Introduction to record linkage

Vocabulary and key concepts

RECORD LINKAGE WEBINAR 12/04/2021

Measuring, understanding

- Record linkage is the task of identifying records representing the same entity across two data sets.
- The task is straightforward in presence of a common unique identifier or with data of perfect quality, otherwise it becomes complex.
- Different kinds of applications:
 - Enriching a file with an exhaustive database
 - Joining two non-overlapping files
 - Deduplication (~ linking a file with itself)
- Different goals: administrative or statistical?
- Disclaimer: this presentation is purely methodological but the legal question is a major aspect of record linkage for official statistics.

Data pre-processing
Indexing
Pair comparison
Classification
Clerical review)
Quality evaluation

 First step of any treatment on a dataset, pre-processing has a major impact on the results of a record linkage process (garbage in, garbage out).

GOAL

Clean, standardise and prepare the data for the matching process

PITFALL

 A brutal standardisation leads to a significant drop in variance: information is lost.

EXAMPLES OF TREATMENTS

- Convert all letters to uppercase
- Remove unwanted characters (JEAN-MICHEL L'HÉRITIER → JEANMICHEL LHERITIER)
- Remove stop words
- Use rules or look-up tables to correct common variations (av. → avenue)
- Check for outliers and inconsistent values and correct them (age > 120, or negative)
- Verify attribute values with a reference table (e.g. confront address to a national database)
- Segment attributes into several fields containing only one piece of information (dates, addresses, etc.)

6

Data pre-processing
Indexing
Indexing
Pair comparison
Classification
Classification
(Clerical review)
Quality evaluation

- For large files, it is computationally impossible to compare every pair of the Cartesian product (O(N²) problem).
- Most pairs can be ruled out easily as non-matches.

GOAL

Reduce dimension by considering only the pairs that possibly correspond to true matches

PITFALL

 A drastic indexation may create false negatives i.e. some of the true matches may be missed because of the indexation step. There is a tradeoff between dimension reduction and quality of the matching process.

METHODS

- Classic approach: blocking
 - One of the fields is chosen as a blocking key
 - Only the records sharing the same value on the blocking key are kept as potential matches.
 - E.g. if the blocking key is the birth year, only records sharing the same birth year will be compared with each other.
 - The blocking key needs to be of high quality, otherwise the indexation step will create a lot of false negatives.

METHODS

- Variations around blocking:
 - Use several blocking keys (e.g. first block on birth year, then on postal code and concatenate all pairs from the two blocking steps)
 - Build a blocking key with several fields (e.g. both birth year and postal code must agree for a pair to be considered as a potential match)
 - Use a distance (e.g. Levenshtein) instead of or in addition to an exact comparison (e.g. same birth year and maximum Levenshtein distance of 3 for surname)
 - Compare phonetically (e.g. Soundex for English)
- Other methods: sorted neighbourhood approach, clustering...

Data pre-processing
Indexing
Pair comparison
Classification
(Clerical review)
Quality evaluation

- After the indexing step, the remaining pairs must be compared. Exact matches are not sufficient because most datasets in record linkage problems contain errors in the identifying fields.

GOAL

- Compute similarity measures for each identifying field and for each potential pair kept after indexing

PITFALL

- This step is closely related to the next one. Both need to be thought together because some similarity measures work better with certain classification algorithms.

METHODS

- A lot of different measures exist (Levenshtein, Jaro-Winkler, Editex, Q-gram...)
- The choice depends on the field type (string, numeric, date...)
- After normalisation, each similarity measure ranges from 0 to 1 (1 for identical values and 0 for totally different values)

Data pre-processing
Indexing
Pair comparison
Classification
(Clerical review)
Quality evaluation

 The aggregation of similarity measures computed in the previous step enables to decide on a match status for each pair.

GOAL

 Classify the remaining pairs into two or three categories: match, non match and possibly potential match

METHODS

 Classification algorithms for record linkage are split into two mains classes: deterministic and probabilistic methods

EXAMPLES OF DETERMINISTIC METHODS

- Rule-based approach:
 - Pairs are classified based on a set of rules manually developed
 - If there are several successive steps, records matched at a given point are not considered in the following steps
- Threshold-based approach:
 - A weighted sum of similarity measures gives a global similarity at the pair level.
 - If it is above a threshold, it is classified as a match, otherwise as a non-match.
- Supervised machine learning:
 - A training sample needs to be manually labelled so that a machine learning algorithm (e.g. SVM or decision tree) learns to classify the pairs based on the similarity measures.

PROBABILISTIC METHODS

- These methods are based on a framework that was first exposed by Fellegi and Sunter in 1969.
- The difference with deterministic methods lies in the use of the probability that a pair is a true match. This probability is used to classify pairs: two cut-off values split the pairs in three classes (match, potential match and non-match).
- The idea is to assign weights to each attribute based on how well an agreement on this attribute predicts a true match (are these variables discriminating enough?).
- These weights are conditional probabilities estimated with external data, a sample of manually labelled pairs or the Expectation-Maximisation algorithm.
- The traditional model relies on an assumption of conditional independence.
- A lot of variations exist and research is still active on this topic.

QUICK COMPARISON OF DETERMINISTIC AND PROBABILISTIC METHODS

- Probabilistic methods allow a better control of error bounds
- They also require less human intervention in the choice of parameters than most deterministic approaches.

BUT

- Deterministic methods are more straightforward and easier to develop ad hoc.
- Probabilistic linkage is more computationally intensive than optimized deterministic classification algorithms, which may be an issue with large datasets.

Data pre-processing
Indexing
Pair comparison
Classification
(Clerical review)
Quality evaluation

- Some models class pairs as potential matches. They require an extra step called clerical review.

GOAL

- Call on a human judgement to decide on the cases for which the algorithm was unable to settle.

PITFALL

- This process is expensive, it is important that the number of potential matches classed by the model remains at a reasonable level.

NOTES

- An interface offering a clear visualisation of differences in each field greatly facilitates the task.
- A manual review may be needed at other steps of the process: before the classification for supervised machine learning algorithms and during the evaluation step to compute performance metrics.

1) Data pre-processing

3) Pair comparison

5) (Clerical review)

6) Quality evaluation

Detection, Christen, 2012

Source : Data Matching. Concepts and Techniques

for Record Linkage, Entity Resolution, and Duplicate

4) Classification

2) Indexing

- Evaluating quality is an essential part of the record linkage process, particularly when studies are based on its output.

GOAL

 Gain as much information as possible on the quality of the matching that was performed

PITFALL

- Most indicators require specific knowledge about the datasets.
 - Gold-standard : representative sample for which the real status of pairs is known
 - Manually labelled sample
 - Statistics and distributions coming from external sources

INDICATORS

- Share of linked records
- Classic indicators for binary classification:
 - true/false positives, true/false negatives
 - precision, recall and F-measure
- Analysis of the distribution of linked pairs, non-linked pairs and pairs with a wrong link status.
- Evaluation of the impact of errors on subsequent studies

NOTE

 Part of the quality evaluation process relies on the users of the linked data.

Measuring, understanding