macroéconomique permettant d'évaluer les trajectoires optimales de réduction des émissions de GES avec des contraintes en termes d'équité intergénérationnelle et d'évolution des technologies de décarbonation. Ce double mouvement de clarification de l'objectif climat et des connaissances technico-financières nous paraît suffisant pour être en mesure de donner un prix social au carbone raisonnablement fiable. Nous avons montré que cette valeur en France devrait se situer, pour l'objectif de neutralité carbone , autour de 120 à 250 euros aujourd'hui ; 250 à 500 € en 2030 ; 500 à 1000 € en 2040 ; et de 1000 à 2000 euros en 2050. Ces estimations sont globalement conformes, en ordre de grandeur, et lorsque l'on analyse les concepts de prix social comparables, aux estimations du GIEC ou à celles établies par la commission Quinet (2019) et les modèles sur lesquels ils s'appuient : elles en constituent la fourchette haute. Pour tenir les engagements climatiques de la France, à savoir la neutralité carbone en 2050 l'effort de dépense climat devrait être porté à 4,5% du PIB chaque année. L'effort mondial devrait être d'une ampleur comparable (5,1% du PIB mondial).

Enfin, ces valeurs sociales du carbone réhaussées éclairent d'un jour nouveau l'évaluation de la soutenabilité qu'on a l'habitude de qualifier de faible, c'est à dire la question – légitimement controversée par ailleurs – de savoir si malgré tout, et donc malgré les dommages environnementaux, le bilan pour les générations futures ne serait pas « positif » compte tenu de l'amélioration continue du niveau de vie moyen. L'épargne nette mondiale, ajustée pour tenir compte des dommages climatiques, est négative sur toute la période considérée. Au cours des trois dernières décennies, le monde se serait appauvri et non enrichi, le coût pour le climat des activités humaines l'aurait emporté sur l'accumulation du capital privé comme public. La richesse inclusive, agrégeant capital naturel et capital physique, est en baisse. Même au sens faible du terme, nous sommes sur une trajectoire de non soutenabilité et ceci en réalité depuis plusieurs décennies, que seul un changement d'échelle des politiques de décarbonation de l'économie est susceptible de corriger.

Nous ne pouvons qu'insister, pour conclure définitivement, sur les implications des avancées et clarifications récentes, tant au plan théorique qu'empirique. La valorisation du prix du carbone est un enjeu majeur pour le pilotage des politiques publiques, et la mise en place d'une comptabilité économique environnementale, serait de nature à éclairer le débat public. Mais, une telle comptabilité

publique serait également utile pour orienter les choix individuels, de consommation, de production, de déplacement. Une possibilité serait ainsi de fixer par la loi une valeur sociale de l'action pour le climat ou un coût social du carbone, qui préciserait aussi l'usage de cette valeur, qui peut aller de l'étiquetage systématique ou l'intégration dans les normes comptables des entreprises, à des mesures plus contraignantes comme la prise compte dans les marchés publics ou la fixation d'un prix plancher pour l'échange de quotas d'émissions de CO2.

REFERENCES

Aronsson, T. & Johansson, L. (1997). Welfare Measurement, Sustainablity and Green Growth Accounting. Cheltenham: Edward Elgar Publishing Ltd.

Arrow, K.J., Dasgupta, P., Goulder, L., Mumford, K. & Oleson, K. (2012). Sustainability and the Measurement of Wealth. *Environment and Development Economics*, 17, 317-353. https://doi.org/10.1017/S1355770X12000137

Baptiste-Perrissin, F. & Foussard, A. (2016). Trajectoires de transition bas carbone au moindre coût. Ministère de Environnement de l'Énergie et de la Mer. *Théma du SEEIDD*. https://www.ecologique-solidaire.gouv.fr/sites/default/files/Th%C3%A9ma%20-%20Trajectoires%20de%20transition%20bas%20carbone%20au%20moindre%20co%C3%BBt.pdf

Bruntland (1987). *Our common future*. World Commission on Environment and Development, New-York, Oxford University Press.

 $\underline{https://sustainable development.un.org/content/documents/5987 our-common-future.pdf}$

CGDD (2020), Chiffres clés du Climat : France, Europe et Monde. *Datalab*. https://www.statistiques.developpement-durable.gouv.fr/sites/default/files/2019-11/datalab-62-chiffres-cles-du-climat-france-europe-monde-edition2020-novembre2019_0.pdf

Cobb C. & Cobb, J. (1994). *The Green National Product: a Proposed Index of Sustainable Economic Welfare*, University of America Press, DC, 1994.

Cobb, J. & Daly, H. (1989), For the Common Good; Redirecting the Economy toward Community, the Environment, and a Sustainable Future, 2nd updated edition, Boston: Beacon Press.

Dasgupta, P. (2001), *Human Well-Being and the Natural Environment*, Oxford, Oxford University Press.

Dasgupta, P., Duraiappah, A., Managi, S., Barbier, E., Collins, R., Fraumeni, B., Gundimeda H. & Mumford, K. J. (2015). How to measure sustainable progress. *Science*, 350(6262), 748-748.

Dasgupta, P.S., Maler, K. G. & Barrett, S. (1999), Intergenerational equity, social discount rates and global warming, *Chapter 7 in Portnay, Weyant*, J., Eds, Discounting an intergenerational equity, ressources for the future, Washington, DC.

Easterlin, R. (1974). *Does Economic Growth Improve the Human Lot? Some empirical evidence*. In: Nations and Households in Economic Growth, Essays in Honor of Moses Abramovitz, pp. 89-125. https://doi.org/10.1016/B978-0-12-205050-3.50008-7

Frankhauser, S. (1995). The Social Costs of Greenhouse Gas Emissions: An Expected Value Approach. *The Energy Journal*, 15(2), 157-184.

Fleurbaey, M. & Blanchet, D. (2013), "Beyond GDP. Measuring Welfare and Assessing Sustainability", Oxford University Press, 306 p.

GIEC (2015), Changements climatiques 2014, Rapport de synthèse, 5ème rapport du groupe d'experts intergouvernemental sur l'évolution du climat.

https://www.ipcc.ch/site/assets/uploads/2018/02/SYR AR5 FINAL full fr.pdf

Gueret A., Malliet P., Saussay A. & Timbeau X. (2018) An explorative evaluation of the climate debt, *Policy Brief n°45 de l'OFCE*, décembre.

https://www.ofce.sciences-po.fr/pdf-articles/actu/OFCE-Policybrief45Eng.pdf

Hamilton, K. & Clemens, M. (1999), *Genuine Saving Rate in Developing Countries*, World Bank Economic Review 13 (2): 333-56.

Hartwick, J. (1977), International Equity and Efficient Allocation of Exhaustible Resources, *American Economic Review* 66, 972-4.

Heal, G.M. (1998), Valuing the future: economic theory and sustainability, *Columbia University Press*, USA

Hicks, J.R. (1946). *Value and Capital: An Inquiry into Some Fundamental Principles of Economic Theory*. Oxford: Clarendon Press, 2nd édition.

I4CE (**2019**). *Panorama des financements climat*, Institut for Climat Change, Edition 2018. https://www.i4ce.org/wp-core/wp-content/uploads/2019/09/I4CE-Panorama2019.pdf

Kubiszewski, I., Costanza, R., Franco, C., Lawn, P. A., Talberth, J., Jackson, T. & Aymler, C. (2013). Beyond GDP: Measuring and achieving global genuine progress. Ecological Economics. 93: 57–68.

Managi, S., & Kumar, P. (Eds.). (2018). *Inclusive wealth report 2018: measuring progress towards sustainability*. Routledge.

Mélonio, T., Antonin, C. & Timbeau, X. (2011), L'épargne nette réajustée, Revue de l'OFCE, Débats et politiques, 120

Nordhaus, W. & Tobin, J. (1973), Is Growth Obsolete ? in *The Measurement of Economic and Social Performance*, Studies in Income and Wealth, National Bureau of Economic Research, 38. https://www.nber.org/chapters/c3621.pdf

Nordhaus, W. D. (1977). Economic Growth and Climate: The Carbone Dioxide problem, *American Economic Review*, 67, 341-346.

http://www.econ.yale.edu/~nordhaus/homepage/carbondixoideproblem.pdf

Pearce, D.W. & Atkinson, G.D. (1993). Capital Theory And Measurement of Sustainable Development : An Indicator of Weak Sustainablity, Ecological Economics 8 (2): 103-108.

Pezzey, W. (1989). Economic Analysis of Sustainable Growth and Sustainable Development, World Bank, *Environment Department Working Paper*.

http://documents.worldbank.org/curated/en/234121493257444727/pdf/ENV15-REPLACEMENT.pdf

Quinet, A. (2009). Valeur tutélaire du carbone. Rapport de la commission présidée par Alain Quinet. Centre d'Analyse Stratégique. *Rapports et documents*. N°16 – 2009. http://archives.strategie.gouv.fr/cas/system/files/rapp 16 vtc web.pdf

Quinet, A. (2019). La valeur de l'action pour le climat. Rapport de la commission présidée par Alain Quinet. France Stratégie. *Rapport*. Février 2019.

 $\underline{https://www.strategie.gouv.fr/sites/strategie.gouv.fr/files/atoms/files/fs-2019-rapport-la-valeur-de-laction-pour-le-climat_0.pdf*}$

Quinet, A. (2019). Quelle valeur donner à l'action pour le climat. *Economie et Statistiques.*, 510-511-512, 165–179.

Rees, W. & Wackernagel, M. (1996), Our Ecological Footprint: Reducing Human Impact on the Earth. New Catalyst Bioregional Series. Paperback.

SCF (2018). Rapport du Standing Committee on Finance. Convention-cadre des Nations Unies sur les changements climatiques.

https://unfccc.int/fr/process/bodies/constituted-bodies/standing-committee-on-finance-scf/documents

Solow, R. (1956), A Contribution to the Theory of Economic Growth, *The Quarterly Journal of Economics*, 70(1). (Feb., 1956), pp. 65-94.

Stiglitz, J. E., Sen, A. K., & Fitoussi, J. P. (2009). Rapport de la Commission sur la mesure des performances économiques et du progrès social. https://www.vie-publique.fr/sites/default/files/rapport/pdf/094000427.pdf

Stiglitz, J. E., Stern, N., Duan, M., Edenhofer, O., Giraud, G., Heal, G. M., ... & Shukla, P. R. (2017). Report of the high-level commission on carbon prices. https://static1.squarespace.com/static/54ff9c5ce4b0a53decccfb4c/t/59244eed17bffc0ac256cf16/1495551740633/CarbonPricing Final May29.pdf

UNU-IHDP. (2012). *Inclusive wealth report 2012: measuring progress toward sustainability.* Cambridge University Press.

UNU-IHDP and UNEP. (2015). *Inclusive Wealth Report 2014.* Cambridge University Press. https://assets.cambridge.org/97811071/09629/frontmatter/9781107109629_frontmatter.pdf

World Bank (2006). Where is wealth of Nation? Measuring Wealth for 21th Century, Washington DC: World Bank.

 $\frac{http://documents.worldbank.org/curated/en/287171468323724180/pdf/348550REVISED0101Official}{0use0ONLY1.pdf}$

World Bank (2011). The Changing Wealth of Nations? Measuring Sustainable Development in the New Millennium. Washington DC: World Bank.

 $\frac{http://documents.worldbank.org/curated/en/630181468339656734/pdf/588470PUB0Weal101public10}{BOX353816B.pdf}$

World Bank (2018). *The Changing Wealth of Nations, Building a Sustainable Future*. Washington DC: World Bank.

ANNEXE: Programmation du modèle sous Python

Importation des modules nécessaires au programme

Définition des fonctions de base et des paramètres initiaux

```
Entrée [2]:
                                                                                     def u(c,A,\tau):
                                                                                                       Utility function
                                                                                                       c: consumption per efficient unit of work
A: labor efficiency
                                                                                                       c*A: consumption per capita
                                                                # If y = 1 we can show via L'hopital's Rule that the utility # becomes \log
                                                                                                                           return (c*A)**(1 - τ) / (1 - τ)
                                                                 and the state of t
                                                                  35
36
37
                                                                                    def lam_zen (n,γ,Einit,Efin,T,epsi):
    g=(1+n)*(1+γ)-1
    return (1-(Efin/Einit)**(1/T)/(1+g))/epsi
                                                                    40
                                                                                     def k_eq (lameq,n,y,τ,δ,β,α):
    return ((α*(1-lameq)/(δ+(1+γ)*(1+n)/β-1))**(1/(1-α)))
                                                                  45 def s_eq (lameq,n,γ,τ,δ,β,α):

return (α*(1-lameq)*(δ*(1+γ)*(1+n)-1)/(δ*(1+γ)*(1+n)/β-1))
                                                            47
48
49
50
def PlotFigures(var1,var2,title,unit,low,high):
figc = plt.figure()
plt.ylim(low, high)
53
plt.plot(TT[0:T+2],var1[0:T+2])
54
plt.plot(tT[0:T+2],var2[0:T+2])
55
figc.suptitle(title, fontsize=20)
plt.xlabel('time', fontsize=16)
plt.ylabel(unit, fontsize=16)
plt.show()
```

```
def PlotFigures5(var1,var2,var3,var4,var5,title,unit,low,high):
    figc = plt.figure()
    plt.ylim(low, high)
    plt.plot(TT[0:T+2],var2[0:T+2])
    plt.plot(TT[0:T+2],var2[0:T+2])
    plt.plot(TT[0:T+2],var3[0:T+2])
    plt.plot(TT[0:T+2],var5[0:T+2])
    plt.plot(TT[0:T+2],var5[0:T+2])
    figc.suptitle(title, fontsize=20)
    plt.ylabel(vitine', fontsize=16)
    plt.ylabel(unit, fontsize=16)
    plt.ylabel(unit, fontsize=16)
    plt.show()

def PlotFiguresScaled(var1,var2,title,unit,low,high):
    figc = plt.figure()
    plt.ylim(low, high)
    plt.plot(TT[0:T+2],var2[0:T+2])
    plt.plot(TT[0:T+2],var2[0:T+2])
    plt.xlabel('time', fontsize=20)
    plt.xlabel('time', fontsize=16)
    plt.ylabel(unit, fontsize=16)
    plt.ylabel(unit, fontsize=16)
    plt.show()
```

```
Entrée [3]: 1 # Structural economic parameter
                            \tau = 2
\delta = 0.05
                            \beta = 1/(1+0.01)
                        5 α = 0.23471
6 γ = 0.01
                                                  #calibrated to fit 2019 equilibrium hypothesis
                            n=0.005
                       8 theta=1
9 g=(1+n)*(1+γ)-1
                     10
11
12
13 #Carbone parameters
14 epsi=1.5
15 lam19=0.019
16 E50=80
                     #result precision
tol=1e-5
max_iter=1e3
                     23 #National accounts 2019
24 Y19=2320
25 L19=67.3
                     26 E19=439
                     26 E19=439
27 s19=0.203
28 CB19=Y19*(1-s19) #national account consumption
29 C19=Y19*(1-s19-lam19) #consumption net of climate expenditures
30 sig19=E19/Y19
                    32 #Steady state hypothesis for calibrating k
                    33 k19=k_eq(θ,n,γ,π,δ,β,α)
34 r19=f_prime(k=k19,lam=θ,α=α)-δ
7p19=f_prime(k=k19,lam=lam19,α=α)-δ
                    36 |
37 #GDP and productivity
38 y19=f(k19,0,α =α)
                          A19=Y19/y19/L19
c19=y19*(1-s19-lam19)
                    41 cb19=y19*(1-s19)
                    43 # Time period
                    # t=0:2019 jusqu'à t=T=31:2050
45 T=31
                          TT = np.arange(2019,2052)
t = np.arange(0,T+2)
                    46
                    48
                    49
50 #Steady State
                          lamzenplus=lam_zen(n,γ,E19,E50,T,epsi)
                         keqzenplus=k_eq(lamzenplus,n,\gamma,\tau,\delta,\beta,\alpha) seq=s_eq(lamzenplus,n,\gamma,\tau,\delta,\beta,\alpha) ceq=(1-seq-lamzenplus)*f(k=keqzenplus,lam=0,\alpha=\alpha)
                          keqzenplus/k_eq(0,n,\gamma,\tau,\delta,\beta,\alpha)
                    58 keqzenplus
```

```
Entrée [5]: 1  # Time dependant variables
2  A=A19*(1+γ)**t
4  L=L19*(1+n)**t
4  # Initial guess for control and state variables
6  lam = np.full(T+2,lam19)
7  c = np.full(T+2,lam29)
8  k = np.full(T+2,k19)
8  k = np.full(T+2,k19)
9  E=np.full(T+2,k19)
10
```

Code principal du modèle

```
Entrée [6]:
                 1 @njit
                                                       # Consumption per unit of efficient labor
# Climate expanditures per unit of output
# Capital per unit of efficient labor
                     def model_path
                                           (c,
                                          lam,
                                                       # GHG Fmissions
                                         crulé,
                                        lamrule,
                                                       # 1=bau else 0
                 10
                 11
12
13
14
15
16
17
18
19
20
21
                          T = len(c)-2

sig = np.full(T+2,sig19)

y = np.full(T+2,y19) #

s = np.full(T+2,s19) #
                                                         #gdp per unit of efficient labor
#saving rate
                           r = np.full(T+2,r19)
                           rp = np.full(T+2,rp19)
                              # Other variables
                           for t in range(T+1):
                 22
23
24
                                # Equation 3 : accumulation du capital
if bau==1:
                                     k[t+1] = (s19*f(k=k[t],lam=0, \alpha=\alpha)+ (1 - \delta) * k[t])/(1+g)
                 25
26
27
28
                                      k[t+1] = (f(k=k[t],lam=lam[t], α=α)+ (1 - δ) * k[t] - c[t])/(1+g)
                               if k[t+1] < 0.01:
k[t+1] = 0.01
                                                          # Ensure nonnegativity
                                # Equation 2 : évolution de l'intensité carbone

sig[t+1] =sig[t]*(1-epsi*sig[t]**(theta-1)*lam[t])

if sig[t+1] < 0: # Ensure nonnegativity

sig[t+1] = 0
                 30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
                                # Other Variables
y[t+1]=f(k=k[t+1],lam=0,α=α)
E[t+1] =sig[t+1]*y[t+1]*A[t+1]*L[t+1]
                                # Equation 9 : règle d'Euler verte ou conso constante
                                if bau==1:
    c[t+1]=(1-s[t+1]-lam[t+1])*y[t+1]
                                elif t>=1:
   if crule==0:
                                          c[t+1] = c[t]
                 49
50
51
52
53
54
55
56
57
58
59
60
                                          c[t+1] = c[t]*((1+rp[t+1])*\beta/((1+\gamma)*(1+n)))**(1/\tau) #Koopmans-Cass
                                # Equation 10 : règle d'arbitrage climatique
if t>=1:
                                    if lamrule==0:
                                          lam[t+1] = lam[t] #Eco&Stat central hyp
                                        lam[t+1] =1/(epsi*theta*sig[t+1]**(theta-1))*(1-((1-epsi*sig[t]**(theta-1)*lam[t])**(theta))*(1+rp[t+1])/(1+
if lam[t+1]<lam19:
lam[t+1]=lam19
                  60
61
62
                                   # cas Général (bau différent de 1) : le taux d'épargne est endogène
                  63
64
65
                                      s[t+1]=(1-c[t+1]/y[t+1]-lam[t+1])
                   66
                             return c,lam, k, E,y,s,rp,sig
                        4
 Entrée [34]:
                    1 def PlotAll(pat1,pat2):
                            10
11
```

Résolution par dichotomie

25 26

28 29

Les codes des fonctions permettant d'appliquer la méthode de la bisection définie plus haut sont détaillés ici.

```
Entrée [36]:
                              8
9
10
                                                                   lamrule
                                                                   terminalk=keqzenplus # Value we are shooting towards
                         11
12
13
14
15
16
17
18
                                       T = len(c) - 2
                                                                                                # Initial iteration
                                       c_high = c[0]
c_low = c[0]*0.9
                                                                                          # Initial high value of c[1]
# Initial low value of c[1]
                                       paths = model_path(c,lam, k,E, crule,lamrule,bau=0)
path_k=paths[2]
                         19
                       20
                       21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
                                    \label{lem:while np.abs((path_k[T+1] - terminalk)/terminalk)>= tol \ \mbox{and} \ \mbox{i < max\_iter:}
                                          if path_k[T+1] - terminalk > tol:
                                                   # si on overshoot la cible de capital, the c[1] we chose is now a lower bound for c[1]
# autrement dit, il faut augmenter la conso initiale c[1]
                                         c_low = c[1]
elif path_k[T+1] - terminalk < -tol:
    # si on est en dessous de la cible de capital, the c[1] we chose is now an upper for c[1]
    # autrement dit, il faut baisser la conso initiale c[1]
    c_high=c[1]
c[1] = (c_high + c_low) / 2  # This is the bisection part</pre>
                                          paths = model_path(c,lam, k,E, crule,lamrule,bau=0)
                                           path_k=paths[2]
                                           i += 1
                                    if np.abs((path_k[T+1] - terminalk)/terminalk) < tol:
    print('Bis_k converged successfully on iteration', i-1)</pre>
                       40
                                           print('Failed to converge and hit maximum iteration')
                                     return paths,i-1
                       42
Entrée [37]: 1 @njit
                              paths = model_path(c,lam, k,E, crule,lamrule,bau=0)
                                      path_E=paths[3]
                                      path_y=paths[4]
                        10
                                      T = len(c) - 2
                                                                              # Initial iteration
# Initial high value of lam[1] : pour éviter un taux d'épargne négatif
# Initial low value of lam[1]
                                     lam_high=lam[0]*10
lam_low=lam[0]
                        12
13
14
15
16
17
18
19
20
21
                                     while np.abs((path_E[T+1] - terminalE)/terminalE) >= tol and i < max_iter:
    if (path_E[T+1] - terminalE)/terminalE > tol:
        # Si les émissions sont supérieurs à la cible, the lam[1] we chose is now a lower bound
        # autrement dit, il faut augmenter l'effort climat 2020 lam[1]
        lam_low = lam[1]
    elif (path_E[T+1] - terminalE)/terminalE < -tol:
        # Si les émissions sont inférieurs à la cible,, the lam[1] we chose is now an upper
        # autrement dit, il faut baisser l'effort climat 2020 lam[1]
        lam high_lam[1]</pre>
                        22
23
24
                                                    lam_high=lam[1]
```

lam[1] = (lam_high + lam_low) / 2 # This is the bisection part

paths = model_path(c,lam, k,E, crule,lamrule,bau=0)

path_E=paths[3]

```
31
32
33
34
35
                                         if np.abs((path_E[T+1] - terminalE)/terminalE) < tol:
    print('Bis_lam converged successfully on iteration', i-1)</pre>
                                         else:
                                         print('Bis_lam failed to converge and hit maximum iteration global')
return paths,i-1
Entrée [38]:
                                 def bisection_method_allnew(c,lam,k,E,crule,lamrule,
terminalk=keqzenplus, # Value we are shooting toward
terminalE=76 # Value we are shooting toward
                                         T = len(c) - 2
i = 1
                                                                                                        # Initial iteration
                                         paths,ilam = bisection_method_lam(c,lam, k,E, crule,lamrule)
paths,ic = bisection_method_c(c,lam, k,E, crule,lamrule)
                          10
11
12
13
14
15
16
17
                                         while (ilam>0 or ic>0) and i < max_iter:
   paths,ilam = bisection_method_lam(c,lam, k,E, crule,lamrule)
   paths,ic = bisection_method_c(c,lam, k,E, crule,lamrule)</pre>
```

Variante ¶

18 19

20

i += 1
if ilam==0 and ic==0:

return paths

print('Bis_all converged successfully on iteration', i-1)
else:

print('Bis_all failed to converge and hit maximum iteration')

```
Entrée [52]:
            2 #Steady State
               lamzenplus=lam_zen(n, y, E19, E50, T, epsi)
              keqzenplus/k_eq(0,n,\gamma,\tau,\delta,\beta,\alpha)
```

```
Entrée [53]:
                                                                  1 @njit
                                                                                                                                                                                          # Consumption per unit of efficient labor
# Climate expanditures per unit of output
# Capital per unit of efficient labor
                                                                                def variante
                                                                                                                                                        cruĺe,
                                                                                                                                                        lamrule
                                                                10
                                                                                                T = len(c)-2
                                                              12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
                                                                                                 path_test = bisection_method_allnew(c,lam, k,E,crule,lamrule,terminalk=keqzenplus,terminalE=76)
                                                                                                 path_var =path_test
                                                                                                 while path_test[0][1]<path_test[0][0]/(1+\gamma):
                                                                                                                    path_c=path_test[0]
path_lam=path_test[1]
                                                                                                                   path_k=path_test[2]
path_E=path_test[3]
path_y=path_test[4]
path_s=path_test[5]
                                                                                                                   t = len(path c)-2
                                                                                                                   \begin{array}{l} {\tt path\_c[1]=path\_c[0]/(1+\gamma)} \\ {\tt path\_lam[1]=(1-path\_c[1]/path\_y[1]-path\_s[1])} \end{array}
                                                                                                                    lamzen_new=lam_zen(n,γ,path_E[1],E50,t-1,epsi)
                                                                                                                    \texttt{keqzen\_new=k\_eq(lamzen\_new,n,\gamma,\tau,\delta,\beta,\alpha)}
                                                             34
                                                                                                              10=list(path_var[0][0:i])+list(path_test[0][1:t+2])
11=list(path_var[1][0:i])+list(path_test[1][1:t+2])
12=list(path_var[2][0:i])+list(path_test[2][1:t+2])
13=list(path_var[3][0:i])+list(path_test[3][1:t+2])
14=list(path_var[4][0:i])+list(path_test[4][1:t+2])
15=list(path_var[5][0:i])+list(path_test[5][1:t+2])
16=list(path_var[6][0:i])+list(path_test[6][1:t+2])
17=list(path_var[7][0:i])+list(path_test[7][1:t+2])
                                                           35
36
37
38
39
40
41
42
43
44
                                                                                                                  \verb|path_var=np.array(10), np.array(11), np.array(12), np.array(13), np.array(14), np.array(15), np.array(16), np.array(17) |
                                                           45
46
47
                                                                                                                path\_test = bisection\_method\_allnew(path\_c[1:t+2],path\_lam[1:t+2], path\_k[1:t+2],path\_E[1:t+2],crule=0,lamrule=0,ternstand = bisection\_method\_allnew(path\_c[1:t+2],path\_lam[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path\_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],path_k[1:t+2],pat
                                                           48
49
50
51
52
                                                                                                                i += 1
                                                                                                print(i)
                                                                                                return path_var
```

Liste des documents de travail de la Direction des Études et Synthèses Économiques

G 9410	G 9412	G 9413	G 9414 G 9501	G 9502		G 9503	G 9504	G 9505	G 9505 Bis	9056 5		G 9507	G 9601	G 9602	G 9603	G 9604	G 9605
J. BOURDIEU - B. COLIN-SEDILLOT Les théories sur la structure optimale du capital : quelques points de repère	J. BOURDIEU - B. COLIN-SEDILLOT Les décisions de financement des entreprises françaises : une évaluation empirique des théorires de la structure optimale du capital L. BLOCH - B. CŒURÉ Q de Tobin marginal et transmission des chocs	financiers Équipes Amadeus (INSEE), Banque de France, Métric (DP) Présentation des propriétés des principaux mo- dèles macroéconomiques du Service Public	B. CREPON - E. DUGUET Research & Development, competition and innovation	B. DORMONT Quelle est l'influence du coût du travail sur l'emploi ?	D. BLANCHET - C. BROUSSE Deux études sur l'âge de la retraite	 D. BLANCHET Répartition du travail dans une population hété - rogène : deux notes D. EYSSARTIER - N. PONTY 	AMADEUS - an annual macro-economic model for the medium and long term G. CETTE - Ph. CUNÉO - D. EYSSARTIER -J. GAUTIÉ		Les structures par âge importent-elles ? J. GAUTIÉ Le chômage des jeunes en France : problème de	formation ou phenomène de file d'attente ? Quelques éléments du débat P. QUIRION	Les déchets en France : éléments statistiques et économiques	D. LADIRAY - M. GRUN-REHOMME Lissage par moyennes mobiles - Le problème des extrémités de série	V. MAILLARD Théorie et pratique de la correction des effets de jours ouvrables	F. ROSENWALD La décision d'investir	S. JACOBZONE Les apports de l'économie industrielle pour dé - finir la stratégie économique de l'hôpital public	L. BLOCH, J. BOURDIEU, B. COLIN-SEDILLOT, G. LONGUEVILLE Du défaut de paiement au dépôt de bilan : les	banquiers face aux PME en difficulté D. EYSSARTIER, P. MAIRE Impacts macro-économiques de mesures d'aide au logement - quelques éléments d'évaluation
G 9310	G 9311	G 9313	G 9314	G 9315	G 9316	G 9317 G 9318	G 9319	G 9401	G 9402	G 9403		G 9404	G 9405	G 9406	G 9407	G 9408	G 9409
J. OLIVEIRA-MARTINS, J. TOUJAS-BERNATE Macro-economic import functions with imperfect	competition - An application to the E.C. Trade I. STAPIC Les échanges internationaux de services de la France dans le cadre des négociations multila - térales du GATT Un 1992 (refe version) Novembre 1992 (version finale)	P. SEVESTRE L'économétrie sur données individuelles- temporelles. Une note introductive H. ERKEL-ROUSSE	Le commerce exterieur et l'environnement in- ternational dans le modèle AMADEUS (réestimation 1992)	N. GREENAN et U. GUELLEC Coordination within the firm and endoge nous growth A MAGNIFR et .I TOLIAS.RERNATE	The measurement of the major five independent of the major five industrialized countries	B. CREPON, E. DUGUET, D. ENCAOUA et P. MOHNEN Cooperative, non cooperative R & D and opti mal patent life	B. CREPON et E. DUGUET Research and development, competition and innovation: an application of pseudo maximum likelihood methods to Poisson models with	heterogeneity J. TOUJAS-BERNATE Commerce international et concurrence impar-	failte : développements récents et implications pour la politique commerciale Ch. CASES	Durees de chomage et comportements d'outre de travail : une revue de la littérature H. ERKEL-ROUSSE	Union économique et monétaire : le débat économique	N. GREENAN - D. GUELLEC / G. BROUSSAUDIER - L. MIOTTI Innovation organisationnelle, dynamisme tech - nologique et nerformances des entreorises	P. JAILLARD Le traité de Maastricht : présentation juridique et historique	J.L. BRILLET Micro-DMS : présentation et propriétés	J.L. BRILLET Micro-DMS - variantes : les tableaux	S. JACOBZONE Les grands réseaux publics français dans une perspective européenne	L. BLOCH - B. CŒURÉ Profitabilité de l'investissement productif et transmission des chocs financiers
G 9202	G 9203	G 9204 G 9205	9000	6 9206	026	G 9208	G 9209	G 9301	G 9302	G 9303		G 9304	G 9305	G 9306	G 9307	G 9308	G 9309
J. FAYOLLE et M. FLEURBAEY Accumulation, profitabilité et endettement des entreprises	H. ROUSSE Détection et effets de la multicolinéarité dans les modèles linéaires ordinaires - Un prolongement de la réflexion de BELSLEY, KUH et WELSCH P. RALLE et J. TOUJAS-BERNATE Indexation des salaires : la rupture de 1983	D. GUELLEC et P. RALLE Compétitivité, croissance et innovation de produit P. RALLE et J. TOUJAS-BERNATE Les conséduences de la désindexation. Analyse dans une maquielte prix-salaires	Équipe and MADEUS - Première partie - Présentation générale	J.L. BRILLET Le modèle AMADEUS - Deuxième partie -Propriétés variantielles	D. GUELLEC et P. RALLE Endogenous growth and product innovation	H. ROUSSE Le modèle AMADEUS - Troisième partie - Le commerce extérieur et l'environnement international	H. ROUSSE Effets de demande et d'offre dans les résultats du commerce extérieur manufacturé de la France au cours des deux dernières décennies	B. CREPON Innovation, taille et concentration : causalités et dynamiques	B. AMABLE et D. GUELLEC Un panorama des théories de la croissance endogène	M. GLAUDE et M. MOUTARDIER Une évaluation du coût direct de l'enfant de 1979 à 1989	P. RALLE et alli France - Allemagne : performances économi ques	comparées J.L. BRILLET Micro-DMS NON PARU	A. MAGNIER Effets accélérateur et multiplicateur en France depuis 1970 : quelques résultats empiriques	B. CREPON et G. DUREAU Investissement en recherche-développement :	analyse de causalités dans un modèle d'accélé - rateur généralisé II RRII ET H ERKEL -ROLISSE I TOLLIAS.	BENATE France-Allemagne Couplées" - Deux économies vues par une maquette macro-économétrique	W.J. ADAMS, B. CREPON, D. ENCAOUA Choix technologiques et stratégies de dissuasion d'entrée
G 9001	G 9002 G 9003	G 9004	G 9101	G 9102	G 9103	G 9104	G 9105	G 9106	G 9107	G 9108	G 9109	G 9110	G 9111	G 9112	0 113		G 9201

D. GOUX - E. MAURIN Les transformations de la demande de travail par qualification en France

Une étude sur la période 1970-1993

N. GREENAN

Imperfections du marché du crédit, investisse-

ment des entreprises et cycle économique

J. BOURDIEU - B. CŒURÉ - B. SEDILLOT

Irreversible Investment and Uncertainty:

When is there a Value of Waiting?

L. BLOCH - B. CŒURÉ

Technologie, changement organisationnel, qua lifications et emploi : une étude empirique sur

l'industrie manufacturière

D. GOUX - E. MAURIN Persistance des hiérarchies sectorielles de sa-

laires: un réexamen sur données françaises

Persistence of inter-industry wages differentials: a reexamination on matched worker-firm panel

D. GOUX - E. MAURIN

Les liens entre RMI et chômage, une mise en perspective NON PARU - article sorti dans Économie et Prévision n° 122 (1996) - pages 95 à 113

S. JACOBZONE

L'évaluation de l'élasticité emploi-salaire dépend-

B. DORMONT - M. PAUCHET

de l'investissement

elle des structures de qualification ?

I. KABLA Le Choix de breveter une invention

J. BOURDIEU - B. CŒURÉ -B. COLIN-SEDILLOT Investissement, incertitude et irréversibilité Quelques développements récents de la théorie

analyse économique des politiques française et

allemande

Les déchets d'emballages ménagers : une

C. DEFEUILLEY - Ph. QUIRION

Suivi conjoncturel de l'investissement

F. ROSENWALD

Une modélisation microéconométrique empirique

Comportements de prévention, consommation d'alcool et tabagie : peut-on parler d'une gestion globale du capital santé?

Les implantations japonaises en France

P. GENIER - S. JACOBZONE

Structures et propriétés de cinq modèles macro-

économiques français

Banque de France - CEPREMAP - Direction de la Prévision - Érasme - INSEE - OFCE

Le partage primaire du revenu Constat descriptif sur longue période

G. CETTE - S. MAHFOUZ

J. BOURDIEU - A. DRAZNIEKS L'octroi de crédit aux PME : une analyse à partir

d'informations bancaires

A. TOPIOL-BENSAÏD

Rapport d'activité de la DESE de l'année 1995

:=

retraite du secteur privé et de la fonction publique G. LAROQUE - B. SALANIÉ	Une décomposition du non-emploi en France B. SALANIÉ	one mequeute analyque de long terme du marché du travail Ch. GIANELLA The estimation de l'élacticité de l'emaloi peu	une estimatori de reassicite de rempior peu qualifié à son coût Division « Redistribution et Politiques Sociales »	Le filodere de filiolosifilidation dynamique DESTINIE E. DOUET Mooro commondes SAS pour l'Acceptund des	macro-communities SAS pour recondinguise des panels et des variables qualitatives R. DUHAUTOIS Évolution des flux d'emplois en France entre	1990 et 1990 : une etude empirique a partir du fichier des bénéfices réels normaux (BRN) J.Y. FOURNIER Extraction du cycle des affaires : la méthode de Baytar et King	B. CRÉPON - R. DESPLATZ - J. MAIRESSE Estimating price cost margins, scale econo mies and workers bargaining power at the firm level	Ch. GIANELLA - Ph. LAGARDE Productivity of hours in the aggregate pro duction function: an evaluation on a panel of French firms from the manufacturing sector	S. AUDRIC - P. GIVORD - C. PROST Évolution de l'emploi et des coûts par quali- fication entre 1982 et 1996	R. MAHIEU Les déterminants des dépenses de santé : une approche macroéconomique	ALLAKU-PRIGENI - H. GUILMEAU - QUINET The real exchange rate as the relative price of nontables in terms of tradables; theoretical investigation and empirical study on French data	JY. FOURNIER L'approximation du filtre passe-bande proposée par Christiano et Fitzgerald Bilan des activités de la DESE - 1999	B. CREPON - F. ROSENWALD Investissement et contraintes de financement : le poids du cycle Une estimation sur données françaises	A, FLIPO Les comportements matrimoniaux de fait R, MAHIEU - B, SÉDILLOT Microsimulations of the retirement decision: a	C. AUDENIS - C. PROST C. AUDENIS - C. PROST Déficit conjoncturel : une prise en compte des conjonctures passées R. MAHIEU - B. SÉDILLOT Équivalent patrimonial de la rente et souscription	de retraite complémentaire
G 9911	G 9912	G 9912 Bis	G 9913	G 9914	G 9915	G 9916	G 9917	G 9918	G 9919	G 2000/01	5 2000/02	G 2000/03 G 2000/04	G 2000/05	G 2000/06	G 2000/08	
P. CAHUC - Ch. GIANELLA - D. GOUX - A. ZILBERBERG Equalizing Wage Differences and Bargain ing Power - Evidence from a Panel of French Firms	Fower - Evidence form a Farlet of French Finns J. ACCARDO - M. JLASSI La productivité globale des facteurs entre 1975	et 1996 Bilan des activités de la Direction des Études et Synthèses Économiques - 1997	A. MOUROUGANE Can a Conservative Governor Conduct an Ac- comodative Monetary Policy?	X. BONNET - E. DUBOIS - L. FAUVET Asymétrie des infations relatives et menus costs : tests sur l'inflation française	E. DUGUET - N. IUNG Sales and Advertising with Spillovers at the firm level: Estimation of a Dynamic Structural Model on Panel Data	J.P. BERTHIER Congestion urbaine : un modèle de trafic de pointe à courbe débit-vitesse et demande élastique	C. PRIGENT La part des salaires dans la valeur ajoutée : une approche macroéconomique	A.Th. AERTS L'évolution de la part des salaires dans la valeur ajoutée en France reflète-t-elle les évolutions individuelles sur la période 1979-1994?	B. SALANIÉ Guide pratique des séries non-stationnaires S. DUCHÊNE - A. JACQUOT	Une croissance plus riche en emplois depuis le début de la décennie ? Une analyse en compa - raison internationale Ch. COLIN	Modélisation des carrières dans Destinie Ch. COLIN Évolution de la dispersion des salaires : un essai de prospective par microsimulation	B. CREPON - N. IUNG Innovation, emploi et performances B. CREPON - Ch. GIANELLA Wages inequalities in France 1969-1992	An application of quantile regression techniques C. BONNET - R. MAHIEU Microsimulation techniques applied to in ter- generational transfers - Pensions in a dynamic framework: the case of France	F. ROSENWALD L'impact des contraintes financières dans la décision d'investissement Rilan des activités de la DESE, 1998	J.P. ZOYEM Contrat d'insertion et sortie du RMI Évaluation des effets d'une politique sociale Ch. COLIN - FI. LEGROS - R. MAHIEU Bilans contributifs comparés des régimes de	,
G 9805	9086 9	G 9807	G 9808	6 9809	G 9810	G 9811	G 9812	G 9813	G 9814 G 9901	G 9902	G 9903	G 9904	9066 5	G 9907	G 9909 G 9910	
E. DUBOIS High Real Interest Rates: the Consequence of a Saving Investment Disequilibrium or of an in- sufficient Credibility of Monatana Authorities?	sunicient Creability of Mortetary Authorities? Bilan des activités de la Direction des Études et Synthèses Économiques - 1996	F. LEQUILLER Does the French Consumer Price Index Over- state Inflation?	x. BONNET Peut-on mettre en évidence les rigidités à la baisse des salaires nominaux ?	Une étude sur quelques grands pays de l'OCDE N. IUNG - F. RUPPRECHT Productivité de la recherche et rendements	d'échelle dans le secteur pharmaceutique français E. DUGUET - I. KABLA Appropriation strategy and the motivations to use	stem in France - An econome e firm level P. RALLE aite : les aspects incitatifs du	gime general ZHANG Yingxiang - SONG Xueqing Letique macroeconomique français-chinois,	crimos-riangais M. HOUDEBINE - J.L. SCHNEIDER Mesurer l'influence de la fiscalité sur la locali - sation des entreprises	A. MOUROUGANE Crédibilité, indépendance et politique monétaire Une revue de la littérature	P. AUGERAUD - L. BRIOT Les données comptables d'entreprises Le système intermédiaire d'entreprises Passage des données individuelles aux données	P. AUGERAUD - J.E. CHAPRON Using Business Accounts for Compiling National Accounts: the French Experience	P. AUGERAUD Les comples d'entreprise par activités - Le pas - Les comples d'entreprise par activités - Le pas - sage aux comptes - De la comptabilité d'entreprise à la comptabilité nationale - A paraître	H. MICHAUDON - C. PRIGENT Présentation du modèle AMADEUS J. ACCARDO J. ACCARDO J. ACCARDO J. ACCARDO	pour la France en 1990 X. BONNET - S. DUCHÊNE Apports et limites de la modélisation « Real Business Cycles »	C. BARLEI - C. DUGUEI - C. BARLEI - C. DUGUEI - D. ENCAOUDA - J. PRADEL The Commercial Success of Innovations An econometric analysis at the firm level in French manufacturing	
G 9712	G 9713	G 9714	G 9715	G 9716	G 9717	G 9718	G 9719	G 9720	G 9721	G 9722	G 9723	G 9724	G 9801	G 9803	9808	
C. DOZ - F. LENGLART Factor analysis and unobserved compo nent models: an application to the study of French histores euroave	business surveys N. GREENAN - D. GUELLEC La théorie coopérative de la firme	N. GREENAN - D. GUELLEC Technological innovation and employment reallocation	Ph. COUR - F. RUPPRECHT L'intégration asymétrique au sein du continent américain : un essai de modélisation	S. DUCHENE - G. FORGEOT - A. JACQUOT Analyse des évolutions récentes de la producti - vité apparente du travail	X. BONNET - S. MAHFOUZ The influence of different specifications of wages-prices spirals on the measure of the NAIRU: the case of France	PH. COUR - E. DUBOIS, S. MAHFOUZ, J. PISANI-FERRY The cost of fiscal retrenchment revisited: how strong is the evidence?	A. JACQUOT Les flexions des taux d'activité sont-elles seule- ment conjoncturelles ?	ZHANG Yingxiang - SONG Xueqing Lexique macroéconomique Français-Chinois J.L. SCHNEIDER La taxe professionnelle : éléments de cadrade	économique J.L. SCHNEIDER Transition et stabilité politique d'un système	redistributif D. GOUX - E. MAURIN Train or Pay: Does it Reduce Inequalities to En- courage Firms to Train their Workers?	P. GENIER Deux contributions sur dépendance et équité E. DUGUET - N. IUNG	R & D investinent, Patein Lile and Parein value An Econometric Analysis at the Firm Level M. HOUDEBINE - A. TOPIOL-BENSAÏD Les entreprises internationales en France: une analyse à partir de données individuelles	M. HOUDEBINE Polarisation des activités et spécialisation des départements en France E. DUGUET - N. GREENAN	Le biais fechnologique : une analyse sur don- nées individuelles J.L. BRILLET Analyzing a small French ECM Model	J.L. BRILLET Formalizing the transition process: scenarios for capital accumulation G. FORGEDT - J. GAUTIÉ Insertion professionnelle des jeunes et proces - sus de déclassement	
9096 5	G 9607	G 9608	6096 5	G 9610	G 9611	G 9612	G 9613	G 9614 G 9701	G 9702	G 9703	G 9704 G 9705	G 9706	G 9707 G 9708	G 9709	G 9710 G 9711	

	_	_	_	_	_	_			_	_	_		_		_	_
, Y	M. LECLAIR Réduction du temps de travail et tensions sur les facteurs de production	E. WALRAET - A. VINCENT - Analyse de la redistribution intragénérationnelle dans le système de retraite des salariés du privé	Une approche par microsmulation intragenerational distributional analysis in the french private sector pension scheme - A microsimulation approach	P. CHONE - D. LE BLANC - I. ROBERT-BOBEE Offre de travail féminine et garde des jeunes enfants	F. MAUREL - S. GREGOIR Les indices de compétitivité des pays : inter- prétation et limites	N. RIEDINGER - E.HAUVY Le coût de dépollution atmosphérique pour les	entreprises françaises: Une estimation à partir de données individuelles P. BISCOURP et F. KRAMARZ	Création d'emplois, destruction d'emplois et internationalisation des entreprises industrielles françaises: une analyse sur la période 1986-1002	Bilan des activités de la DESE - 2002	PO. BEFFY - J. DEROYON - N. FOURCADE - S. GREGOIR - N. LAÏB - D. MANISODT	b. MONTOR 1 Évolutions démographiques et croissance : une projection macro-économique à l'horizon 2020	P. AUBERT La situation des salariés de plus de cinquante ans dans le secteur privé	P. AUBERT - B. CRÉPON Age, salaire et productivité La productivité des salariés décline-t-elle en fin de carrière ?	H. BARON - P.O. BEFFY - N. FOURCADE - R. MAHIEU Le ralentissement de la productivité du travail au cours des années 1990	PO. BEFFY - B. MONFORT Patrimoine des ménages, dynamique d'allocation et comportement de consommation	P. BISCOURP - N. FOURCADE
	G2002/13	G2002/14		G2002/15	G2002/16	G2003/01	G2003/02		G2003/03	G2003/04		G2003/05	G2003/06	G2003/07	G2003/08	G2003/09
	microsimulation model Destinie: An analysis of future change in completed fertility JP. ZOYEM	Diagnostic sur la pauvreté et calendrier de revenus : le cas du "Panel européen des ménages »	JY. FOURNIER - P. GIVORD La réduction des taux d'activité aux âges extrêmes, une spécificité française?	C. AUDENIS - P. BISCOURP - N. RIEDINGER Existe-t-il une asymétrie dans la transmission du prix du brut aux prix des carburants?	F. MAGNIEN - JL. TAVERNIER - D. THESMAR Les statistiques internationales de PIB par habitent en standard de pouvoir d'achat : une analvse des résultats	Bilan des activités de la DESE - 2001	B. SÉDILLOT - E. WALRAET La cessation d'activité au sein des couples : y a- t-il interdépendance des choix ?	G. BRILHAULT - Rétropolation des séries de FBCF et calcul du captal fixe en SEC-95 dans les comptes	nationaux riangais Retropolation of the investment series (GFCF) and estimation of fixed capital stocks on the	ESA-95 basis for the French balance sheets P. BISCOURP - B. CRÉPON - T. HECKEL - N.	RIEDINGER How do firms respond to cheaper computers? Microeconometric evidence for France based on	a production function approach C. AUDENIS - J. DEROYON - N. FOURCADE L'impact des nouvelles technologies de	. mac	J. BARDAJI - B. SEDILLOI - E. WALFABEI Évaluation de trois réformes du Régime Général d'assurance vieillesse à l'aide du modèle de microsimulation DESTINIE	JP. BERTHIER Réflexions sur les différentes notions de volume dans les comptes nationaux : comptes aux prix d'une année fixe ou aux prix de l'année	précédente, séries chaînées
>	G2001/15		G2001/16	G2001/17	G2002/01	G2002/02	G2002/03	G2002/04		G2002/05		G2002/06	100000	220020	G2002/08	
	R. DUHAUTOIS Ralentissement de l'investissement : petites ou grandes entreprises ? industrie ou tertiaire ?	G. LAROQUE - B. SALANIÉ Temps partiel féminin et incitations financières à l'emploi	Ch. GIANELLA Local unemployment and wages B. CREPON - Th. HECKEL	 Informatisation en France: une évaluation à partir de données individuelles Computerization in France: an evaluation based 	on individual company data F. LEQUILLER - La nouvelle économie et la mesure de la croissance du PIB	 The new economy and the measure ment of GDP growth 	S. AUDRIC La reprise de la croissance de l'emploi profite-t- elle aussi aux non-diolômés ?	I. BRAUN-LEMAIRE Évolution et répartition du surplus de productivité A PERMINIT TE LIFOREI	A. BEAUDU - III. RECAEL Le canal du crédit fonctionne-t-il en Europe ? Une étude de l'hétérogénéité des comportements	d'investissement à partir de données de bilan agrégées	C. AUDENIS - P. BISCOURP - N. FOURCADE - O. LOISEL Testing the augmented Solow growth model: An	empirical reassessment using panel data R. MAHIEU - B. SÉDILLOT Départ à la retraite. Irréversibilité et incertitude	Bilan des activités de la DESE - 2000 J. Ph. GAUDEMET Les dispositifs d'acquisition à titre facultatif		B. CRÉPON - R. DESPLATZ Evaluation des effets des dispositifs d'allecements	de charges sociales sur les bas salaires

G2001/02

G2001/01

G2001/03 G2001/04

E. DUGUET - C. LELARGE Les brevets accroissent-ils les incitations privées à innover ? Un examen microéconométrique

J. BOISSINOT - C. L'ANGEVIN - B. MONFORT Public Debt Sustainability: Some Results on the

G2004/10

S. RASPILLER - P. SILLARD Affiliating versus Subcontracting: the Case of Multinationals

G2004/09

P. AUBERT - E. CAROLI - M. ROGER New Technologies, Workplace Organisation and the Age Structure of the Workforce: Firm-Level

Evidence

G2004/08

L'impact du chômage des parents sur le devenir scolaire des enfants

M. DUÉE

G2004/06

G2004/07

M. DUÉE - C. REBILLARD La dépendance des personnes âgées : une projection à long terme

G2004/02

qe

choix eţ

S. RASPILLER - N. RIEDINGER Régulation environnementale localisation des groupes français

G2004/03

G2004/04

G2000/12 G2000/13

G 2000/10

G 2000/11

A. NABOULET - S. RASPILLER
Les déterminants de la décision d'investir : une
approche par les perceptions subjectives des
firmes

N. RAGACHE La déclaration des enfants par les couples non mariés est-elle fiscalement optimale ?

G2004/05

French Case			Structures de revenus et propensions différen	a consommer - vers une equation de consommation des ménages plus robuste en prévision pour la France		J. BARDAJI - B. SÉDILLOT - E. WALRAET Les retraties du secteur public : projections à l'horizon 2040 à l'aide du modèle de microsimulation DESTINIE	S. BUFFETEAU - P. GODEFROY Conditions de départ en retraite selon l'âge de fin d'études : analyse prospective pour les générations 1945 à1974	2 C. AFSA - S. BUFFETEAU L'évolution de l'activité féminine en France : une approche par pseudo-panel	3 P. AUBERT - P. SILLARD Délocalisations et réductions d'effectifs dans l'industrie française	4 M. LECLAIR - S. ROUX Mesure et utilisation des emplois instables dans les entreprises	6 C. L'ANGEVIN - S. SERRAVALLE Performances à l'exportation de la France
	G2004/11	G2004/12	6000		G2004/13	G2004/14	G2005/01	G2005/02	G2005/03	G2005/04	G2005/05
B. MONFORT	Evoutions gemographiques et croissance : une projection macro-économique à l'horizon 2020 P. AUBERT	La situation des salanés de plus de cinquante ans dans le secteur privé	P. AUBERT - B. CREPON Age, salaire et productivité	La productivité des salariés décline-t-elle en fin de carrière ?	MAHIEU Le ralentissement de la productivité du travail au cours des années 1990	PO. BEFFY - B. MONFORT Patrimoine des ménages, dynamique d'allocation et comportement de consommation	P. BISCOURP - N. FOURCADE Peut-on mettre en évidence l'existence de rigidités à la baisse des salaires à partir de données individuelles ? Le cas de la France à la fin des années 90	M. LECLAIR - P. PETIT Présence syndicale dans les firmes : quel impact sur les inégalités salariales entre les hommes et	les femmes ? PO. BEFFY - X. BONNET - M. DARRACQ. PARIES - B. MONFORT	MZE: a small macro-model for the euro area P. AUBERT - M. LECLAIR La compétitivité exprimée dans les enquêtes	trimestrielles sur la situation et les perspectives dans l'industrie
	G2003/05		G2003/06	20003/04		G2003/08	G2003/09	G2003/10	G2003/11	G2004/01	
RIEDINGER	How do firms respond to cheaper computers? Microeconometric evidence for France based on a production function approach	YON - N. FOURCADE elles technologies	l'information et de la communication sur l'économie française - un bouclage macro-	économique J. BARDAJI - B. SÉDILLOT - E. WALRAET Évaludian de trais effetmes du Bénima Général	Casauston to thos reformes of regime defected description DESTINIE	Réflexions sur édiférentes notions de volume dans les comptes nationaux : comptes aux prix dune année fixe ou aux prix de l'année nrécédente séries chaînées.	F. HILD F. Les soldes d'opinion résument-ils au mieux les réponses des entreprises aux enquêtes de conjoncture ?	I. RÓBERT-BOBÉE Les comportements démographiques dans le modèle de microsimulation Destinie - Une	comparaison des estimations issues des enquêtes Jeunes et Carrières 1997 et Histoire Familiale 1999	JP. ZOYEM La dynamique des bas revenus : une analyse des entrées-sorties de pauvreté	F. HILD Prévisions d'inflation pour la France
92002/03		G2002/06		G2002/07	80/00000		G2002/09	G2002/10		G2002/11	G2002/12
C. AUDENIS - P. BISCOURP -	N. FOURCADE - O. LOISEL Testing the augmented Solow growth model: An empirical reassessment using panel data	R. MAHIEU - B. SÉDILLOT Départ à la retraite, irréversibilité et incertitude	Bilan des activités de la DESE - 2000	 Ph. GAUDEMET Les dispositifs d'acquisition à titre facultatif d'annuités viagères de retraite 	B. CRÉPON - Ch. GIANELLA Fiscalité, coût d'usage du capital et demande de facteurs : une analyse sur données individuelles	B. CRÉPON - R. DESPLATZ Evaluation des effets des dispositifs d'allégements	de cira yes sociales sur les bas salaires JY. FOURNIER Comparaison des salaires des secteurs public et privé	JP. BERTHIER - C. JAULENT R. CONVENEVOLE - S. PISANI Une méthodologie de comparaison entre consommations intermédiaires de source fiscale	et de comptabilité nationale P. BISCOURP - Ch. GIANELLA Substitution and complementarity between	capital, skilled and less skilled workers: an analysis at the firm level in the French manufacturing industry	I. ROBERT-BOBEE Modelling demographic behaviours in the French
G2001/05		G2001/06	G2001/07	G2001/08	G2001/09	G2001/10	G2001/11	G2001/12	G2001/13		G2001/14

VIII

P. GIVORD - L. WILNER Les contrats temporaires : trappe ou marchepied vers l'emploi stable ? G. LALANNE - PA. PIONNIER - O. SIMON le partare des furits de la roriscance de 1050 à	L. DAVEZIES - X. D'HAULTFOEUILLE	l'éternelle question les données d'enquê .ER - S. SERRAVAL	Commerce intragroupe, inscalte et prix de transferts : une analyse sur données françaises M. CLERC - V. MARCUS Élasticités-prix des consommations énergétiques des ménages	G. LALANNE - E. POULIQUEN - O. SIMON Prix du pétrole et croissance potentielle à long terme	D. BLANCHET - J. LE CACHEUX - V. MARCUS Adjusted net savings and other approaches to sustainability: some theoretical background V. BELLAMY - G. CONSALES - M. FESSEAU -	S. LE LAIDIER - É. RAYNAUD Une décomposition du compte des ménages de la comptabilité nationale par catégorie de ménage en 2003	J. BARDAJI - F. TALLET Detecting Economic Regimes in France: a Qualitative Markov-Switching Indicator Using Mixed Frequency Data	R. AEBERHARDT - D. FOUGÈRE - R. RATHELOT Discrimination à l'embauche : comment exploiter les procédures de testing?	Y BARBESOL - P. GIVORD - S. QUANTIN Partage de la valeur ajoutée, approche par données microéconomiques	BUONO - G. LALANNE The Effect of the Uruguay round on the Intensive and Extensive Margins of Trade	C. MINODIERS Avantages comparés des séries des premières valeurs publiées et des séries des valeurs révisées - Un exercice de prévision en temps réel	de la croissance trimestrielle du PIB en France V. ALBOUY - L. DAVEZIES - T. DEBRAND Health Expenditure Models: a Comparison of Five Specifications using Panel Data	C. KLEIN - O. SIMON Le modèle MÉSANGE réestimé en base 2000 Tome 1 – Version avec volumes à prix constants	MÉ. CLERC - É. COUDIN L'IPC, miroir de l'évolution du coût de la vie en France? Ce qu'apporte l'analyse des courbes d'Engel	N. CECI-RENAUD - PA. CHEVALIER Les seuils de 10, 20 et 50 salariés : impact sur la taille des entreprises françaises
G2009/04 G2009/05	G2009/06	G2009/07	G2009/08	G2009/09	G2009/10 G2009/11		G2009/12	G2009/13	G2009/14	G2009/15	G2010/01	G2010/02	G2010/03	G2010/04	G2010/05
R. RATHELOT - P. SILLARD Zones Franches Urbaines: quels effets sur l'emploi salarié et les créations d'établissements?	v. ALBOOT - B. CKEFON Aléa moral en santé : une évaluation dans le cadre du modèle causal de Rubin	C. PICART Les PME françaises: rentables mais peu dynamiques	P. BISCOURP - X. BOUTIN - 1. VERGE The Effects of Retail Regulations on Prices Evidence form the Loi Galland Y. BARBESOL - A. BRIANT Économies d'agglomération et productivité des	entreprises : estimation sur données individuelles françaises D. BLANCHET - F. LE GALLO	Les projections démographiques: principaux mécanismes et retour sur l'expérience française D. BLANCHET - F. TOUTLEMONDE Évolutions démographiques et déformation du cucla de suis artiste : qualitar relations 2	M. BARLET - D. BLANCHET - L. CRUSSON Internationalisation et flux d'emplois : que dit une approche comptable ?	C. LELARGE - D. SRAER - D. THESMAR Entrepreneurship and Credit Constraints - Evidence from a French Loan Guarantee Program	X. BOUTIN - L. JANIN Are Prices Really Affected by Mergers? M. BARLET - A. BRIANT - L. CRUSSON	Concentration geographique dans industrie manufacturière et dans les services en France : une approche par un indicateur en continu M. BEFFY - É. COUDIN - R. RATHELOT	Who is confronted to insecure labor market histories? Some evidence based on the French labor market transition	M. ROGER - E. WALKAET Social Security and Well-Being of the Elderly: the Case of France C. A.	Analyser les composantes du bien-eure et de son évolution Une approche empirique sur données individuelles	w. BARLEI - D. BLANCHEI - T. LE BARBANCHON Microsimuler le marché du travail : un prototype P - A. PIONNIFR	Le partage de la valeur ajoutée en France, 1949-2007 Laurent CLAVEL - Christelle MINODIER A Monthly Indicator of the Franch Rusiness	Climate H. ERKEL-ROUSSE - C. MINODIER Do Business Tendency Surveys in Industry and Services Help in Forecasting GDP Growth? A Real-Time Analysis on French Data
G2007/11	22000/12	G2008/01	G2008/02 G2008/03	G2008/04	G2008/05	G2008/06	G2008/07	G2008/08 G2008/09	G2008/10	4,000	G2008/11 G2008/12		G2009/01	G2009/02	G2009/03
C. AFSA - P. GIVORD Le rôle des conditions de travail dans les absences pour maladie P. SILLARD - C. L'ANGEVIN - S. SERRAVALLE Performances comparées à l'avondation de la	Performances comparees a rexpondition de la France et de ses principaux partenaires Une analyse structurelle sur 12 ans	X. BOUTIN - S. QUANTIN Une méthodologie d'évaluation comptable du coût du capital des entreprises françaises : 1984- 2002	e la pénibili	Les entreprises (industrielles) françaises sont- elles à la frontière technologique ? O. BIAU - N. FERRARI	Théorie de l'opinion Faut-il pondérer les réponses individuelles ? A. KOUBI - S. ROUX Une réinteprétation de la relation entre	es ELOT - P. SILLARD act of local taxes on plants locat	decision L. GONZALEZ - C. PICART Diversification, recentrage et poids des activités de support dans les groupes (1993-2000)	D. SRAER Allegements de cotisations patronales et dynamique salariale	V. ALBOUT. L. LEQUIEN Les rendements non monétaires de l'éducation : le cas de la santé D. BLANCHET - T. DEBRAND	Ξ.	Quel impact des vanations du prix du pétrole sur la croissance française ? C. PICART Elix d'emploi et de main-d'œuvre en France : un	resvarieri V. ALBOUY - C. TAVAN Massification et démocratisation de l'enseignement supérieur en France	T. LE BARBANCHON The Changing response to oil price shocks in France: a DSGE type approach	HESMAR Investment Estate Market	Consumption over the Life Cycle: Facts for France C. AFSA Interpreter les variables de satisfaction: l'exemple de la durée du travail
G2006/07 G2006/08		G2006/09	G2006/10 G2006/11	G2006/12	G2006/13	G2006/14	G2006/15	G2007/01	G2007/03 G2007/03	G2007/04	G2007/05	G2007/06	G2007/07	G2007/08 G2007/09	G2007/10
et de l'Allemagne - Une analyse par secteur et destination géographique Bilan des activités de la Direction des Études et Synthèses Économiques - 2004	S. RASPILLER La concurrence fiscale: principaux enseigne- ments de l'analyse économique	C. L'ANGEVIN - N. LAÏB Éducation et croissance en France et dans un panel de 21 pays de l'OCDE	N. FERRARI Prévoir l'investissement des entreprises Un indicateur des révisions dans l'enquête de conjoncture sur les investissements dans l'industrie.	PO. BEFFY - C. L'ANGEVIN Chômage et boucle prix-salaires : apport d'un modèle « qualifiés/peu qualifiés »	B. HEITZ A two-states Markov-switching model of inflation in France and the USA: credible target VS inflation spiral	O. BIAU - H. ERKEL-ROUSSE - N. FERRARI Réponses individuelles aux enquêtes de conjoncture et prévision macroéconomiques : Exemple de la prévision de la production	manufacturiere P. AUBERT - D. BLANCHET - D. BLAU The labour market after age 50: some elements of a Franco-American comparison	D. BLANCHET - T. DEBRAND - P. DOURGNON - P. POLLET L'enquête SHARE: présentation et premiers résultats de l'édition française	M. DUÉE La modélisation des comportements démogra- phiques dans le modèle de microsimulation	DESTINIE H. RAOUII - S. ROUX Étude de simulation sur la participation versée aux salariés par les entreprises	C. BONNET - S. BUFFETFAU - P. GODEFROY Disparités de retraite de droit direct entre hommes et femmes : quelles évolutions?	C. Floan I Les gazelles en France P. AUBERT - B. CRÉPON -P. ZAMORA Le rendement apparent de la formation continue	dans les entreprises : enters sur la productivite et les salaires JF. OUVRARD - R. RATHELOT Democraphic change and unemployment:	what of presence of the presen	s et réactions à de iques types D BIAU - L. ROUVIERE etric Forecasting of the Mar with with Firm-level Survey E.
G2005/06	G2005/07	G2005/08	G2005/09	G2005/10	G2005/11	G2005/12	G2005/13	G2005/14	G2005/15	G2005/16	G2006/01	G2006/03	G2006/04	G2006/05	G2006/06

٠	_

PY. CABANNES - A. MONTAUT - PA. PIONNIER Evaluer la productivité globale des facteurs en France : l'apport d'une mesure de la qualité du capital et du travail R. AEBERHARDT - C. MARBOT Evolution of Instability on the French Labour Market During the Last Thirty Years J-B. BERNARD - G. CLÉAUD Oil price: the nature of the shocks and the impact on the French economy G. LAME Was there a « Greenspan Conundrum » in the Euro area?	P. CHONÉ - F. EVAIN - L. WILNER - E. YILMAZ Introducing activity-based payment in the hospital industry: Evidence from French data C. GRISLAIN-LETRÉMY Natural Disasters: Exposure and Underinsurance PY. CABANINES - V. COTTET - Y. DUBOIS - C. LELARGE - M. SICSIC French Firms in the Face of the 2008/2009 Crisis Applied to Statilita Account for Erance in 2010	Households Statellite Account for France in 2010. Methodological issues on the assessment of domenstic production G. CLÉAUD - M. LEMOINE - PA. PIONNIER Which size and evolution of the government expenditure multiplier in France (1980-2010)? M. BACHELET - A. LEDUC - A. MARINO Les biographies du modèle Destinie II : rebasage et projection B. GARBINTI	L'achar de la residence principale et la creation d'entreprises sont-ils favorisés par les donations et héritages ? N. CECI-RENAUD - P. CHARNOZ - M. GAINI Évolution de la volatilité des revenus salariaux du secteur privé en France depuis 1968 P. AUBERT Modalités d'application des réformes des retraites et prévisibilité du montant de pension contraits et prévisibilité du montant de pension	The Impact of Hazardous Industrial Facilities on Housing Prices: A Comparison of Parametric and Semiparametric Hedonic Price Models J-M. DAUSSIN-BENICHOU. A. MAUROUX Turning the heat up. How sensitive are households to fiscal incentives on energy efficiency investments? C. LABONNE - G. LAMÉ	Credit Growth and Capital Requirements: Binding or Not? C. GRISLAIN-LETRÉMY et C. TREVIEN The Impact of Housing Subsidies on the Rental Sector: the French Example M. LEQUIEN et A. MONTAUT Croissance potentielle en France et en zone euro: un tour d'horizon des méthodes d'estimation
G2013/07 G2013/08 G2013/10	G2013/11 G2013/12 G2013/13	G2013/15 G2014/01 G2014/02	G2014/03 G2014/04	G2014//06 G2014//06	G2014/08 G2014/09
M. GAINI - A. LEDUC - A. VICARD School as a shelter? School leaving-age and the business cycle in France M. GAINI - A. LEDUC - A. VICARD A scarred generation? French evidence on young people entering into a tough labour market P. AUBERT - M. BACHELET Disparities de montant de pension et redistribution dans le système de retraite français R. AEBERHARDT - P. GIVORD - C. MARBOT Spillover Effect of the Minimum Wage in France: An Unconditional Quantile Regression Approach A. EIDELMAN - F. LANGUMIER - A. VICARD Prélièvements	ménages : des canaux redistributifs différents en 1990 et 2010 O. BARGAIN - A. VICARD Le RMI et son successeur le RSA découragent- ils certains jeunes de travailler ? Une analyse sur les jeunes autour de 25 ans C. MARBOT - D. ROY Frojections du coût de l'APA et des caractéristiques de ses bénéficiaires à l'horizon 2040 à l'aide du modèle Destinie	A. MAUROUX Le crédit d'impôt dédié au développement durable : une évaluation économétrique V. COTTET - S. QUANTIN - V. RÉGNIER Coût du travail et allègements de charges : une estimation au niveau établissement de 1996 à 2008 X. D'HAULTFOEUILLE - P. FÉVRIER - L. WILNER Demand Estimation in the Presence of Revenue	Management D. BLANCHET - S. LE MINEZ Joint macro/micro evaluations of accrued-to-date pension liabilities: an application to French reforms T. DEROYON - A. MONTAUT - P-A PIONNIER Utilisation retrospective de l'enquête Emploi à une fréquence mensuelle: apport d'une modélisation espace-état	C. TREVIEN Habiter en HLM: quel avantage monétaire et quel impact sur les conditions de logement ? A. POISSONNIER Temporal disaggregation of stock variables - The Chow-Lin method extended to dynamic models P. GIVORD - C. MARBOT Does the cost of child care affect female labor	marker participation? An evaluation of a French reform of childcare subsidies G. LAME - M. LEQUIEN - PA. PIONNIER Interpretation and limits of sustainability tests in public finance C. BELLEGO - V. DORTET-BERNADET La participation aux pôles de compétitivité: quelle incidence sur les dépenses de R&D et l'activité des PME et ETI?
G2012/04 G2012/05 G2012/06 G2012/07	G2012/09 G2012/10	G2012/11 G2012/12 G2012/13	G2012/14 G2013/01- F1301	G2013/02- F1302 G2013/03 G2013/04	G2013/05 G2013/06
M. ROGER - M. WASMER Heterogeneity matters: labour productivity differentiated by age and skills JC. BRICONGNE - JM. FOURNIER V. LAPÉGUE - O. MONSO De la crise financière a la crise économique L'impact des perturbations financières de 2007 et 2008 sur la croissance de sept pays industrialisés P. CHARNOZ - É. COUDIN - M. GAINI Wage inequalities in France 1976-2004: a quantile regression analysis M. CLERC - M. GAINI - D. BLANCHET Recommendations of the Stiglitz-Sen-Fitoussi		La tertiarisation de l'économie française et le ralentissement de la productivité entre 1978 et 2008 MÉ. CLERC - O. MONSO - E. POULIQUEN Les niégalités entre générations depuis le baby- boom C. MARBOT - D. ROY Évaluation de la transformation de la réduction d'impôt en crédit d'impôt pour l'emploi de salariés à domicile en 2007	P. GIVORD - R. RATHELOT - P. SILLARD Place-based tax exemptions and displacement effects: An evaluation of the Zones Franches Urbaines program X. D'HAULTFOEUILLE - P. GIVORD - X. BOUTIN The Environmental Effect of Green Taxation: the Case of the French "Bonus/Malus" M. BARLET - M. CLERC - M. GARNEO - V. I APPÉGIIF - V. MARCILS	La nouvelle version du modèle MZE, modèle macroéconométrique pour la zone euro R. AEBERHARDT - I. BUONO - H. FADINGER Learning, Incomplète Contracts and Export Pymanics: Theory and Evidence form French Firms C. KERDRAIN - V. LAPÈGUE Restrictive Fiscal Policies in Europe:	What are the Likely Effects? P. GIVORD - S. QUANTIN - C. TREVIEN A Long-Term Evaluation of the First Generation of the French Urban Enterprise Zones N. CECI-RENAUD - V. COTTET Politique salariale et performance des entreprises P. FÉVRIER - L. WILNER Do Consumers Correctly Expect Price Reductions? Testing Dynamic Behavior
G2011/05 G2011/06 G2011/06	G2011/08 G2011/09 G2011/10	G2011/11	G2011/13 G2011/14 G2011/15	G2011/16 G2011/17	G2012/01 G2012/02 G2012/03
R. AEBERHARDT - J. POUGET National Origin Diffeences in Wages and Hierarchical Positions - Evidence on French Full- Time Male Workers from a matched Employer- Employee Dataset S. BLASCO - P. GNORD Les trajectories professionnelles en début de vie active : quel impact des contrats temporaires? P. GIVORD Méthodes économétriques pour l'évaluation de politiques publiques P-Y. CABANNES - V. LAPÈGUE - E. POULIQUEN - M. BEFFY - M. GAINI Quelle croissance de moyen terme après la	I. BUONO - G. LALANNE La réaction des entreprises françaises à la baisse des tarifs douaniers étrangers R. RATHELOT - P. SILLARD L'apport des méthodes à noyaux pour mesurer la concentration géographique - Application à la concentration des immigrés en France de 1968 à 1999 M. BARATON - M. BEFFY - D. FOUGÈRE	Une évaluation de l'effet de la réforme de 2003 sur les départs en retraite - Le cas des enseignants du second degré public D. BLANCHET - S. BUFFETEAU - E. CRENNER S. Le modèle de microsimulation Destinie 2: principales caractéristiques et premiers résultats D. BLANCHET - E. CRENNER Le bloc retraites du modèle Destinie 2: guide de l'utilisateur	M. BARLET - L. CRUSSON - S. DUPUCH - F. PUECH Des services échangés aux services échangeables : une application sur données françaises M. BEFFY - T. KAMIONKA Public-private wage gaps: is civil-servant human capital sector-specific? PY. CABANNES - H. ERKEL-ROUSSE - G. LAANNE - O. MONSO. E. POULIQUEN Le modèle Mésanne réestiné en base 2000	Tome 2 - Version avec volumes a prix chaînes R. AEBERHARDT - L. DAVEZIES Conditional Logit with one Binary Covariate: Link between the Static and Dynamic Cases T. LE BARBANCHON - B. OURLIAC - O. SIMON Les marchés du travail français et américain face aux charches conjoncturels des années 1986 à 2007 : une modélisation DSGE	C. MARBOT Une évaluation de la réduction d'impôt pour l'emploi de salariés à domicile L. DAVEZIES Modèles à effets fixes, à effets aléatoires, modèles mixtes ou multi-niveaux : propriétés et mises en œuvre des modélisations de l'hétérogénéité dans le cas de données groupées
G2010/06 G2010/07 G2010/08 G2010/09	G2010/10 G2010/11 G2010/12	G2010/13 G2010/14	G2010/15 G2010/16 G2010/17	G2010/18 G2011/01	G2011/02 G2011/03

	×	۹

	A BAUER - B. GARBINTI - S. GEORGES-KOT Financial Constraints and Self-Employment in France, 1945-2014 P. BEAUMONT - A. LUCIANI Prime à l'embauche dans les PME: évaluation à partir des déclarations d'embauche O C BELLÉGO - V. DORTET-BERNADET - M TÉPALIT				M. LECLAIR - B. PENTINAT - JD. ZAFAR L'économie numérique fausse-t-elle le partage volume-prix du PIB? A. CAZENAVE-LACROUTZ – E. YILMAZ Dans quelle mesure les incitations tarifaires et la procédure de mise sous accord préalable ont-elles contribué au développement de la chirurgie ambulatoire?	JP. CLING – S. EGHBAL-TEHERANI – M. ORZONI – C. PLATEAU The Differences between EU Countries for Sustainable Development Indicators: It is (mainly) the Economy! P. CHONÉ – L. WILNER Competition on Unobserved Attributes: The Case of the Hospital Industry
G2018/05 G2018/06 G2018/07	G2018/09 G2018/09 G2018/10	G2018/11 G2018/12	G2019/01 F1901	G2019/03 G2019/03 G2019/04	F1903 G2019/05	G2019/06
consumption in employment: an Input-Output decomposition D. FOUGÈRE - E. GAUTIER - S. ROUX Understanding Wage Floor Setting in Industry- Level Agreements: Evidence from France Y. DUBOIS - M. KOUBI Règles d'indexation des pensions et sensibilité des dépenses de retraites à la croissance économique et aux chocs démographiques A. CAZFNAVE-I. ACROUTZ - F. GODET	L'expérance de vie n'etraite sans incapacité sévère des générations nées entre 1960 et 1990 : une projection à partir du modèle Destinie J. BARDAJI - B. CAMPAGNE - O. SIMON (Insee) AS. DUFERNEZ - C. ELEZAAR - P. LEBLANC - E. MASSON - H. PARTOUCHE (DG-Trésor) Le modèle macroéconométrique Mésange : réestimation et nouveautés	J. BOUSSARD - B. CAMPAGNE Fiscal Policy Coordination in a Monetary Union at the Zero-Lower-Bound A. CAZENAVE-LACROUTZ - A. GODZINSKI Effects of the one-day waiting period for sick leave on health-related absences in the	French central civil service P. CHARNOZ - M. ORAND Qualification, progrès technique et marchés du travail locaux en France, 1990-2011 K. MILIN Modélisation de l'inflation en France par une approche macrosectorielle	CM. CHEVALIER - R. LARDEUX Homeownership and labor market outcomes: disentangling externality and composition effects P. BEAUMONT Time is Money: Cash-Flow Risk and Export Market Behavior	SMEs' financing: Divergence across Euro area countries? CM. CHEVALIER - A. LUCIANI Computerization, labor productivity and employment: impacts across industries vary with technological level	analyse sur données sectorielles et individuelles et individuelles. R. LARDEUX Who Understands The French Income Tax? Bunching Where Tax Liabilities Start
G2017/01 G2017/02 G2017/03	G2017/04	G2017/05	G2017/07 G2017/08	G2017/09 G2017/10	G2018/02 G2018/03	G2018/04
S. GEORGES-KOT Annual and lifetime incidence of the value-added tax in France M. POULHËS Are Enterprise Zones Benefits Capitalized into Commercial Property Values? The French Case J.B. BERNARD - Q. LAFFÉTER Effet de l'activité et des prix sur le revenu salarial des différentes catégories socioprofessionnelles C. GEAY - M. KOUBI - G de LAGASNERIE	Projections described and a Projections de Ville, construction d'un module pour Destinie J. BARDAJI - JC. BRICONGNE - B. CAMPAGNE - G. GAULIER Compared performances of French companies On BELLÉGO - R. DE NJJS The redistributive effect of online piracy on the box office performance of American movies in foreign markets JB. BERNARD - L. BERTHET	French households financial wealth: which changes in 20 years? M. POULHÈS Fenêtre sur Cour ou Chambre avec Vue? Fenêtre sur Cour ou Chambre parisien B. GARBINTI - S. GEORGES-KOT Time to smell the roses? Risk aversion, the timing of inheritance receipt, and retirement	P. CHARNOZ - C. LELARGE - C. TREVIEN Communication Costs and the Internal Organization of Multi-Plant Businesses: Evidence from the Impact of the French High-Speed Rail C. BONNET - B. GARBINTI - A. SOLAZ Gender Inequality after Divorce: The Flip Side of Marital Specialization - Evidence from a French Administrative Database	D. BLANCHET - E. CAROLI - C. PROST - M. ROGER Health capacity to work at older ages in France B. CAMPAGNE - A. POISSONNIER MELEZE: A DSGE model for France within the Euro Area B. CAMPAGNE - A. POISSONNIER I S. CAMPAGNE - A. POISSONNIER I S. CAMPAGNE - A. POISSONNIER		A. NAOUAS - M. ORAND - I. SLIMANI HOUTI Les entreprises employant des salariés au Smic: quelles caractéristiques et quelle rentabilité ? T. BLANCHET - Y. DUBOIS - A. MARINO - M. ROGER Patrimoine privé et retraite en France M. PAK - A. POISSONNIER Accounting for technology, trade and final
G2015/12 G2015/13 G2015/14	G2015/16 G2015/17 G2015/18	G2015/19 G2016/01	G2016/02 G2016/03	G2016/04 G2016/05 G2016/06	G2016/07 G2016/08	G2016/09 G2016/10 G2016/11
B. GARBINTI - P. LAMARCHE Les hauts revenus épargnent-lis davantage ? D. AUDENAERT - J. BARDAJI - R. LARDEUX - M. ORAND - M. SICSIC Wage Resilience in France since the Great Recession F. ARNAUD - J. BOUSSARD - A. POISSONNIER - H. SOUAL Computing additive contributions to growth and other issues for chain-linked quarterly	aggregates H. FRAISSE - F. KRAMARZ - C. PROST Labor Disputes and Job Flows P. GIVORD - C. GRISLAIN-LETRÉMY - H. NAECELE How does fuel taxation impact new car purchases? An evaluation using French consumer-level dataset P. AUBERT - S. RABATÉ Durée passée en carrière et durée de vie en retraite : quel partage des gains d'espérance de vie?	A. POISSONNIER The walking dead Euler equation Addressing a challenge to monetary policy models Y. DUBOIS - A. MARINO Indicateurs de rendement du système de retraite français	T. MAYER - C. TREVIEN The impacts of Urban Public Transportation: Evidence from the Paris Region S.T. LY - A. RIEGERT Measuring Social Environment Mobility M. A. BEN HALIMA - V. HYAFIL-SOLELHAC M. KOUBI - C. REGAERT Quel est l'impact du système d'indemnisation	maladie sur la durée des arrêts de travail pour maladie ? Y. DUBOIS - A. MARINO Disparités de rendement du système de retraite dans le secteur privé : approches intergénéra-tionnelle et intragénérationnelle B. CAMPAGNE - V. ALHENC-GELAS - JB. BERNARD	No evidence of inancial accelerator in France Q. LAFFÉTER, M. PAK Elasticités des recettes fiscales au cycle économique : étude de trois impôts sur la période 1979-2013 en France JM. DAUSSIN-BENICHOU, S. IDMACHICHE, A. LEDUC et E. POULIQUEN Les déterminants de l'attractivité de la fonction publique de l'État	P. AUBERT La modulation du montant de pension selon la durée de carrière et l'âge de la retraite : quelles disparités entre assurés? V. DORTET-BERNADET - M. SICSIC Effet des aides publiques sur l'emploi en R&D dans les petites entreprises
G2014/10 G2014/11 G2014/12	G2014/13 G2014/14 G2014/15	G2015/01	G2015/03 G2015/04 G2015/05	G2015/06 G2015/07	G2015/08 G2015/09	G2015/10 G2015/11

xii

G2020/09 J-M. GERMAIN – T. LELLOUCH Comptabilité économique de la soutenabilité climatique																							
P. PORA – L. WILNER Child Penalties and Financial Incentives: Exploiting Variation along the Wage Distribution	E. GAUTIER – S. ROUX – M. SUAREZ CASTILLO Do Minimum Wages make Wages more Rigid? Evidence from French Micro Data	M. ANDRÉ – A. SIREYJOL Imposition des couples et des familles : effets budgétaires et redistributifs de l'impôt sur le revenu	K. MOHKAM – O. SIMON L'empreinte matière de l'économie française: une analyse par matière et catégorie de produits	S. BUNEL – B. HADJIBEYLI Évaluation du crédit d'impôt innovation	C. BONNET – F. GODET – A. SOLAZ Gendered economic determinants of couple formation over 50 in France	P. GIVORD – M. SUAREZ CASTILLO Excellence for all? Heterogeneity in high schools' value-added	G. CETTE – L. KOEHL – T. PHILIPPON	Labor Share in Some Advanced Countries	J. SILHOL -B. VENTELOU	Les zones d'intervention prioritaire reflètent- elles des écarts de pratiques des médecins généralistes ?	B. BOUCHTENIK – R. LARDEUX	The Take-Up of Unemployment Benefit Extensions	J-M. GERMAIN	A Welfare Based Estimate of "Real Feel GDP" for Europe and the USA	J. BOUSSARD – R. LEE	Competition, Profit Share and Concentration	P. PORA	Keep Working and Spend Less? Collective Childcare and Parental Earnings in France	R. MONIN - M. SUAREZ CASTILLO	Product Switching, market power and distance to core competency	L. WILNER	How do citizens perceive centralization reforms? Evidence from the merger of French regions	L. WILNER The persistence of subjective well-being: permanent happiness, transitory misery?
G2019/08	G2019/09	G2019/10	G2019/11	G2019/12	G2019/13	G2019/14	G2019/15		G2020/01		G2020/02		G2020/03		G2020/04		G2020/05		G2020/06		G2020/07		G2020/08