Question(s)

Soit f la fonction définie sur \mathbb{R}^2 par

$$f(x,y) = x^3 + y^3 - 3xy + 1 \quad .$$

- 1. Calculer les dérivées partielles de f et exprimer la différentielle totale de f.
- 2. La fonction f admet-elle un ou des extrema locaux?

Exercice

On considère les matrices : $A = \begin{pmatrix} -3 & 4 \\ 4 & -3 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$.

On désigne par I la matrice identité $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

- 1. Déterminer les valeurs propres de A et B. Les matrices A et B sont-elles diagonalisables?
- 2. On veut déterminer les matrices M, carrées d'ordre 2 à coefficients réels, vérifiant les conditions :

$$(S) \begin{cases} M^3 - 3M^2 + 3M &= A \\ M^2 + 2M &= B \end{cases}.$$

On se donnée une matrice M vérifiant ces conditions.

- (a) Montrer les égalités : $(M-I)^3 = A I$ et $(M+I)^2 = B + I$.
- (b) En déduire que M-I et M+I ne sont pas inversibles.
- (c) En déduire que la matrice M est diagonalisable et vérifie l'égalité $M^2 = I$.
- (d) Déterminer toutes les solutions du système \mathcal{S} .

Question(s)

On considère deux applications linéaires f et g de \mathbb{R}^n dans \mathbb{R}^n .

- 1. Montrer que : $ker(g) \subset ker(f \circ g)$.
- 2. Montrer que : $Im(f \circ g) \subset Im(f)$.
- 3. Montrer que si $f \circ g$ est bijectif alors f et g sont également bijectifs.
- 4. Montrer que $f \circ g$ et $g \circ f$ ont les mêmes valeurs propres.

Exercice

1. Étudier les variations de la fonction définie par :

$$f:]0, +\infty[\rightarrow \mathbb{R}$$

 $x \mapsto \log(x+1) - \log(x) - \frac{1}{x}$.

- 2. Déterminer les limites de f en 0 et en $+\infty$.
- 3. Montrer que pour tout entier naturel non nul n, $\log(n+1) \log(n) \le \frac{1}{n}$.
- 4. Soit la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n=\sum_{k=1}^n\frac{1}{k}$ (n entier naturel non nul). Montrer que $\lim_{n\to+\infty}u_n=+\infty$
- 5. Établir que pour tout entier naturel non nul n, $\frac{1}{n+1} \le \log(n+1) \log(n)$.
- 6. En déduire un encadrement de u_n et montrer que $\lim_{n\to+\infty} \frac{u_n}{\log(n)} = 1$.

Question(s)

Soit E l'ensemble des fonctions réelles continues sur [0;1]. Pour f et g appartenant à E, on définit L(f,g) par

$$L(f,g) = \int_{0}^{1} f(t)g(t) dt .$$

On note Id la fonction identité de E, définie par Id(x)=x pour $x\in [0;1].$

- 1. Justifier que E est un espace vectoriel sur \mathbb{R} .
- 2. Justifier que L est un produit scalaire sur E.
- 3. Déterminer les fonctions affines orthogonales à Id par le produit scalaire L.

Exercice

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par la donnée de son premier terme $u_0\neq 1$ et par la relation de récurrence :

$$\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n^2 + 1}{u_n - 1}$$

- 1. (a) Donner le tableau de variation de la fonction f définie sur $\mathbb{R}\setminus\{1\}$ par $f(x)=\frac{x^2+1}{x-1}.$
 - (b) Etudier les limites en $-\infty$ et en $+\infty$ de f(x) (x+1). Que peut-on dire de la droite d'équation y = x+1 pour la courbe représentative de f.
 - (c) Donner l'allure de la courbe représentative de f.
 - (d) Justifier que la suite (u_n) est bien définie.
 - (e) Déterminer le signe de f(x) x pour $x \neq 1$.
- 2. On suppose dans cette question que $u_0 > 1$.
 - (a) Montrer que pour tout entier naturel n non nul,

$$u_n \ge 2(1+\sqrt{2}) \quad .$$

- (b) Montrer que la suite (u_n) est croissante.
- (c) On admet les résultats suivants : Toute suite réelle croissante majorée est convergente. Toute suite réelle croissante non majorée a pour limite $+\infty$. On suppose que (u_n) est majorée : que vérifie la limite l de (u_n) ?

3

(d) Que peut-on en déduire pour (u_n) ?

Question(s)

Soit E un espace vectoriel sur $\mathbb R$ de dimension finie, f et g deux applications linéaires de E dans E. Montrer que

$$\dim \operatorname{Im}(f+g) \le \dim \operatorname{Im}(f) + \dim \operatorname{Im}(g)$$
.

Exercice

f désigne une fonction continue définissant une densité de probabilité sur $[0; +\infty[$. On note de plus pour x réel positif,

$$F(x) = \int_{0}^{x} f(u) \mathrm{d}u$$

et

$$g(x) = CF(x) e^{-\alpha x}$$

avec C et α réels. De plus, $\alpha > 0$.

1. Montrer que g peut définir une densité et que dans ce cas,

$$C = \left(\int_{0}^{+\infty} F(u) e^{-\alpha u} du \right)^{-1} .$$

Dans la suite, on suppose que g est une densité.

- 2. Montrer que $C = \frac{\alpha}{\varphi_f(\alpha)}$ avec $\varphi_f(x) = \int_0^{+\infty} f(u) e^{-xu} du$.
- 3. Montrer que

$$\varphi_g(x) = \frac{\alpha}{\varphi_f(\alpha)} \frac{\varphi_f(x+\alpha)}{x+\alpha} \quad \left(\operatorname{avec} \varphi_g(x) = \int_0^{+\infty} g(u) e^{-xu} du\right).$$

Dans la suite , on admet que φ_g est dérivable sur $\mathbb R$ et que pour tout x réel,

$$\varphi'_g(x) = -\int_0^{+\infty} u g(u) e^{-xu} du$$
.

4. Soit X une variable aléatoire réelle dont la loi admet la densité g. Montrer que

$$\mathbb{E}(X) = \frac{1}{\alpha} - \frac{\varphi_f'(\alpha)}{\varphi_f(\alpha)}$$

- 5. **Application** Soit Y une variable aléatoire réelle de loi de densité h définie sur $h(x) = \beta^2 x e^{-\beta x}$ pour $x \ge 0$ et $\beta > 0$.
 - (a) Montrer que

$$\varphi_h(x) = \left(\frac{\beta}{x+\beta}\right)^2 \quad .$$

(b) Calculer l'espérance de Y.

Question(s)

Soit n un entier naturel non nul. On définit sur \mathbb{R} la fonction f_n par $f_n(x) = x^n + x - 1$.

- 1. Montrer que l'équation $f_n(x) = 0$ a une unique solution dans]0;1[, solution que l'on notera x_n .
- 2. Étudier la monotonie de la suite $(x_n)_{n\geq 1}$. On admet que la suite $(x_n)_{n\geq 1}$ est convergente.
- 3. Déterminer la limite de $(x_n)_{n\geq 1}$.

Exercice

Soient X et Y deux variables aléatoires indépendantes à valeurs dans $\{-1;0;1\}$ telles que

$$\mathbb{P}(X=-1) = \mathbb{P}(X=0) = \mathbb{P}(X=1) = a$$

$$\mathbb{P}(Y = -1) = b$$
 et $\mathbb{P}(Y = 1) = c$

avec a, b et c réels.

- 1. Donner la valeur de a puis calculer $\mathbb{E}(X)$ et $\mathbb{V}(X)$.
- 2. Exprimer en fonction de b et c l'espérance de Y.
- 3. Déterminer la loi de S = X + Y.
- 4. U est la variable aléatoire définie par α si S=0, et β sinon, avec α et β réels distincts.
 - (a) Montrer que les réels b et c n'apparaissent dans la loi de U.
 - (b) Trouver les valeurs de α et β pour que $\mathbb{E}(U) = 3$ et $\mathbb{V}(U) = 2$.
- 5. (a) Déterminer la loi de S sachant X=i pour $i\in\{-1;0;1\}$.
 - (b) Comment faudrait-il alors calculer l'espérance de S sachant que X = i?

Question(s)

Soit E le sous-ensemble de \mathbb{R}^2 définie comme l'ensemble des couples (x, y) de \mathbb{R}^2 tels que |x| + |y| = 1 et f la fonction définie sur \mathbb{R}^2 par

$$f(x,y) = x^2 + y^2 \quad .$$

- 1. Donner une représentation graphique de E.
- 2. Déterminer le ou les minima de la fonction f sur l'ensemble E.

Exercice

X et Y désignent deux variables aléatoires à valeurs dans $\mathbb N$ de loi jointe

$$\mathbb{P}(X = i, Y = j) = C \frac{a^i b^j}{i! j!}$$

pour $i \in \mathbb{N}$ et $j \in \mathbb{N}$, et avec C, a et b réels strictement positifs.

- 1. Montrer que $C = e^{-(a+b)}$.
- 2. Déterminer les lois marginales de X et Y, puis identifier ces lois.
- 3. Déterminer $\mathbb{P}(X=i\mid Y=j)$ puis identifier la loi conditionnelle de X sachant Y=j. Que peut-on en déduire pour les variables aléatoires X et Y?
- 4. Soit S = X + Y.
 - (a) Déterminer la loi de S.
 - (b) Quelle est la loi conditionnelle de X sachant S = s?
 - (c) Quelle méthode proposeriez-vous pour déterminer l'espérance de X sachant $S=s\,?$

Question(s)

Soit n un entier naturel supérieur ou égal à 2. Soit (x_1, x_2, \dots, x_n) dans \mathbb{R}^n .

On pose
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 et $M = XX^T$. Dans cette dernière égalité, X^T désigne la matrice transposée de X

f désigne l'application linéaire dont la matrice est M dans la base canonique de \mathbb{R}^n

- 1. Écrire la matrice M.
- 2. Déterminer Im(f) et Ker(f).

Exercice

On désigne par f la fonction définie sur $\mathbb R$ par

$$f(x) = \begin{cases} 1 - |x| & \text{si } x \in [-1; 1] \\ 0 & \text{sinon.} \end{cases}$$

- 1. Tracer la représentation graphique de f
- 2. Montrer que f est une densité de loi de probabilité.
- 3. On note F la fonction de répartition associée à f.
 - (a) Que vaut F(0)? Interpréter graphiquement ce résultat.
 - (b) Déterminer F(x) pour x réel.
- 4. On note $x_n = \frac{1}{2^n}$ pour n entier naturel non nul et X la variable aléatoire réelle de loi de densité f.

7

- (a) Calculer $p_n = \mathbb{P}(|X| > x_n)$.
- (b) Déterminer le plus petit entier n_0 tel que $p_n \ge \frac{1}{2}$.
- 5. Déterminer $\mathbb{E}(X)$, $\mathbb{E}(X^2)$ et $\mathbb{V}(X)$.

Question(s)

Soit Q la fonction définie sur \mathbb{R}^3 par

$$Q(x, y, z) = x^2 - 2xy + y^2 + 4z^2 + 8yz$$

et f la fonction définie sur $\mathbb{R}^3 \times \mathbb{R}^3$ par

$$f(u,v) = \frac{1}{4} (Q(u+v) - Q(u-v))$$
.

- 1. Justifier que Q est une forme quadratique sur \mathbb{R}^3 .
- 2. Montrer que f est une forme bilinéaire symétrique sur \mathbb{R}^3 .

Exercice

f désigne la fonction définie sur $\mathbb R$ par

$$f(x) = \begin{cases} Cx^{-\beta - 1} & \text{si } x \ge \alpha \\ 0 & \text{sinon.} \end{cases}$$

avec C, α et β réels. De plus, $\alpha > 0$ et $\beta > 0$.

1. On admet f peut définir une densité de probabilité. Montrer que l'on a alors $C=\beta\alpha^{\beta}.$

On suppose que f est une densité de probabilité pour les questions qui suivent et on note X une variable aléatoire de loi de densité f.

- 2. Déterminer la fonction de répartition F associée à la loi de densité f.
- 3. Représenter graphiquement F si $\alpha=1$ et $\beta=1.$
- 4. On suppose que $\beta > 2$. Calculer $\mathbb{E}(X)$, $\mathbb{E}(X^2)$ et $\mathbb{V}(X)$.
- 5. On pose $Y = \log \frac{X}{\alpha}$.
 - (a) Quel est le signe de Y?
 - (b) Montrer que Y suit une loi exponentielle dont on précisera le paramètre.

8

Question(s)

Soit $M = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$ et u l'application linéaire de matrice M dans la base canonique de \mathbb{R}^3 .

- 1. Déterminer l'image et le noyau de f.
- 2. Étudier les valeurs propres de f.

Exercice

Soit X_1, X_2, \ldots, X_n des variables aléatoires indépendantes de même loi dont on note F la fonction de répartition. On désigne par Y_n la variable aléatoire définie comme le minimum des X_1, X_2, \ldots, X_n , que l'on notera $\min(X_1, X_2, \ldots, X_n)$. De plus, G_n est la fonction de répartition de Y_n .

- 1. Montrer que pour y réel, $G_n(y) = 1 (1 F(y))^n$.
- 2. **Application :** les X_i suivent la loi exponentielle de paramètre $\lambda > 0$. Déterminer la loi suivie par Y_n .

On revient au cas général dans la suite de l'exercice.

- 3. Soit β un réel et α un réel strictement positif. On note Z_n la variable aléatoire définie par $Z_n = \alpha n F(Y_n) + \beta$. On suppose de plus que F est continue et strictement croissante sur \mathbb{R} .
 - (a) Montrer que Z_n prend ses valeurs dans un intervalle $I_{n,\alpha,\beta}$ que l'on précisera.
 - (b) Soit H_n la fonction de répartition de Z_n . Pour z réel dans l'intervalle $I_{n,\alpha,\beta}$, montrer que $H_n(z) = 1 \left(1 \frac{z \beta}{\alpha n}\right)^n$.
 - (c) Soit c un nombre réel. Justifier que

$$\lim_{n \to +\infty} n \log \left(1 + \frac{c}{n} \right) = c \quad .$$

9

(d) En déduire la limite de $H_n(z)$ quand n tend vers l'infini.