QUELQUES BONNES PRATIQUES
DE DEVELOPPEMENT LOGICIEL
A L'USAGE DU STATISTICIEN SELFEUR

(OU «SAVOIR COMPTER, SAVOIR CODER »)

Emmanuel L'Hour*, Ronan Le Saout** et Benoit Rouppert***

En plus de compétences en méthodologie statistique et d’'une bonne connaissance des
sources de données disponibles, le métier de statisticien nécessite une bonne maitrise des
outils informatiques. Les programmes informatiques écrits permettent non seulement
de produire des résultats, mais ils peuvent aussi devenir des livrables du travail réalisé,
que ce soit en tant qu'élément de preuve ou en tant qu‘outils réutilisables pour d’autres
travaux. Dans cette optique, le statisticien se doit d’acquérir les bonnes pratiques de
développement logiciel qui lui permettront de garantir une appropriation facile de ses
programmes par d’autres utilisateurs, ou une ré-appropriation par lui-méme, au-dela
de la période pendant laquelle le développement a eu lieu.

Ces bonnes pratiques couvrent tous les aspects du cycle de développement logiciel : la
définition des exigences, l'architecture du programme, les styles de programmation, les
choix techniques, les outils de développement et les tests. Elles permettront de garantir
une bonne réponse au besoin des utilisateurs, aprés une étape de questionnement
de ces besoins, et une fiabilité des résultats obtenus tout en maitrisant le codt de
programmation. Et plus important encore : en rendant les programmes facilement
lisibles, elles aideront le producteur de statistiques publiques & communiquer sur ses
choix méthodologiques et sur la facon d'utiliser les données, renforcant ainsi la confiance
que lui accordent ses utilisateurs.

EE= In addition to skills in statistical methodology and a good knowledge of available data
sources, the profession of statistician requires to be comfortable with IT tools. Programs not
only produce the statistical results, they can also become deliverables, either as evidence or
as reusable tools for future work. Having this in mind, the statistician must acquire software
development best practices that will allow him to guarantee an easy understanding of his
programs by other users, or re-appropriation by himself in future developments.

These best practices cover all aspects of the software development cycle: definition of
requirements, program architecture, programming styles, technical choices, development
tools and testing. They will make it possible to guarantee an appropriate answer to
users’ needs, dafter a step of questioning these needs, and quality of the results obtained
while controlling the development costs. And more important, by making the programs
easily readable, they will help the producer of official statistics to communicate on his
methodological choices and how to use the data, and thus strengthen the confidence of
his users.

* Chef du Service statistique, direction interrégionale Insee La Réunion-Mayotte,
emmanuel.lhour@insee.fr

** Expert en méthodologie statistique, Commissariat général au développement durable,
ronan.lesaout@developpement-durable.gouv.fr

#*% Ancien chef du département des Production et infrastructure informatiques, Insee

86 QUELQUES BONNES PRATIQUES DE DEVELOPPEMENT LOGICIEL A LUSAGE DU STATISTICIEN
SELFEUR

mailto:emmanuel.lhour@insee.fr
mailto:ronan.lesaout@developpement-durable.gouv.fr

® DE LA PROGRAMMATION A TOUS LES ETAGES

Parmi les statisticiens apparaissent de plus en plus des profils qui combinent des
compétences en méthodologie statistique, des connaissances sur le contenu métier des
sources de données, et une maftrise des outils informatiques. Ce troisieme élément prend
une importance croissante, notamment par la capacité a « savoir coder »', c'est-a-dire savoir
écrire un programme informatique. Mais derriére cette formule facile a retenir, se cache
une diversité de pratiques de programmation, telles que :

@ celle du responsable des retraitements post-collecte d'une enquéte ;

O celle du chargé d'études s'appuyant sur des méthodes statistiques plus ou moins
sophistiquées pour établir un résultat ;

O celle du chercheur désirant rendre ses travaux reproductibles ;

@ ou celle du « diffuseur » qui veut mettre a la disposition d'un large public une application
de visualisation des données.

Le point commun entre ces exemples est qu'ils mobilisent des compétences souvent
associées a l'informatique et parfois ignorées du statisticien. Elles relévent du dialogue
avec l'utilisateur, de la conceptualisation de son processus de travail, des méthodes de
travail en équipe et de la connaissance des méthodes et des outils du jour. Cet article vise
donc a présenterici quelques outils conceptuels a l'usage du statisticien pour se construire
une aisance rédactionnelle avec ses programmes.

® LE SELFEUR, UN «DEVELOPPEUR » EXPERT DE SON DOMAINE
METIER

La profession de statisticien public n'est pas homogene. Elle recouvre en fait une
diversité de métiers.

LInsee en identifie tres précisément 38,

Le terme de « selfeur » est un regroupés en 6 familles professionnelles
néologisme qui renvoie @ la partie de (production, études, action regionale,
l'activité du statisticien qui mobilise informatique, fonctions support, stratégie
de la programmatlon Informat/que d et pl|0tage)2. Lestermes « deVelOppement»
travers une expertise « métier ». et « programmation » (au sens informatique)

n'y apparaissent que pour l'analyste-

programmeur. Ceci ne signifie évidemment
pas qu'ily a absence de programmation informatique dans les autres activités de la statistique
publique. En particulier, les descriptifs des métiers de production, d'études ou de l'action
régionale® font mention de l'utilisation de logiciels statistiques. Le terme de « selfeur » est un
néologisme quirenvoie a la partie de I'activité du statisticien qui mobilise de la programmation
informatique a travers une expertise « métier »*,

1. Larticle s'appuie sur un document de travail des mémes auteurs (L'Hour, Le Saout et Rouppert, 2016), dont le titre est
librement inspiré par la série d'articles du Courrier des statistiques autour des techniques rédactionnelles, « Savoir
compter, savoir conter » (Cotis et alii, 2009).

2. [NDLR] La grille des métiers de I'Insee a laquelle les auteurs se référent est une note interne du département RH de
I'Insee, en date du 16 janvier 2017. Les pages du site internet qui traitent des métiers et des formations reprennent cette
typologie (hors stratégie et pilotage).

3. Dansl'organisation de I'Insee, I'action régionale recouvre une palette de travaux a destination des décideurs régionaux
ou locaux (études, diffusion de données). C'est une des particularités de I'institut statistique francais.

4. Le terme fait notamment référence au travail de programmation en « libre-service », en « self ».

Courrier des statistiques N7 - Janvier 2022 - Insee 87

https://www.insee.fr/fr/information/4776620

Mais au-dela de I'expertise métier, la comparaison avec les activités de développement
informatique dans un cadre « classique » laisse entrevoir une autre notion : celle de la
responsabilité vis-a-vis du code. Lorsque la direction du Systeme d’Information (DSI) est
mise a contribution dans un projet d'investissement, il est d’'usage de distinguer deux
natures de responsabilités : d'une partla responsabilité technique de I'équipe informatique,
et d'autre part la responsabilité fonctionnelle de I'équipe « métier » (assurée par le chef
de projet statistique ou l'administrateur d'application dans le cadre d'une maintenance).
Le développeur informatique est alors essentiellement garant de la bonne exécution du
code, tandis que la validité statistique du résultat est plutdt assumée par un responsable
d'application.

Dans le cas d'un développement en

Le selfeur porte en effet la autonomie (ou self, ou libre-service), ces
responsabilité de la bonne exécution responsabilités sont souvent cumulées,
du programme, mais aussi de méme si la responsabilité technique ne fait
la valeur statistique de ce que le généralement|'objet que de peu de contrdles
programme produit. et que, de ce fait, on a tendance a l'oublier un

peu. Le selfeur porte en effet la responsabilité

de la bonne exécution du programme, mais
aussi de la valeur statistique de ce que le programme produit (indicateur, base de données
retraitée, étude économique, outil de visualisation des résultats, etc.). Il se distingue de
I'informaticien par la mobilisation de compétences spécifiques au métier statistique.
Le chargé d'enquéte, le chargé de I'exploitation de fichiers administratifs ou le chargé
d'études integre ainsi au travail de programmation, des savoirs spécifiques sur les concepts
a mesurer : il est capable de mobiliser des références bibliographiques sur la thématique,
de préter attention a des différences de champ dans les sources mobilisées, ou de repérer
les difficultés de mesure, etc.

Le selfeur programme au premier abord essentiellement pour lui-méme, pendant que le
développeur informaticien travaille sur des applications ou des logiciels de large utilisation.
Les contraintes ne sont donc a priori pas identiques.

Lexpérience montre qu’en réalité, informaticien et selfeur portent un méme type de
responsabilité. Pourquoi donc porter attention a la lisibilité des programmes de retraitements
si c'est pour une enquéte unique ? Pour la simple raison qu'il est fort probable que ces
programmes n‘auront pas un usage unique et qu'il est difficile de prévoir les usages futurs:
élément de preuve associé a la reproductibilité> des études économiques, transmission
a des collégues d'éléments méthodologiques, ré-utilisation dans un autre cadre ou pour
corriger une erreur, etc. Ce faisant, un selfeur est un développeur comme les autres.

Or, siles techniques rédactionnelles font partie de la formation de base d’'un chargé d'études,
les « techniques rédactionnelles du code » en sont absentes. Pourtant, les compétences
de génie logiciel gagneraient a se propager hors des sphéres des projets informatiques. Le
statisticien selfeur pourrait s'inspirer des bonnes pratiques bien connues des développeurs
informaticiens, pour sécuriser son code et faciliter sa réutilisation ou la reproductibilité de
son étude. Ces pratiques s'appuient sur un cadre conceptuel simple et qui a fait la preuve
de son efficacité dans les développements « classiques » : un cycle de développement et
des étapes-clefs a ne pas négliger.

5. Pour aller plus loin sur la conception orientée reproductibilité (reproducibility by design), voir par exemple (Langlais et
Eprist, 2020). Sur la reproductibilité de traitements sur des données confidentielles, voir par exemple (Gadouche, 2019).

88 QUELQUES BONNES PRATIQUES DE DEVELOPPEMENT LOGICIEL A L'USAGE DU STATISTICIEN
SELFEUR

® UN CYCLE DE DEVELOPPEMENT A TROIS TEMPS

Le cycle de développement d'un logiciel met en jeu trois® activités principales (figure 1) :

@ la premiere a pour objectif de déterminer ce a quoi doit répondre le programme ; c’'est ce
que I'on appelle les exigences ; elle comporte des phases d'élucidation, de spécification
puis de validation de la spécification’;

O la deuxiéme consiste a concevoir et écrire le programme ;

@ et la troisieme a tester le programme, c'est-a-dire vérifier qu'il fait bien ce qui est
attendu de lui.

Ce processus n'est jamais linéaire. Chacune de ces activités peut faire I'objet d'itérations,
a trois niveaux :

@ au sein d'une méme activité : on peut avoir besoin de réécrire les exigences pour étre
plus clair, ou corriger un bug dans le code (niveau 1) ;

O des allers-retours entre les activités sont également a prévoir : en codant, des exigences
peuvent apparaltre ambigués, les tests peuvent identifier des bugs et conduire a revoir
le code, voire les spécifications des exigences (niveau 2) ;

@ enfin, on peut augmenter progressivement le nombre ou le périmétre des livrables du
programme, par itérations de cycles (niveau 3). Par exemple, on va d'abord éditer un
tableau de données sur une année, puis ajouter des années, puis faire des graphiques,
puis les rendre interactifs, etc.

Néanmoins, le plus efficace (McConnell, 2005, chapitre 3) consiste a prévenir les itérations
de deuxiéme niveau, signes de spécifications mal définies ou d'erreurs de codages (figure 1),
qui se révelent trés colteuses. On pourra ainsi privilégier les itérations au sein de chaque
activité (premier niveau), et les itérations de cycles (troisieme niveau), ou lI'on produit
toujours quelque chose de fonctionnel en augmentant progressivement la qualité, c'est-
a-dire 'adaptation du résultat a la demande.

On concoit que le statisticien qui écrit un code
a usage unique n'éprouvera peut-étre pas
spontanément le besoin de conceptualiser autant
le cadre de I'écriture de son programme. Mais il est
probable que laméthode et les outils se révéleront
tout particulierement utiles pour le selfeur isolé,
en particulier pour l'aider a gérer ses « conflits »
de responsabilité. Dans les projets informatiques,
I'organisation du travail collectif porte en soi la
méthode, notamment les espaces de concertation en amont et en aval du développement.
Si le développement en self s'insere dans un ensemble plus vaste, par exemple entre un
processus de collecte doté d'applicatifs spécifiques et un processus de diffusion des données
doté de ses contraintes propres, il devient également trés intéressant de se pencher sur ce
que les informaticiens de métier ont noté comme piéges a éviter et pratiques a préconiser.
En tout premier lieu, il convient d'analyser le besoin qui justifie I'écriture d'un programme,
ce gu'on nomme les exigences.

Le plus efficace consiste
a prévenir les itérations de
deuxiéme niveau, signes de
spécifications mal définies
ou d’erreurs de codages.

6. La littérature autour du développement piloté par les tests (tests driven development) utilise une typologie identique :
design - code - test.

7. La littérature sur l'ingénierie des exigences (requirement management) est plutdét anglophone. Voir par exemple
(Robertson et Robertson, 2013) ou (Cockburn, 2000). En francais, on peut lire aussi (Constantinidis, 2018).

Courrier des statistiques N7 - Janvier 2022 - Insee 89

ya

Edifier les exigences

rexc/

ore.1s” type
eazeh_decoresor 3% go-noext/ 3aVE
xins. 3s" tYDE="CEX!
enc/ yavascrive” &
" e/ 389
e . . .
0]e

Jmosver!
e _scxol1er ¢
s degeadacion. 37 VP

o eueo/ groud/ 9E
o 22/ ipnone/ 20731

oo ipuo/slidesnov:)

o ypesrcent/ 35V,
Uypesteex/ Javeser
o/ javescr Dy
o-rcexc/ 3aVE

e L/ pEOEEETE 3
N nmacnions
ety
o avor g ET
e s
e s : :
g’
ke Y e 7
\0|\.j:'>€“|-":ex\2/)B\lusﬁtlnb L

e/ 389

cer_rrack: 1
1

/ericasnou. 357 type"sexcd]
e ius/sLideshou. 33" ERETTERTL

90 QUELQUES BONNES PRAT -
IQUES DE DEVEL -
SELFEUR OPPEMENT LOGICIEL A LUSAGE DU STATISTICIEN

® EDIFIER LES EXIGENCES...

En génie logiciel, une exigence est « l'expression d’une condition ou d’une fonctionnalité
a laquelle doit répondre un systéme ou un logiciel »®.

Etablir les exigences, c'est donc identifier les besoins?, mais également les contraintes,
puis décrire ce qu'on est censé faire. Bien poser le probléme, savoir quoi exiger, est crucial
pour ne pas rater son objectif et éviter d'avoir a tout recommencer (voire abandonner).
Un probleme mal spécifié expose en général a des difficultés bien plus grandes qu'une
mauvaise ligne de code (McConnell, 2005, chapitre 3).

Ne pas se précipiter vers le code et prendre le temps d'établir des exigences a de multiples
vertus. Pour un informaticien, cela garantit la satisfaction de l'utilisateur et du donneur
d'ordre et réduit aussi les risques d'échec du projet et la durée d'écriture du programme.

L'IREB™ retient une typologie en trois activités majeures pour établir des exigences : les
élucider, les spécifier et les valider. Pour les mettre en ceuvre, les outils sont essentiellement
sémantiques (distinguer le besoin du superflu ou de la contrainte, se mettre d'accord sur les
termes métier utilisés), linguistiques (formuler des exigences), et visuels (faire des schémas).
Le souci de sobriété doit prévaloir, car la complexité est source de fragilité (Volle, 2001a ;
McConnell, 2005, chapitre 27).

... CE QUI SUPPOSE QUE LON CONNAISSE LES UTILISATEURS —

Dans un projet informatique classique, l'utilisateur et le donneur d’ordre (appelé aussi client)
sont généralement distincts. Le client donne les moyens pour que le projet se fasse (la
hiérarchie qui donne I'aval du projet, le partenaire qui finance, etc.). Lutilisateur manipulera
le produit du projet. C'est le réle du développeur de satisfaire la demande du client, mais
en s'assurant qu'il fournit un produit qui convient a l'utilisateur™.

Qui sont ces utilisateurs ? Si aucun utilisateur n’est

C'estle réle du développeur identifié a priori, on peut s'interroger sur l'opportunité

de satisfaire la demande du du projet. La question n'est pas simple : elle améne une

client, mais en s’assurant confusion possible entre les utilisateurs des données

qu'il fournit un produit qui produites a I'aide du programme développé et les
convient a l'utilisateur. utilisateurs directs du programme.

Dans le premier cas, on parlera d'utilisateur final, par
essence assez éloigné de l'informaticien et parfois méme du selfeur. La statistique publique
dispose généralement d'une représentation des utilisateurs finaux de ses productions, via le Cnis'?,
un Cries', un comité d'utilisateurs d'une enquéte, le comité de pilotage d'une étude en partenariat
dans une région, etc. Mais ils se situent par construction trés en amont du développement.

8. Voir également le site de la Specief (Société pour la promotion et la certification de I'ingénierie des exigences en langue
francaise) http://specief.org/index.php/ingenierie-des-exigences/.

9. « La définition des besoins [...] est complexe et délicate, en raison du nombre et de la diversité des parties prenantes, des
demandes souvent divergentes, des contraintes variées et, [...] du facteur humain » (Constantinidis, 2018).

10.L'IREB (International Requirements Engineering Board), organisation a but non lucratif, est le fournisseur du schéma de
certification en ingénierie des exigences (CPRE pour Certified Professional for Requirements Engineering).

11. Sur la différence entre la satisfaction de la demande et celle des besoins, voir par exemple (Volle, 2001b).

12.Conseil national de I'information statistique, voir (Anxionnaz et Maurel, 2021).

13.Comité régional pour I'information économique et sociale.

Courrier des statistiques N7 - Janvier 2022 - Insee 91

http://specief.org/index.php/ingenierie-des-exigences/

L'utilisateur qui intéresse le développeur, c'est celui a qui il va livrer son programme, ou
le résultat de son programme. Il faut donc qu'il soit en capacité d'accéder directement a
cet utilisateur. Certes, a défaut, on pourra a certains moments demander a un collegue
de jouer le role de cobaye. Mais I'idéal reste néanmoins de pouvoir observer l'utilisateur
face au résultat produit : le graphique ou le tableau est-il facilement intelligible ? Quels
passages de |'étude a-t-il du mal a comprendre ? Le modeéle est-il clair et convaincant ? Cet
outil interactif est-il aisé a manipuler ?

® DANS LE CAS D'UN DEVELOPPEMENT EN SELF, QUI SONT CES
UTILISATEURS?
A premiére vue, on aura tendance a répondre : le selfeur lui-mé&me. En effet, on associe

spontanément au terme de «self » 'image d'un programme développé pour l'usage d'une seule
personne, voire un développement a usage unique, par exemple en statistique exploratoire.

Or en pratique, la notion de self recouvre une grande diversité de situations. Rien qu‘a
I'Insee, sur le périmétre de la production statistique, on arécemment recensé 360 opérations
statistiques outillées par des développements applicatifs en self : il s'agit d'une pratique
généralisée dans toutes les activités de l'institut, qu’on retrouve dans toutes les phases des
processus, de la conception a la diffusion. Le statisticien selfeur qui a écrit le code de ce type
de traitements, sous-processus d'un processus plus large, est donc dans une situation assez
voisine de I'informaticien dans un projet « classique ». Cependant, il ne pourra pas toujours
identifier avec précision l'utilisateur de son programme et sera relativement éloigné des
utilisateurs finaux du processus englobant.

S'il est expert « métier », le statisticien selfeur se sentira particulierement performant pour
comprendre le besoin de l'utilisateur final. Pour autant, il lui faudra éviter de tomber dans le
double piége qui consiste a croire, d'une part que l'utilisateur de son programme estle méme
que l'utilisateur final ; et d'autre part qu'il saurait mieux que son utilisateur ce dont ce dernier
a besoin. Par exemple, pour développer un outil de visualisation des adresses a enquéter
sur une carte, des échanges avec les enquéteurs aboutiront au choix de cartes interactives
numériques plutdt que de cartes imprimées, facilitant ainsi l'usage du GPS sur le terrain.

® FAIRE LA CHASSE A LIMPLICITE, AU NON-DIT

En définitive, élucider les exigences, c'est aller au bout de la démarche de compréhension des
besoins de l'utilisateur pour bien distinguer le besoin (ce qui est utile) et la contrainte (Iégale,
matérielle, technique...) du superflu. Sans cela, des exigences que l'utilisateur ne formule
pas spontanément, basées sur des besoins implicites ou des contraintes inamovibles seront
découvertes tardivement, au risque de devoir abandonner ou tout refaire. Une méthode
simple permet d’ailleurs de rendre explicite ce que son interlocuteur tait, souvent parce
qu'il le considére comme évident : la série des « cinq pourquoi ». Celle-ci consiste trés
simplement a demander cinqg fois a la suite a son interlocuteur pourquoi il cherche a réaliser
ce qu'il demande. A 'usage, les cing « pourquoi ? » ne seront pas systématiquement tous
nécessaires pour aller au fond des choses (figure 2).

92 QUELQUES BONNES PRATIQUES DE DEVELOPPEMENT LOGICIEL A LUSAGE DU STATISTICIEN
SELFEUR

Figure 2. Etablir les exigences de l'utilisateur, avant de se lancer
dans la programmation

Une illustration (fictive) de la méthode dite des «5 pourquoi»

Je voudrais une
application en R-Shiny
pour diffuser
nos données.

Je veux moderniser
la diffusion en éditant
des cartes a la place
des tableaux.

Parce que nous voulons
diffuser les résultats
sur internet.

Ah oui, c'est vrai...
Nous n’avons pas vraiment
besoin d’une nouvelle simplement
application... d’ajouter
des cartes!

Courrier des statistiques N7 - Janvier 2022 - Insee 93

Dans un autre ordre d'idée, mais pour autant tout aussi primordial, le développeur,
comme le selfeur, devront lister les besoins purement informatiques, qu’on appelle « non
fonctionnels », pour s’interroger sur la faisabilité du projet avant de se lancer dans la
programmation : les exigences de disponibilité ou de sécurité, ont-elles été correctement
instruites ? Quel sera le nombre d’utilisateurs en simultané ? A-t-on seulement besoin d'un
accés en lecture des fichiers produits, ou aussi en modification ? A quelle fréquence doit-on
mettre a jour les données ? Par exemple, pour le suivi de la conjoncture économique, il est
nécessaire de pouvoir actualiser les prévisions trés fréquemment pendant une période
précise du trimestre. Il sera donc trés probablement nécessaire d'automatiser totalement
I'outil développé pour atteindre I'objectif de réactivité.

® MODELISER A L'AIDE D'OUTILS SEMANTIQUES ET VISUELS ——

Le développeur qui a analysé les besoins fonctionnels auxquels son code doit répondre,
et apprécié les contraintes techniques qui s'imposent a lui, doit s'assurer que sa vision est
partagée avec celle de son client. Un premier pas dans cette voie consiste a formaliser
le cadre conceptuel de son travail. Car 'usage de concepts
partagés évite les incompréhensions (Evans, 2003).
L'usage de concepts
partagés évite les Pour le statisticien selfeur, une maniére d'appliquer cette
incompréhensions. bonne pratique est de se poser la question des concepts qu'il
manipule a travers son code. S'il travaille par exemple sur
des données d'entreprises, il devra prendre en compte des
concepts statistiques, d'identification ou d'analyse (Siren, Siret, entreprise profilée, taille
d'entreprise...) et des concepts comptables (chiffres d'affaires, valeur ajoutée). La liste des
concepts servira de référentiel pour nommer les entités du code et des données (tables,
variables et leurs modalités, fonctions). A I'Insee, le référentiel des métadonnées statistiques
(RMéS) centralise la définition des concepts et des sources de données de la statistique
publique™. Il constitue donc un outil commode pour le selfeur, comme pour l'utilisateur.

Les schémas sont en outre de précieux outils de communication et de conception.
Représenter graphiquement les exigences permet de renouveler la discussion avec
I'utilisateur. De surcroft, siles schémas sont confus, traduisant des dépendances multiples
et erratiques, cela refléte bien qu'on n'est pas prét a se mettre a coder. C'est aussi un bon
support de documentation.

La modélisation du Generic Statistical Business Process Model (GSBPM) répertorie et catégorise
les phases d'un processus de production statistique'. Cette schématisation d'un processus
est générique : elle s'applique quel que soit le processus et permet ainsi de ne pas oublier
d'étapes importantes.

14.Pour plus d'information sur le référentiel RMéS, voir (Bonnans, 2019).
15.0n trouvera plus d'information sur le GSBPM et sur un modeéle qui s’en inspire dans (Erikson, 2020).

94 QUELQUES BONNES PRATIQUES DE DEVELOPPEMENT LOGICIEL A L'USAGE DU STATISTICIEN
SELFEUR

Les exemples sont indispensables pour parer au risque d'une modélisation trop abstraite. En
particulier, on n'omettra pas la description des exigences en matiére de validation de données ou
de traitements. La validation d'un traitement peut consister a vérifier les données, individuelles
ou agrégées, en cherchant a repérer des valeurs atypiques. Par exemple, un responsable
d’enquéte aupres d'entreprises identifiera des réponses dont le niveau ou dont I'évolution parait
suspecte, en définissant des seuils, des intervalles, etc. Un chargé d'études, avant de se lancer
dans les calculs, construira un ensemble de données de référence a partir d'une bibliographie
thématique, ensemble auquel il confrontera ensuite les résultats de ses calculs.

® VALIDER LES EXIGENCES AVEC TOUTES LES PARTIES PRENANTES

Dans un projet informatique classique, outre l'utilisateur et le développeur, il convient que
le donneur d'ordre valide également les exigences, a I'aide des spécifications.

Les spécifications ont ainsi un double usage : elles préparent la phase de codage, mais
elles servent aussi a solliciter les utilisateurs. Elles explicitent en quoi le processus proposé
répond au besoin de l'utilisateur. Cela peut passer par la description de tests fonctionnels
(cf. infra) ou la réalisation de prototype. L'écriture des spécifications peut ainsi réduire
la frontiére entre les cycles de développement, avec une anticipation sur I'écriture du
programme et des tests. Si les exigences ne sont pas validées, il faut alors déterminer en
quoi le besoin a mal été compris et ce qui doit étre revu dans les spécifications.

Notre statisticien selfeur aura ici encore peut-étre du mal a identifier son donneur d'ordre,
mais le terme de parties prenantes aura trés certainement une vraie signification. Ira-t-il
jusqu’a faire écrire puis valider des spécifications a celui qu'il aura identifié comme son
donneur d'ordre? Il faut I'essayer pour s'en convaincre : méme s'il est son propre donneur
d'ordre, son propre utilisateur, le selfeur a tout intérét a décrire ce qu'il anticipe étre le
résultat de son programme.

® ENCORE UN PEU DE PATIENCE : AVANT DE CODER, DEFINIR
LARCHITECTURE

Pourimplémenter les exigences, il sera nécessaire de réaliser une succession de traitements
(automatisés ou non). Ces traitements sont autant de processus (informatiques) : ils exigent
des données en entrée et donnent en sortie leurs résultats.

En pratique, décomposer son processus de travail en enchainements de modules « entrée-
traitement-sortie » se traduit par exemple par quelques pratiques saines :

@ isoler les parameétres immuables des traitements dans un fichier spécifique (variables
d’environnement) ;

@ éviter de mettre les statistiques calculées dans le code. On préférera éditer un fichier
dédié;

@ identifier les tables en entrée, ce qui permettra de revenir facilement aux données brutes,
par exemple pour modifier les imputations;

O identifier les tables intermédiaires, ce qui facilitera les analyses explicatives (approfondir a
posterioriun chiffre calculé, creuser des évolutions étonnantes relevées par les utilisateurs)
et la recherche de bugs.

Courrier des statistiques N7 - Janvier 2022 - Insee 95

L'identification des différents traitements utilisés permettra de définir la structure du
programme. Un traitement pourra lui-méme étre décomposé en sous-processus.

Pour définir une architecture qui favorise la lecture, I'évolution future et I'exécution du
programme, il est important de découper le traitement global en un ensemble de sous-
processus, qui communiquent les uns avec les autres, mais qui restent indépendants pour
leurs fonctionnements internes : « L'objectif principal de I'architecture est de soutenir le cycle de
vie du systéme. Une bonne architecture rend le systéme facile d comprendre, facile a développer,
facile & maintenir et facile a déployer. Le but ultime est de minimiser le codt du systéme pendant
sa durée de vie et de maximiser la productivité des programmeurs » (Martin, 2017).

On retrouve dans cette organisation la notion de « barriére d’abstraction » (Abelson,
Sussman et Sussman, 1996) : pour utiliser une sous-partie du programme, il est uniquement
nécessaire de savoir quelles données sont utilisées en entrée et quelles données seront
produites en sortie, par contre il n'est pas nécessaire de savoir comment le traitement a
été implémenté. Cette barriére permet qu'une partie d’'un processus ne soit pas affectée
par des modifications sans lien avec les traitements qu'il implémente. Les différentes
parties peuvent alors étre construites, remplacées et corrigées séparément. Une partie de
programme construite suivant ce principe est appelé un module, et un processus construit
ainsi est dit modulaire.

Une approche simple pour évaluer la modularité d'un traitement est de vérifier si le
traitement est bien circonscrit (arrive-t-on a le nommer simplement ?) et si les données en
entrée et en sortie sont bien identifiées. On dispose ainsi d'une « fagade », un patron de
conception, qui fait abstraction de la maniére dont le traitement est réalisé : manuellement
ou automatiquement ? Avec quel langage de programmation ?

Grace a la modularité, on se laisse la liberté de répondre a ce type de questions plus tard,
et de pouvoir modifier ces réponses au cours du temps. Par exemple, pour passer des
données individuelles aux données finales, une étape d'agrégation puis une étape de
désaisonnalisation sont souvent nécessaires. Les identifier comme deux parties distinctes
estimportant car cela permettra de faire évoluer séparément aussi bien les méthodologies
que les outils informatiques utilisés’™.

C'est lors de I'exécution d'un programme qu’apparait de la fagon la plus flagrante I'intérét
d'un découpage en modules. Dans des projets informatiques, il est fréquent qu'un
traitement complet nécessite plusieurs heures ou jours pour étre réalisé de bout en bout.
Sile traitement estimplémenté sous la forme d’un unique programme monolithique, toute
erreur en cours de route nécessitera de repartir a zéro. La seule facon efficace de corriger ce
défaut est de découper le traitement en modules dont les durées d’exécution sont bréves.
Sile découpage suit la logique décrite ci-dessus, alors il sera facile de corriger les bugs dans
le code et de reprendre I'exécution des programmes a un point intermédiaire. La figure 3
illustre ce que peut étre la schématisation d’'un processus. Ici, la modularité permet d'éviter
certains écueils : tel qu'il est structuré, le programme ouvre la possibilité de connaitre voire
de modifier les parametres des contrdles et des corrections automatiques, et d'exécuter
séparément les calculs de contributions, les contrdles et les corrections automatiques.

16.Par exemple, I'agrégation pourra se faire avec le langage SQL alors que la désaisonnalisation utilisera un outil spécialisé
comme JDemetra+.

96 QUELQUES BONNES PRATIQUES DE DEVELOPPEMENT LOGICIEL A LUSAGE DU STATISTICIEN
SELFEUR

Figure 3. Le développeur/selfeur doit concevoir une architecture
modulaire

Exemple d'un schéma de conception et de documentation
pour un processus de contrdle et de correction des données

Données collectées brutes
On distingue
aisément toutes
les données en
entrée...

Seuils de valeurs
atypiques

Identification
des valeurs atypiques

Calcul des contributions
aux évolutions
des agrégats

les tables
intermédiaires

et les
traitements
indépendants
les uns des autres

Corrections
automatiques

Controles
et corrections
par des gestionnaires

Contrédles Légende
B N ; s
par des gestionnaires A l'opposé Données en entrée
de ce contre-exemple,

trop peu
modulaire

Traitement automatique
Traitement manuel

Courrier des statistiques N7 - Janvier 2022 - Insee 97

® ADOPTER UN STYLE D’ECRITURE

Ecrire un programme, c’est automatiser des taches qui devraient sinon étre réalisées
manuellement. Si un programme permet d'éviter les erreurs qui apparaissent régulierement
ou aléatoirement dans les opérations manuelles, il rend systématiques les erreurs qui
résultent des défauts d'écriture.

Pour réduire le risque de bug, il faut s'assurer de la lisibilité du programme tout au long
de I'écriture de celui-ci. Cela passe par une attention particuliere au nommage et au style,
ainsi que par la revue et le partage du code.

Quand on cherche a automatiser des traitements, les concepts métiers doivent étre
« traduits » en objets informatiques. Cette action a un impact direct sur la qualité d’'un
programme, en particulier sur sa lisibilité. Nommer correctement les données et variables
permet de partager le programme avec d'autres ou de le comprendre lors d'une relecture
future’.

Le rédacteur du code, gagne, comme le rédacteur d’'une étude, a travailler la simplicité de
son style, a écrire pour le plus grand nombre. Il existe des styles de programmation qui se
distinguent assez simplement par la maniére de :

@ nommer les variables (par exemple camelCase, majuscule pour la premiere lettre des
mots, sauf pour le premier, et snake_case, mots en minuscules séparés par des tirets
bas, etc.);

@ indenter les lignes de code (généralement par deux, trois ou quatre espaces) ;
@ ou d'utiliser les commentaires.

Un style efficace est surtout constant, homogéne d'un
programme a un autre®. Un langage informatique
respecte un ensemble de régles formelles strictes
qui réduisent fortement la liberté d'écriture du
développeur. Pour autant, le développeur peut
organiser le programme suffisamment a sa guise pour
développer un véritable style. Et ce style comprendra
toujours une dimension visuelle, contrairement a la plupart des styles littéraires. En effet
I'utilisation des passages a la ligne et des espaces en début de ligne, les indentations, jouent
un réle primordial dans la mise en valeur des structures logiques.

Un style efficace est surtout
constant, homogéne d’'un
programme a un autre.

Quand on écrit un code, il faut se relire et se faire relire. La revue de programme (code
review) est une pratique courante de gestion de la qualité du code, en complément des tests.
Tant la forme que le fond du code y sont mis a I'épreuve. S'il ne dispose pas de collégues
coopératifs, le selfeur gagnera simplement a prendre de la distance avec son code, en le
laissant de c6té quelques jours, quelques heures, quelques instants, et a le relire ensuite
avec unregard neuf. S'il peine a rentrer dedans, c’est sans doute qu'il doit rendre son code
plus accessible.

17. Pour de bonnes pratiques de nommage voir par exemple (McConnell, 2005, chapitre 11 ; Martin, 2009, chapitre 2).

18.La plupart des outils de développement proposent des fonctions de mise en forme automatique. Ces fonctions
permettent de respecter un style défini a priori, soit par la communauté informatique dans son ensemble, soit par une
équipe projet. Cependant les éditeurs de logiciels statistiques sont actuellement plus pauvres de ce point de vue (SAS®
et R notamment) et contraignent a suivre manuellement les regles de style choisies.

98 QUELQUES BONNES PRATIQUES DE DEVELOPPEMENT LOGICIEL A LUSAGE DU STATISTICIEN
SELFEUR

Par ailleurs, on peut coder a plusieurs. Cela peut paraitre évident mais c'est assez peu
pratiqué. Deux selfeurs en bindme (pratique désignée par le terme de pair programming)
feront trés souvent beaucoup plus ensemble que s'ils étaient restés chacun de leur c6té
(Hannay et alii, 2009 ; Kessler et Williams, 2002). De surcroit, cela revient a une revue de
code en continu. C'est un formidable outil de formation et de tutorat pour apprendre a
supprimer le code inutile et a éviter les répétitions.

Au-dela de I'équipe, il est possible de s'inscrire dans une communauté plus grande, via
le partage de programmes en open source. Dans ce cadre, on développe de facto pour les
autres, la lisibilité du code est donc primordiale. Il est indispensable de respecter les normes
retenues par la communauté du logiciel auquel on contribue, ces normes étant dans la
plupart des cas des standards. S'inscrire dans une démarche open source est un moyen
trés puissant de progresser dans l'appropriation des bonnes pratiques. La communauté
fait bénéficier de retours d’expérience plus nombreux et plus variés, elle devient un moyen
de se former par tutorats réciproques. Depuis la mise a disposition du modele Inées sur son
siteinternet, I'Insee diffuse de plus en plus de programmes en open source (notamment les
modeéles, comme Avionic, Destinie, Mésange, Méléze et Omphale®). En cela, l'institut s'inscrit
pleinement dans une pratique devenue courante parmi les data scientists.

Dans un contexte qui lui est donc favorable, le statisticien public selfeur qui a su définir la
finalité de son développement, qui sait structurer convenablement son programme et qui
saura vérifier avec I'aide d'un tiers la lisibilité de son code, a encore un dernier choix a faire.

® COTE TECHNIQUE...

Le terme de « technique » est source d'un débat toujours renouvelé : doit-on maftriser la
technique pour savoir définir une cible et construire le chemin quiy méne ?

Le statisticien selfeur doit-il se transformer en informaticien pour écrire un programme dans
les régles de I'art ? Si I'on y regarde de plus prés, toutes les activités étudiées jusqu'a présent
relévent d'une technicité particuliére, que ce soit définir comment mesurer un concept, estimer
un modeéle, concevoir un enchainement de traitements, écrire un programme, le tester, etc. Ce

qui se cache derriere cette derniére question c’est la réalité de

. I'importance des outils utilisés pour réaliser les objectifs fixés.
Pas de « techniques P P J

miracles » pour diminuer
la quantité de bugs dans
les programmes.

Dans les années quatre-vingt, I'ingénieur logiciel américain
Frederick P. Brooks (Brooks, 1986) a utilisé une expression restée
fameuse : « No Silver Bullet », autrement ditil n'y a « pas de baguette
magique », ou pas de « techniques miracles » pour augmenter la
productivité des programmeurs et diminuer la quantité de bugs dans les programmes. Brooks
estime que les difficultés de réalisation des logiciels se divisent en difficultés accidentelles (langages
de programmation et systémes laborieux et malaisés a utiliser) et en difficultés essentielles
(inhérentes a la production de logiciels). Or, selon lui, les difficultés accidentelles ont déja été
en grande partie éliminées, par exemple par l'adoption de langages de haut niveau ; il n'y aura
donc pas dans l'avenir de nouveaux progres techniques permettant des gains importants de
productivité. Les gains (en délai de réalisation, en qualité) doivent donc d'abord étre cherchés
dans le travail de conception, et ensuite seulement, dans le choix des outils.

19.Les codes-sources de ces modeles sont disponibles a I'adresse suivante : https://github.com/InseeFr.

Courrier des statistiques N7 - Janvier 2022 - Insee 99

https://www.insee.fr/fr/information/2021951
https://www.insee.fr/fr/information/4504149
https://www.insee.fr/fr/information/3606338
https://www.insee.fr/fr/information/3605738
https://www.insee.fr/fr/information/3896347
https://www.insee.fr/fr/information/3683517
https://github.com/InseeFr

Tout en gardant a l'esprit leurs limites, parmi les nombreux choix techniques a faire (web
ou pas, format de la base de données, algorithmie, méthodes big data ou classiques, etc.),
certains se révélent plus importants que d'autres.

@ LE CHOIX LE PLUS STRUCTURANT EST CELUI DU LANGAGE... —

Il n'est pour autant pas nécessaire de chercher la perfection: lelangage a la syntaxe la plus
subtile, permettant les syntaxes les plus courtes pour implémenter les traitements les plus
complexes, ou autorisant de surprenantes opérations est rarement celui qu'il faut retenir.
Leslangages a haut niveau d'abstraction sont nombreux, et souvent suffisamment puissants
pour la nature des travaux a réaliser. Le choix du langage se fera plutot en prenant en
compte son écosystéme : évolue-t-il régulierement ? Sa documentation est-elle abondante
et facilement disponible ? Est-il porté par une communauté d'utilisateurs dynamique ?
Existe-t-il des librairies tierces permettant de ne pas avoir a tout redévelopper ? Peut-il
facilement s'interfacer avec d'autres langages ? Existe-t-il une offre suffisante d’'outils de
développement et de tests pour ce langage ?

Aujourd’hui, pour un statisticien développant lui-méme ses programmes, le choix se portera
en premier lieu sur les langages R et Python. lls bénéficient tous deux d’'un écosystéme de
qualité, et répondront a la plus grande partie des besoins en statistique®.

O ... DES BIBLIOTHEQUES DE PROGRAMMES SANS BOGUES... ——

On s'appuie généralement sur des programmes écrits par d'autres et mis a disposition
sous forme de bibliothéques (/ibraries en anglais) réutilisables. En premier lieu, il faut
s'assurer qu'elles ne présentent pas de bugs?'. Ce point est particulierement sensible dés
que I'on touche au domaine de la méthodologie. Les traitements a implémenter peuvent
étre complexes et les erreurs générées par une mauvaise implémentation peuvent avoir
un impact considérable sur le résultat, tout en étant difficiles a détecter. D'autres critéres
sont (sans chercher a étre exhaustif) la performance, la pérennité, la disponibilité d'une
documentation, la facilité d'utilisation, éventuellement le colt de la licence d'utilisation. Afin
de guider le selfeur vers les librairies donnant les meilleures garanties, des initiatives de
certification ontvu le jour. Linsee a créé début 2019 un Comité de certification des packages
R afin d'accompagner l'utilisation de plus en plus étendue de ce langage. Toujours au sein
de la communauté R, on peut citer I'initiative rOpenSci?? qui s'inscrit dans la logique de la
science reproductible (voir infra).

® ... ET DES EDITEURS STANDARDS (EVITER LES PROPRIETAIRES)—

Les interfaces entre les modules sont un endroit stratégique ou il faut faire les bons
choix. Les modules d'un méme traitement doivent rester indépendants d'un point de vue
technologique, sinon leurs cycles de vie ne seront pas indépendants. Pour cela il faut que
les technologies choisies (type de fichiers de données utilisés par exemple) introduisent

20.Uneliste d'outils utilisés dans la statistique publique est disponible a I'adresse suivante : https://github.com/SNStatComp/
awesome-official-statistics-software.

21.Une telle vérification ne va pas de soi. Le mieux est de pouvoir s'appuyer sur un tiers qui a la compétence pour le faire.
A défaut il faut disposer de jeux de tests permettant de valider la librairie.

22.Voir le site https://ropensci.org/.

100 QUELQUES BONNES PRATIQUES DE DEVELOPPEMENT LOGICIEL A L'USAGE DU STATISTICIEN
SELFEUR

https://github.com/SNStatComp/awesome-official-statistics-software
https://github.com/SNStatComp/awesome-official-statistics-software
https://ropensci.org/

peu de contraintes. Le choix devra donc se porter sur des standards faciles a produire
et a manipuler, par les machines mais si possible aussi par les humains. Concrétement
on s'efforcera d'échanger les informations sous forme de fichier textes dans des formats
standards reconnus et non propriétaires (par exemple des fichiers CSV, JSON ou XML). Lusage
de fichiers Excel millésimés (97, 2003, etc.) est source d’erreurs en cas de changements de
version. Le format des fichiers de données SAS® I'est également avec d'autres logiciels
statistiques.

L'utilisation des tableurs pour faire de la statistique est un sujet qui ne fait pas consensus.
Leurs défenseurs mettent en avant leur facilité d'utilisation, aussi bien pour manipuler la
donnée que pour produire des graphiques. Leurs détracteurs, dont font partie les auteurs
de cet article, conseillent de ne pas utiliser ces outils pour des ensembles de données qu'il
n'est pas possible d'afficher en entier sur un écran. En effet, un tableur rend impossible
d'appliquer le conseil qui veut qu'un programme soit fait pour étre lu avant d'étre exécuté.
Dans un tableur tout estmélangé : les données en entrée, les régles de calcul, I'architecture
générale du traitement et le résultat. Utiliser des
tableurs expose a des risques importants (Powell,
Baker et Lawson, 2009) : difficulté a comprendre les
traitements implémentés pour celui qui ne les a pas
écrits (ou qui les a oubliés), quasi-impossibilité de
construire des traitements modulaires et a mettre en
ceuvre des tests, corruption des traitements lorsque
I'on remplace par erreur la formule contenue dans
une cellule par une valeur.

Un tableur rend impossible
d’appliquer le conseil qui
veut qu'un programme soit
fait pour étre lu avant d'étre
exécuté.

Pour répondre aux exigences de performance, il sera parfois nécessaire de choisir des
outils spécifiques. La portée de ce choix devra étre restreinte au maximum et il ne devra
étre fait qu'apres la conception du traitement, une erreur classique étant de construire
le programme de facon a mettre en valeur toute la puissance de l'outil retenu. Les choix
d'outils pour des raisons de performance sont les plus a méme d'étre caduques au fur et
amesure que les performances globales de I'informatique évoluent. Par exemple SAS® et
R ont souvent été opposés sur la question de la capacité a traiter des fichiers de grandes
tailles, R nécessitant de les charger en mémoire vive ou de mobiliser un serveur de base de
données, SAS® étant capable de les traiter séquentiellement a partir du disque dur?3. Mais
avec I'évolution des capacités matérielles et des possibilités logicielles le débat a perdu de
sa pertinence. L'opposition se focalise maintenant plus sur la capacité offerte par les deux
logiciels de pouvoir partager ses programmes avec d'autres. A nouveau, un traitement
modulaire facilitera le travail : des modules bien définis permettront de ne pas faire porter
le choix de la technologie au-dela du périmetre pour lequel cela se justifie, et si un jour le
probléme de la performance ne justifie plus une technologie spécifique, le retour vers des
solutions standards sera facilité.

23.Ainsi, dans un article publié par SAS®, il apparait que le chargement des données en mémoire vive pratiqué par R ne lui
permet pas de manipuler des jeux de données aussi volumineux que SAS® (Ames, Abbey et Thompson, 2013).

Courrier des statistiques N7 - Janvier 2022 - Insee 101

® GERER (AUTOMATIQUEMENT) SES VERSIONS, VIRTUALISER
SON ENVIRONNEMENT

Pour suivre les modifications apportées a un programme, on peut ajouter a son nom
une date ou un numéro de version. Manuellement, cela devient trés vite fastidieux et
source d'erreur. Il existe des outils pour enregistrer les versions d'un programme, accéder
a I'historique, examiner les différences entre plusieurs versions, développer plusieurs
versions en paralléles, etc. Loutil de référence en la matiére est Git. Il nécessite un endroit
ou déposer et partager I'ensemble des versions du programme (tels que github.com et
gitlab.com) mais facilite d’autant le travail en équipe.

L'utilisation fréquente de librairies et logiciels tierces et I'évolution rapide des langages
informatiques nécessitent de référencer également les versions des outils utilisés et non
pas seulement les versions du programme. Un programme pourra ne pas fonctionner avec
une version plus ancienne ou plus récente que celle utilisée lors de son développement.
C'est ce qu'on appelle la gestion des dépendances?:.

Afin de faciliter I'utilisation d'un ensemble d'outils de développement informatique, des
environnements complets préts a I'emploi existent?®. Les environnements de développement
« statistique » se sont perfectionnés et diversifiés (Besse, Guillouet et Laurent, 2018).
Ils améliorent I'ergonomie de développement, la reproductibilité des résultats et aussi
I'apprentissage des langages de programmation. En particulier, les carnets de code
(notebooks?®) permettent d'intégrer le code exécutable (et modifiable) au sein d'un rapport
ou d’'une présentation.

Enfin, la virtualisation consiste a créer une représentation virtuelle, basée logicielle, d'un
objet ou d'une ressource telle qu'un systeme d'exploitation, un serveur, un systeme de
stockage ou un réseau. Ces ressources simulées ou émulées sont en tous points identiques a
leur version physique. La virtualisation permet méme d'isoler un environnement d’exécution
(containers) pour un projet?. Le statisticien public selfeur dispose maintenant d'un tel
environnement avec le SSPCloud?.

@ TESTER TOUT AU LONG DU DEVELOPPEMENT, ET MEME APRES

La démarche exposée précédemment (exigences, architecture, développement) permet
de maitriser la qualité du traitement a priori, lors de la conception. Les tests permettent
de la maftriser a posteriori, en fonctionnement réel. Il en existe de plusieurs sortes ayant
des objectifs divers.

Une premiere catégorie, les tests fonctionnels, a pour but de s'assurer que les traitements
donnent bien les résultats attendus du point de vue du métier. Au niveau le plus fin, il
s'agit de tester que chaque fonction du programme est bien implémentée, ce sont les tests
unitaires?. On testera par exemple la création, a partir de valeurs prédéfinies, d'un relevé
de prix dans la base de données. Au niveau du programme dans son ensemble, il peut

24.Pour le langage R, Renv fait référence actuellement.

25.En anglais, on parle d’IDE pour Integrated Development Environment.

26.Les notebooks Jupyter ont inspiré au-dela de Python, en particulier Rmarkdown pour R.

27.Par exemple avec docker : https://www.docker.com/.

28.Voir a ce sujet l'article de Frédéric Comte, Arnaud Degorre et Romain Lesur sur le SSPCloud, dans ce méme numéro.
29.Sur les tests unitaires, se reporter par exemple a (Martin, 2009).

102 QUELQUES BONNES PRATIQUES DE DEVELOPPEMENT LOGICIEL A LUSAGE DU STATISTICIEN
SELFEUR

https://www.docker.com/

s'agir de scénario reproduisant les comportements types d'un utilisateur, ou bien de calculs
utilisant des jeux de données de test de grande taille et présentant des cas de figure variés.
On testera par exemple le calcul d'un indice de prix a partir de données détaillées pour
lesquelles le résultat est connu. Lorsque I'exécution de tests de cette premiere catégorie
estautomatisée, cela permet de s'assurer qu'il n'y a pas de régression fonctionnelle lors de
I'ajout de nouvelles fonctions. Par exemple pour les retraitements d’'une enquéte répétée
dans le temps dont les méthodes d'imputation seraient modifiées.

Une deuxieme catégorie de tests permet de
s'assurer de la qualité des aspects non fonctionnels,
Lorsque I'exécution de tests principalement la performance et la sécurité. Pour
de cette premiére catégorie les programmes qui connaitront un grand nombre
est automatisée, cela permet d'évolutions au cours de leur vie, il est préférable
de s’assurer qu'il n’y a pas d'automatiser ce type de tests.
de régression fonctionnelle
lors de I'ajout de nouvelles A priori, les tests fonctionnels intéresseront
fonctions. plus particulierement le statisticien, les aspects
non fonctionnels étant vus comme l'affaire des
informaticiens. Cependant il existe des cas ou la
maitrise des exigences non fonctionnelles est un enjeu du métier statistique, que ce soit
pour des raisons immuables, comme le respect du secret statistique, ou pour des raisons
conjoncturelles, comme le besoin actuel de pouvoir traiter en des temps acceptables des
données massives. Cette notion de performance a différentes dimensions. Il peut s'agir du
temps de traitement, du volume maximal de données pouvant étre pris en charge par le
programme, du nombre d'utilisateurs simultanés (par exemple pour un outil web interactif).
Aucun de ces objectifs de performance n'est un absolu en soi. C'est lors de la définition des
besoins que I'on doit préciser lesquels doivent étre atteints.

La plupart des tests peuvent, et doivent, étre menés tout au long de la réalisation du
programme. De ce pointde vue, les tests de performance présentent une particularité. Les
modifications apportées a un programme afin d'en améliorer les performances ont parfois
pour effet d’en dégrader la structure interne et la lisibilité. De telles modifications ne doivent
donc étre apportées que si les performances du programme d’origine ne permettent pas
de réaliser le traitement dans des conditions acceptables. Ainsi, les tests de performance
doiventintervenir vers la fin du processus d'écriture, lorsque sa conception aura été menée
jusqu’au bout. Les méthodes pour améliorer la performance sont diverses et leur impact
sur la qualité du programme varie grandement (McConnell, 2005, chapitre 26). Il faut
éviter de dégrader la structure et la lisibilité du programme pour atteindre des objectifs
de performance qui ne sont pas nécessaires aux utilisateurs.

® LE STATISTICIEN SELFEUR: UN DEVELOPPEUR «AGILE» AU
SERVICE DE LA QUALITE STATISTIQUE

Les grands principes énoncés jusque-la doivent bien évidemment s'adapter a la complexité
du développement en self, et surtout a I'enjeu pour l'utilisateur du code produit. Ainsi,
parmi les grands courants qui structurent aujourd’hui les méthodes de développement,
celui de I'agilité est probablement le plus intéressant pour le selfeur : I'agilité a pour objectif
d'orienter les efforts vers ce qui a le plus de valeur pour l'utilisateur, en s'adaptant aux
changements a moindre co(t.

Courrier des statistiques N7 - Janvier 2022 - Insee 103

Qu'il soit son propre utilisateur, ou qu'il insere son code dans un processus statistique
complexe, le statisticien selfeur gagnera a s'inspirer des outils de pilotage d'un projet agile,
si ce n'est a la lettre, du moins dans l'esprit.

Il gagnera aussi a s'inspirer des enjeux de la reproductibilité des études, ou des exploitations
statistiques : pour cela, il s'assurera de livrer le résultat dans un environnement technique
qui permet a tout un chacun de le reproduire a l'identique et de fagon automatisée.

In fine, ce qui importe, c'est que le programme développé serve a produire une statistique
publique de qualité : répondant a un besoin, dans les regles de I'art (statistique et
informatique), documentée, reproductible, etc. Quel que soit le critére que I'on s’efforcera
de respecter, « savoir coder » contribue a démontrer qu'on « sait compter », et ne peut que
renforcer la confiance dans la donnée produite.

104 QUELQUES BONNES PRATIQUES DE DEVELOPPEMENT LOGICIEL A LUSAGE DU STATISTICIEN
SELFEUR

ld BIBLIOGRAPHIE

ABELSON, Harold, SUSSMAN, Gerald Jay, et SUSSMAN, Julie, 1996. Structure and Interpretation
of Computer Programs. Juillet 1996. The MIT Press. Deuxieme édition. ISBN 978-0262011532.

AMES, Allison)., ABBEY, Ralph et THOMPSON, Wayne, 2013. Big Data Analytics. Benchmarking
SAS®, R, and Mahout. [en ligne]. Actualisé le 6 mai 2013. SAS Institute Inc., Cary, NC. Technical
Paper. [Consulté le 13 décembre 2021]. Disponible a I'adresse :
https://support.sas.com/resources/papers/Benchmark_R_Mahout_SAS.pdf.

ANXIONNAZ, Isabelle et MAUREL, Francoise, 2021. Le Conseil national de l'information
statistique - La qualité des statistiques passe aussi par la concertation. In : Courrier des
statistiques. [en ligne]. 8 juillet 2021. Insee. N° N6, pp. 123-142. [Consulté le 13 décembre
2021]. Disponible a I'adresse :
https://www.insee.fr/fr/statistiques/fichier/5398693/courstat-6-art-7.pdyf.

BESSE, Philippe, GUILLOUET, Brendan et LAURENT, Béatrice, 2018. Wikistat 2.0 : Ressources
pédagogiques pour l'Intelligence Artificielle. In : Statistique et Enseignement. [en lignel.
6 novembre 2018. Société francaise de statistique (SFdS). Volume 9, pp. 43-61. [Consulté le
13 décembre 2021]. Disponible a I'adresse :
http://statistique-et-enseignement.fr/article/view/694.

BONNANS, Dominique, 2019. RMéS, le référentiel de métadonnées statistiques de I'Insee.
In : Courrier des statistiques. [en ligne]. 27 juin 2019. Insee. N° N2, pp. 46-57. [Consulté le 13
décembre 2021]. Disponible a I'adresse :
https://www.insee.fr/fr/statistiques/fichier/4168396/courstat-2-6.pdf.

BROOKS, Frederick P., 1986. No Silver Bullet - Essence and Accident in Software Engineering.
In : KUGLER, H.-J., 1986. Proceedings of the IFIP Tenth World Computing Conference. [en ligne].
Elsevier Science BV, Amsterdam, pp. 1069-1076. [Consulté le 13 décembre 2021]. Disponible
a l'adresse : http://worrydream.com/refs/Brooks-NoSilverBullet.pdyf.

COCKBURN, Alistair, 2000. Writing Effective Use Cases. Octobre 2000. Addison-Wesley. ISBN
978-0201702255.

CONSTANTINIDIS, Yves, 2018. Expression des besoins pour le SI. Guide d’élaboration du cahier
des charges. 11 janvier 2018. Eyrolles. 4¢ édition. ISBN 978-2212675771.

COTIS, Jean-Philippe, TEMAM, Daniel, BENVENISTE, Corinne, ANGEL, Jean-William, DARRINE,
Serge, ROUMIGUIERES, Eve et GELY, Alain, 2009. Savoir compter, savoir conter. In : Courrier
des statistiques. [en ligne]. Décembre 2009. Insee. Hors Série. [Consulté le 13 décembre 2021].
https://www.bnsp.insee.fr/ark:/12148/bc6p06xt18x.

ERIKSON, Johan, 2020. Le modeéle de processus statistique en Suede - Mise en ceuvre,
expériences et enseignements. In : Courrier des statistiques. [en ligne]. 29 juin 2020. Insee.
N° N4, pp. 122-141. [Consulté le 13 décembre 2021]. Disponible a I'adresse :
https://www.insee.fr/fr/statistiques/fichier/4497085/courstat-4-8.pdf.

EVANS, Eric, 2003. Domain-Driven Design: Tackling Complexity in the Heart of Software.
20 ao(t 2003. Editions Addison-Wesley. ISBN 978-0321125217.

Courrier des statistiques N7 - Janvier 2022 - Insee 105

https://support.sas.com/resources/papers/Benchmark_R_Mahout_SAS.pdf
https://www.insee.fr/fr/statistiques/fichier/5398693/courstat-6-art-7.pdf
http://statistique-et-enseignement.fr/article/view/694
https://www.insee.fr/fr/statistiques/fichier/4168396/courstat-2-6.pdf
http://worrydream.com/refs/Brooks-NoSilverBullet.pdf
https://www.bnsp.insee.fr/ark:/12148/bc6p06xt18x
https://www.insee.fr/fr/statistiques/fichier/4497085/courstat-4-8.pdf

GADOUCHE, Kamel, 2019. Le Centre d'acces sécurisé aux données (CASD), un service pour la
data science etla recherche scientifique. In: Courrier des statistiques. [en ligne]. 19 décembre
2019. Insee. N° N3, pp. 76-92. [Consulté le 13 décembre 2021]. Disponible a I'adresse :
https://www.insee.fr/fr/statistiques/fichier/4254227/courstat-3-7.pdyf.

HANNAY, Jo E., DYBA, Tore, ARISHOLM, Erik et SJOBERG, Dag I. K., 2009. The Effectiveness
of Pair Programming: A Meta-Analysis. In : Information and Software Technology. Juillet 2009.
Elsevier. Volume 51, n° 7, pp. 1110-1122.

KESSLER, Robert et WILLIAMS, Laurie, 2002. Pair programming illuminated. 19 juillet 2002.
Editions Addison-Wesley. ISBN 978-0201745764.

L'HOUR, Emmanuel, LE SAOUT, Ronan et ROUPPERT, Benoit, 2016. Savoir compter, savoir coder.
[en lignel. Juin 2016. Insee. Document de travail, Méthodologie statistique, n° M2016/04.
[Consulté le 13 décembre 2021]. Disponible a I'adresse :
https://www.bnsp.insee.fr/ark:/12148/bc6p06zrjbz.

LANGLAIS, Pierre Carl et EPRIST, 2020. La recherche en crise de reproductibilité ? [en ligne].
Avril 2020. EPRIST Analyse I/1ST n°30. [Consulté le 13 décembre 2021]. Disponible a I'adresse :
https://www.eprist.fr/wp-content/uploads/2020/04/EPRIST_I-IST_Recherche-en-crise-de-
reproductibilite_Avril2020.pdf.

MARTIN, Robert C., 2009. Coder proprement. Février 2009. Pearson France, collection
Campuspress. ISBN 978-2744023279.

MARTIN, Robert C., 2017. Clean Architecture: A Craftsman’s Guide to Software Structure and
Design. Addison-Wesley. ISBN 978-0132911221.

MCCONNELL, Steve, 2005. Tout sur le code - Pour concevoir du logiciel de qualité, dans tous les
langages. 14 février 2005. Microsoft Press. 2¢ édition. ISBN 978-2100487530.

POWELL, Stephen G., BAKER, Kenneth R. et LAWSON, Barry, 2009. Errors in Operational
spreadsheets. In : Journal of Organizational and End User Computing. [en lignel. Juillet-
septembre 2009. pp. 24-36. [Consulté le 13 décembre 2021]. Disponible a I'adresse :
http://faculty.tuck.dartmouth.edu/images/uploads/faculty/serp/Errors.pdyf.

ROBERTSON, Suzanne et ROBERTSON, James, 2013. Mastering the Requirements Process:
Getting Requirements Right. Editions Addison-Wesley Professional. Troisiéme édition. ISBN
978-0321815743.

VOLLE, Michel, 2001a. Pour une esthétique de la sobriété. In : site de Michel Volle. [en ligne].
24 mars 2001. [Consulté le 13 décembre 2021]. Disponible a I'adresse :
http://www.volle.com/opinion/sobriete.htm.

VOLLE, Michel, 2001b. Lexpression des besoins et le systeme d'information. In : site de Michel
Volle. [en ligne]. 31 décembre 2001. [Consulté le 13 décembre 2021]. Disponible a I'adresse :
http://www.volle.com/travaux/besoins.htm.

106 QUELQUES BONNES PRATIQUES DE DEVELOPPEMENT LOGICIEL A L'USAGE DU STATISTICIEN
SELFEUR

https://www.insee.fr/fr/statistiques/fichier/4254227/courstat-3-7.pdf
https://www.bnsp.insee.fr/ark:/12148/bc6p06zrjbz
https://www.eprist.fr/wp-content/uploads/2020/04/EPRIST_I-IST_Recherche-en-crise-de-reproductibilite_Avril2020.pdf
https://www.eprist.fr/wp-content/uploads/2020/04/EPRIST_I-IST_Recherche-en-crise-de-reproductibilite_Avril2020.pdf
http://faculty.tuck.dartmouth.edu/images/uploads/faculty/serp/Errors.pdf
http://www.volle.com/opinion/sobriete.htm
http://www.volle.com/travaux/besoins.htm

