

INSTITUT NATIONAL DE LA STATISTIQUE ET DES ÉTUDES ÉCONOMIQUES

ÉCOLE NATIONALE DE LA STATISTIQUE ET DE L'ANALYSE DE L'INFORMATION

Concours i	nterne d'a	attaché	statisticie	en de l'Insee
	SES	SSION 2	2020	_

ÉPREUVE DE MATHÉMATIQUES ET STATISTIQUES

Durée 4 heures

Coefficient 3

Sans documents - L'usage de la calculatrice est interdit

Le sujet comprend 8 pages

Le sujet se compose de 4 exercices. Le barème est donné à titre indicatif.

<u>Exercice 1</u> 6 pts

Depuis le début de l'année (les 20 jours ouvrés du mois de janvier) Alice a relevé le temps qu'elle devait attendre son bus. Elle suppose que ce temps d'attente peut être représenté par une variable aléatoire A qui suit une loi exponentielle de paramètre λ .

Les 20 relevés du mois de janvier d'Alice figure dans le tableau ci-dessous (le temps est en minute) :

jour	1	2	3	4	5	6	7	8	9	10
Temps	2	1	7	3	1	8	7	17	8	2
Jour	11	12	13	14	15	16	17	18	19	20
Temps	1	4	2	2	11	4	10	2	2	6

Alice a comptabilisé qu'au mois de janvier elle avait attendu au total 1h40 min.

- 1. (a) Rappeler la densité, l'espérance et la variance d'une loi exponentielle de paramètre λ .
 - (b) Retrouver l'expression de la fonction de répartition de A, c'est-à-dire la fonction F définie par $F_A(t) = P(A \leq t)$ pour $t \in \mathbb{R}$.
 - (c) À partir des relevés d'Alice, donner une estimation pour la valeur de λ . λ sera identifié à cette estimation dans la suite de l'exercice.
- 2. En février, Alice fait ses trajets en bus avec son ami Bob.
 - (a) Montrer que la probabilité d'attendre moins de 8 minutes est de p = 0,798. On pourra utiliser la table située en page 3.
 - (b) Bob vient la rejoindre alors qu'elle attend déjà depuis 3 minutes. On note B la variable aléatoire représentant le temps d'attente de Bob. Calculer la fonction de répartition de la variable aléatoire B, c'est-à dire

$$F_B(t) = P(B \le t) = P(A - 3 \le t | A > 3)$$

pour $t \in \mathbb{R}$.

- (c) Reconnaître la loi de B.
- (d) Quelle est l'espérance de B?
- (e) Quand Bob est arrivé, Alice lui a annoncé qu'ils n'auront plus que 2 minutes à attendre en moyenne puisqu'elle a déjà attendu 3 minutes. Alice a-t-elle raison?
- 3. On s'intéresse aux 20 jours ouvrés du mois de mars. Sur ces 20 jours, on note N le nombre de jours pour lesquels Alice a attendu moins de 8 min.

Les jours ouvrés du mois de mars étant numérotés de 1 à 20, R désigne la variable aléatoire définie comme le numéro du premier jour pour lequel Alice a attendu (strictement) plus de 8 minutes son bus.

Par convention, si pendant tout le mois Alice a attendu moins de 8 minutes, alors R = 21. On suppose que les temps d'attente journaliers sont indépendants.

- (a) Donner la loi de N.
- (b) Donner sans calcul l'espérance et la variance de N.
- (c) Donner la loi de R, c'est-à-dire que l'on donnera une expression de P(R = k) pour k entier entre 1 et 21.
- (d) On définit, sur [0,1[, la fonction S_n par $S_n(x) = \sum_{i=1}^n x^i$.
 - i. Calculer $S_n(x)$.
 - ii. En dérivant S_n , montrer que

$$\sum_{i=1}^{n} ix^{i-1} = \frac{nx^{n+1} - (n+1)x^n + 1}{(1-x)^2}.$$

- (e) En déduire l'espérance de R.
- 4. Alice rencontre Chloé qui lui conseille de prendre le métro. On note C la variable aléatoire du temps d'attente à la station de métro. On suppose que C suit une loi uniforme sur [0,10]. Alice décide de prendre le métro les 20 jours ouvrés du mois d'avril.
 - (a) Calculer l'espérance et la variance de la variable aléatoire C.
 - (b) Comparer et interpréter les variances des variables A et C.
 - (c) Calculer la probabilité qu'Alice attende moins de 8 minutes.
 - (d) Calculer la probabilité qu'Alice attende 8 minutes sachant qu'elle a déjà attendu 3 minutes.
 - (e) Comparez le résultat de la question précédente avec le résultat de la question 2.(b).
- 5. A partir du mois de mai, Alice adopte la stratégie suivante :
 - le premier jour, elle prend le bus,
 - si le jour n elle attend strictement plus de 8 minutes le bus alors le jour n+1 elle prend le métro, sinon elle continue de prendre le bus.
 - si le jour n elle attend strictement plus de 8 minutes le métro alors le jour n+1 elle prend le bus, sinon elle continue de prendre le métro.

On note A_n l'évènement « Alice prend le bus le jour n » et $a_n = P(A_n)$.

Pour rappel le nombre p est la probabilité qu'Alice attende son bus moins de 8 minutes, défini en 2.(a).

- (a) Montrer que $a_{n+1} = (p-0,2)a_n + 0, 2$. On pourra utliser la formule des probabilités totales.
- (b) Soit l le nombre solution de l'équation l = (p 0, 2)l + 0, 2. Donner une expression de l en fonction de p.
- (c) Montrer que la suite $(u_n)_{n\geqslant 1}$ définie par $u_n=a_n-l$ est une suite géométrique de raison que l'on déterminera.
- (d) En déduire une expression de a_n en fonction de n.
- (e) La suite $(a_n)_{n\geqslant 1}$ converge-t-elle? Si oui, déterminer sa limite.

Table: fonction $x \mapsto e^{-x}$

x	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
0	1.000	0.905	0.819	0.741	0.670	0.607	0.549	0.497	0.449	0.407	
1	0.368	0.333	0.301	0.273	0.247	0.223	0.202	0.183	0.165	0.150	
2	0.135	0.122	0.111	0.100	0.091	0.082	0.074	0.067	0.061	0.055	
3	0.050	0.045	0.041	0.037	0.033	0.030	0.027	0.025	0.022	0.020	
4	0.018	0.017	0.015	0.014	0.012	0.011	0.010	0.009	0.008	0.007	
5	0.007	0.006	0.006	0.005	0.005	0.004	0.004	0.003	0.003	0.003	
-	75 0.000										

Lecture : $e^{-2.5} = 0.082$

Soit f l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 définie par

$$f(x, y, z) = (-x + y + z, -6x + 4y + 2z, 3x - y + z).$$

- 1. Écrire la matrice de f dans la base canonique de \mathbb{R}^3 .
- 2. (a) Montrer que $f \circ f = 2f$.
 - (b) En déduire que si $v \in \text{Im}(f)$ alors f(v) = 2v.
 - (c) Calculer le noyau Ker (f).
- 3. Montrer que Ker (f) et $\operatorname{Im}(f)$ vérifient (on dit alors que Ker (f) et $\operatorname{Im}(f)$ sont des sous-espaces vectoriels supplémentaires de \mathbb{R}^3):
 - (i) Ker $(f) \cap \operatorname{Im}(f) = \{0\}$
 - (ii) Tout élément v de \mathbb{R}^3 s'écrit v=w+t avec $w\in \text{ Ker }(f)$ et $t\in \text{Im}(f).$
- 4. (a) Trouver une base $\mathscr{B} = (b_1, b_2, b_3)$ de \mathbb{R}^3 telle que $b_1 \in \ker(f)$ et $b_2, b_3 \in \operatorname{Im}(f)$.
 - (b) L'application f est-elle diagonalisable?

Exercice 3 5 pts

On définit la fonction f par :

$$f_{\alpha,\beta}(t) = \begin{cases} t^{\alpha-1}(1-t)^{\beta-1} & \text{si } t \in [0,1] \\ 0 & \text{sinon.} \end{cases}$$

pour $\alpha \geqslant 1$ et $\beta \geqslant 1$. On note $I(\alpha, \beta) = \int_0^1 f_{\alpha, \beta}(t) dt$.

- 1. (a) Établir que $I(\alpha, \beta + 1) = \frac{\beta}{\alpha}I(\alpha + 1, \beta)$.
 - (b) Montrer $I(\alpha + 1, \beta) + I(\alpha, \beta + 1) = I(\alpha, \beta)$
 - (c) Calculer I(m,1) pour $m \in \mathbb{N}^*$.
 - (d) Montrer par récurrence (sur n) que $I(m+1,n+1)=\frac{m!n!}{(m+n+1)!}$, pour $(m,n) \in \mathbb{N} \times \mathbb{N}$.
- 2. À propos de la densité
 - (a) Calculer la dérivée de $f_{\alpha,\beta}$ sur]0,1[.
 - (b) Déterminer le signe de $f'_{\alpha,\beta}$. On pourra faire plusieurs cas suivant si α et β valent 1 ou pas.
 - (c) Dresser le tableau de variation de $f_{\alpha,\beta}$.
 - (d) On note $g_{\alpha,\beta} = \frac{f_{\alpha,\beta}}{I(\alpha,\beta)}$. Montrer que $g_{\alpha,\beta}$ définit une densité de probabilité. Cette loi s'appelle loi Beta et se note $\mathcal{B}(\alpha, \beta)$.
- 3. Quelques caractéristiques de la loi $\mathcal{B}(m,n)$ pour $m \in \mathbb{N}^*$ et $n \in \mathbb{N}^*$
 - (a) Calculer l'espérance de la loi $\mathcal{B}(m,n)$.
 - (b) Calculer le moment d'ordre 2 de $\mathcal{B}(m,n)$.
 - (c) En déduire la variance de $\mathcal{B}(m,n)$.
- 4. Statistique d'ordre

Soient X_1, X_2, \ldots, X_n des variables indépendantes suivant toutes la loi uniforme sur [0, 1].

On note h la densité de la loi uniforme sur [0,1] et H sa fonction de répartition, c'est-à-dire $H(t) = P(X_1 \leq t)$.

On note $Y = \max_{1 \leq i \leq n}(X_i)$. On appelle F la fonction de répartition de Y, c'est-à-dire que $F(t) = P(Y \leq t)$. On admet que Y admet une densité et on note f sa densité.

- (a) Montrer que $F(t) = (H(t))^n$.
- (b) Donner une expression de H(t) en fonction de t.
- (c) On admet que pour $t \in]0,1[$ on a f(t) = F'(t). Calculer f sur]0,1[.
- (d) Que vaut $f \operatorname{sur}]-\infty, 0[? \operatorname{Sur}]1, +\infty[?]$
- (e) Montrer que Y suit une loi Beta dont on déterminera les paramètres.

La partie II est indépendante des deux autres parties. Dans la partie III on pourra admettre des résultats des parties I et II.

Dans l'exercice si A est une matrice, ^tA désigne la matrice transposée de A. De même,

si
$$u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$
 est un vecteur, $tu = (u_1, u_2, u_3)$ désigne le vecteur transposé.

Partie I

On note
$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{pmatrix}$$
, et $\langle u, v \rangle = {}^t u.v = u_1v_1 + u_2v_2 + u_3v_3$ désigne le produit

scalaire standard de deux vecteurs u et v de \mathbb{R}^3 . On note $\|u\| = \sqrt{\langle u, u \rangle}$ la norme euclidienne.

- 1. (a) Vérifier que $a = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ est un vecteur propre de M pour la valeur propre 4.
 - (b) Montrer que le noyau de M est de dimension 1, et exhiber un vecteur non-nul b de ce noyau.
 - (c) Montrer que 1 est valeur propre de M et exhiber un vecteur propre c pour cette valeur propre.
- 2. (a) Calculer ||a||, ||b|| et ||c||. On pose $a' = \frac{1}{||a||}a$, $b' = \frac{1}{||b||}b$ et $c' = \frac{1}{||c||}c$.

On note A la matrice carrée de taille 3 dont les colonnes sont $\left(\begin{array}{c|c} a' & b' & c' \end{array}\right)$.

- (b) Montrer que les vecteurs a', b', c' sont deux à deux orthogonaux, pour le produit scalaire <, >.
- (c) Que vaut tAA ?
- 3. Montrer que $M=AD\ ^tA$ pour une matrice diagonale D à préciser.
- 4. Trouver toutes les matrices diagonales S solution de l'équation $S^2 = D$. Dans la suite on note T la solution ayant tous ses coefficients positifs.
- 5. Soit $u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \in \mathbb{R}^3$. On souhaite montrer que ${}^t u M u \geqslant 0$.
 - (a) Montrer que $\langle T^{t}Au, T^{t}Au \rangle = {}^{t}uMu$.
 - (b) Conclure.
- 6. Soit $H = \left\{ v \in \mathbb{R}^3; < \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, v >= 0 \right\}$ l'orthogonal de Vect $\left(\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right)$. Trouver une base de H. Quelle est la dimension de H?

Partie II

Dans les questions 1 et 2 on redémontre des résultats sur la covariance, utiles dans la suite. La question 3 étudie le lien entre covariance et indépendance.

On rappelle que si X_1, X_2 sont deux variables aléatoires réelles, la covariance de X_1 et X_2 , notée $\text{Cov}(X_1, X_2)$ est le nombre $\mathbb{E}\left((X_1 - \mathbb{E}(X_1))(X_2 - \mathbb{E}(X_2))\right)$. La variance de X_1 est $\mathbb{V}(X_1) = \text{Cov}(X_1, X_1)$.

Dans la suite on pourra utiliser la propriété suivante : si X_1 et X_2 sont indépendantes, alors $\mathbb{E}(X_1X_2) = \mathbb{E}(X_1).\mathbb{E}(X_2)$.

- 1. Montrer que $Cov(X_1, X_2) = Cov(X_2, X_1) = \mathbb{E}(X_1 X_2) \mathbb{E}(X_1) \mathbb{E}(X_2)$.
- 2. En déduire que si X_1' est une autre variable aléatoire réelle et si $a \in \mathbb{R}$,

$$Cov(aX_1 + X_1', X_2) = a. Cov(X_1, X_2) + Cov(X_1', X_2).$$

- 3. (a) On suppose que X_1 et X_2 sont indépendantes. Que vaut dans ce cas $Cov(X_1, X_2)$?
 - (b) On suppose que X_1 suit la loi donnée par le tableau suivant

et que Z est une variable aléatoire suivant la loi donnée par le tableau

$$\begin{array}{|c|c|c|c|c|} \hline i & -1 & 1 \\ \hline P(Z=i) & \frac{1}{2} & \frac{1}{2} \\ \hline \end{array}$$

On suppose X_1 et Z indépendantes.

- i. Calculer $\mathbb{E}(Z)$.
- ii. On pose $X_2 = X_1 Z$. Calculer $Cov(X_1, X_2)$.
- iii. Montrer que X_1 et X_2 ne sont pas indépendantes. Commenter.

Partie III

On note $X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$ un vecteur aléatoire à valeurs dans \mathbb{R}^3 (ses composantes, les X_i ,

sont donc des variables aléatoires réelles, supposées discrètes). On suppose que

$$\begin{pmatrix} \mathbb{E}(X_1) \\ \mathbb{E}(X_2) \\ \mathbb{E}(X_3) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Au vecteur X on associe sa matrice de covariance

$$\Sigma_X = \begin{pmatrix} \operatorname{Cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \operatorname{Cov}(X_1, X_3) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Cov}(X_2, X_2) & \operatorname{Cov}(X_2, X_3) \\ \operatorname{Cov}(X_3, X_1) & \operatorname{Cov}(X_3, X_2) & \operatorname{Cov}(X_3, X_3) \end{pmatrix}.$$

1. On fixe un vecteur $u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$ de \mathbb{R}^3 . On note $Y = \langle u, X \rangle = u_1 X_1 + u_2 X_2 + u_3 X_3$.

7

(a) Calculer $\mathbb{E}(Y)$.

- (b) Exprimer $\mathbb{V}(Y)$ en terme de covariance.
- (c) Montrer que $\mathbb{V}(Y) = {}^t u \Sigma_X u$. Est-ce cohérent avec le résultat de la question 5 de la partie I?
- 2. Dans la suite de l'exercice on suppose que $\Sigma_X = M$. On prend aussi $u = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$.

On rappelle (voir la partie I) que $u \in \ker(M)$.

On suppose aussi que les X_i sont à valeurs dans $\{0, 1, 2\}$.

- (a) Que vaut $\mathbb{V}(Y)$?
- (b) En déduire que $\mathbb{E}(Y^2) = 0$.
- (c) Exprimer Y en fonction des X_i , puis montrer que Y^2 est à valeurs dans $\{0, 1, 4\}$.
- (d) Déduire que $P(Y = 0) = P(Y^2 = 0) = 1$.
- (e) Conclure que le vecteur X prend ses valeurs dans l'hyperplan H avec une probabilité 1.