Market Power and Labor Share
Arthur Bauer and Jocelyn Boussard
Annexes en ligne / Online appendices

Online Appendix C1 - Data representativeness

Table C1-1 reports the year-by-year total number of observations, as well as aggregate labor costs, valueadded, investment, both in level and in share of their aggregate values for the corporate sector in France. There are on average 800 thousand observations per year, accounting for 87% of total labor costs, 84% of total value-added, with little variations over time. Our data only accounts for 68% of total investment in the corporate sector. This is due to the fact that many small firms affiliated to the simplified regime report missing investment. To construct measures of capital input, we use instead the reported book values of the capital stock.

Table C1-1 - Data Representativeness

	Obs	Labor Costs		Value Added		Investment	
	(Nb)	Total $(\mathrm{M} €)$	Share $(\%)$	Total $(\mathrm{M} €)$	Share $(\%)$	Total $(\mathrm{M} €)$	Share $(\%)$
1984	532,996	283,772	82	283,772	84	47,202	70
1985	548,669	312,930	84	312,930	87	49,752	68
1986	571,885	332,184	84	332,184	84	57,344	71
1987	592,065	351,970	84	351,970	84	56,737	65
1988	601,927	379,705	83	379,705	82	63,893	65
1989	596,754	413,480	84	413,480	83	73,858	67
1990	647,678	428,452	83	428,452	81	78,487	65
1991	666,606	458,394	84	458,394	83	81,559	64
1992	702,357	471,285	85	471,285	82	81,502	65
1993	734,122	475,615	86	475,615	84	77,745	67
1994	741,347	487,676	86	487,676	84	73,961	63
1995	765,457	510,294	87	510,294	84	79,238	66
1996	796,722	515,257	86	515,257	84	79,844	65
1997	868,408	544,548	88	544,548	85	112,410	90
1998	851,193	575,456	89	575,456	85	90,792	67
1999	852,305	607,464	89	607,464	87	97,016	66
2000	913,683	651,199	89	651,199	87	120,356	74
2001	891,453	672,645	89	672,645	86	120,600	70
2002	925,390	696,835	89	696,835	86	110,329	65
2003	938,783	707,062	89	707,062	85	120,849	71
2004	976,069	739,259	89	739,259	85	121,434	68
2005	991,904	770,758	89	770,758	86	146,352	78
2006	$1,040,977$	809,623	89	809,623	86	128,399	63
2007	$1,058,540$	845,743	89	845,743	85	169,717	75
2008	$1,022,553$	880,096	92	880,096	86	187,424	78
2009	991,614	830,123	90	830,123	84	148,316	70
2010	984,428	864,506	89	864,506	86	150,904	68
2011	947,166	874,459	88	874,459	84	154,229	65
2012	944,272	875,717	88	875,717	83	158,964	66
2013	943,845	882,930	87	882,930	82	174,412	72
2014	937,468	888,054	86	888,054	82	148,430	60
2015	952,305	911,883	86	911,883	81	158,674	62
2016	$1,061,582$	940,008	87	940,008	82	146,943	55
$1984-2016$	836,137	636,042	87	636,042	84	111,142	68

Note: This table presents the share of aggregate labor costs (including employer social contributions), value-added and investment in the corporate sector in France that our sample accounts for year by year and on average over the whole period. The sample is all firms in the corporate market sectors, excluding agriculture, finance and real estate, with non-zero employment.

Online Appendix C2 - Discussion on markup wedges

In the presence of adjustment costs to the variable input, for instance in the case of capital, the relationship between the markup and the output elasticity becomes:

$$
\begin{equation*}
\mu_{i t}=\frac{\theta_{k, i t}}{\lambda_{i t}^{k}\left(1+\Delta_{a, i t}\right)} \tag{1}
\end{equation*}
$$

where $\lambda_{i t}^{k}$ is the capital share of revenue, $\theta_{k, i t}$ is the output elasticity with respect to capital, and $\Delta_{a, i t}=$ $\frac{\partial \mathscr{C}_{a}}{\partial K}\left(K_{i t}, K_{i t-1}\right)+\frac{\partial \mathscr{C}_{a}}{\partial K_{-1}}\left(K_{i t+1}, K_{i t}\right)$ is the wedge attributable to the adjustment costs. The sign of the wedge is not straightforward and depends on the convexity of the adjustment cost function as well as on expectations of future target stock of capital. De Loecker \& Warzynski (2012) show that abstracting from adjustment costs generally results in a negative wedge, and therefore an overestimated markup. See Doraszelski \& Jaumandreu (2019) for a theoretical discussion of the sign of adjustment cost wedges.

Another important source of gap between the output elasticity of an input and its share in revenue is when firms are not price-takers on the market for inputs, for instance if the firm has monopsony power in the labor market, or engages in efficient bargaining (Dobbelaere \& Mairesse, 2013; Dobbelaere \& Kiyota, 2018). In that case, the relationship between the markup and the output elasticity becomes:

$$
\begin{equation*}
\mu_{i t}=\frac{\beta_{l, i t}}{\theta_{i t}\left(1+\Delta_{m, i t}\right)} \tag{2}
\end{equation*}
$$

where the sign of the wedge $\Delta_{m, i t}$ depends on the labor market setting. Dobbelaere \& Kiyota (2018) show that in the case of efficient bargaining, the wedge is positive, and in the case of monopsony the wedge is negative.

Market Power and Labor Share
Arthur Bauer and Jocelyn Boussard
Annexes en ligne / Online appendices

Online Appendix C3 - Firm-level trends

So far, we have focused on describing long term shifts in the distribution of firm outcomes, without discussing whether these firms are the same over time. In what follows, we look at the within-firm variation of labor share and markups, for different groups of firm size. For labor shares, we run the following regression:

$$
\begin{equation*}
\lambda_{i t}=F E_{i}+\Psi_{\lambda} t+\text { Control }_{i t}+\varepsilon_{i t}, \tag{3}
\end{equation*}
$$

where $\lambda_{i t}$ is the labor share of firm i in year $t, F E_{i}$ is a firm fixed effect, and Control $_{i t}$ is either the logarithm of employment or a set of categories of employment size fixed effects. We run this regression on four samples, with different thresholds of employment size.

Table C3-1 - Firm Level Labor Share Trends

All Firms	No Size Threshold			More than 50 Employees		
	No FE	Industry FE	Firm FE	No FE	Industry FE	Firm FE
Trend Log Employment	$\begin{gathered} 0.5745 \\ (0.0014) \end{gathered}$	$\begin{gathered} 0.6221 \\ (0.0015) \end{gathered}$	$\begin{gathered} 0.5637 \\ (0.0015) \end{gathered}$	$\begin{gathered} 0.3830 \\ (0.0074) \end{gathered}$	$\begin{gathered} 0.4155 \\ (0.0082) \end{gathered}$	$\begin{gathered} 0.4128 \\ (0.0079) \\ -2.2559 \\ (0.1432) \end{gathered}$
			$\begin{gathered} 3.2248 \\ (0.0169) \end{gathered}$			
Observations R2	$\begin{gathered} 26,761,933 \\ 0.594 \end{gathered}$	$\begin{gathered} \hline 26,032,310 \\ 0.630 \end{gathered}$	$\begin{gathered} 26,623,375 \\ 0.598 \end{gathered}$	$\begin{gathered} \hline 849,448 \\ 0.608 \end{gathered}$	$\begin{gathered} \hline 803,590 \\ 0.630 \end{gathered}$	$\begin{gathered} \hline 818,020 \\ 0.577 \end{gathered}$
	More than 100 Employees			Mo FE	an 1000 Em	loyees
	No FE	Industry FE	Firm FE		Industry FE	Firm FE
Trend Log Employment	$\begin{gathered} \hline 0.3688 \\ (0.0107) \end{gathered}$	$\begin{gathered} 0.3921 \\ (0.0115) \end{gathered}$	0.3971	$\begin{gathered} 0.3212 \\ (0.0422) \end{gathered}$	$\begin{gathered} 0.3311 \\ (0.0459) \end{gathered}$	$\begin{gathered} 0.3279 \\ (0.0445) \\ -3.2060 \\ (0.8792) \end{gathered}$
			(0.0114)			
			-2.6489			
			(0.2206)			
Observations R2	$\begin{gathered} 434,631 \\ 0.649 \end{gathered}$	$\begin{gathered} 399,285 \\ 0.642 \end{gathered}$	$\begin{gathered} 404,322 \\ 0.597 \\ \hline \end{gathered}$	$\begin{gathered} 56,186 \\ 0.821 \\ \hline \end{gathered}$	$\begin{gathered} 26,560 \\ 0.719 \\ \hline \end{gathered}$	$\begin{gathered} 26,760 \\ 0.689 \\ \hline \end{gathered}$
Balanced Panel	No Size Threshold			More than 50 Employees		
	No FE	Industry FE	Firm FE	No FE	Industry FE	Firm FE
Trend Log Employment	$\begin{gathered} 0.2528 \\ (0.0046) \end{gathered}$	$\begin{gathered} 0.2618 \\ (0.0051) \end{gathered}$	0.2523	$\begin{gathered} 0.2898 \\ (0.0120) \end{gathered}$	$\begin{gathered} 0.2998 \\ (0.0131) \end{gathered}$	0.3047
			(0.0047)			(0.0129)
			0.1588 (0.1115)			-1.7508 (0.3557)
ObservationsR2	$\begin{gathered} 887,205 \\ 0.429 \end{gathered}$	$\begin{gathered} 880,534 \\ 0.514 \end{gathered}$	$\begin{gathered} 887,201 \\ 0.429 \end{gathered}$	$\begin{gathered} 165,843 \\ 0.513 \end{gathered}$	$\begin{gathered} 165,013 \\ 0.587 \end{gathered}$	$\begin{gathered} 165,843 \\ 0.514 \\ \hline \end{gathered}$
	More than 100 Employees			More than 1000 Employees		
	No FE	Industry FE	Firm FE	No FE	Industry FE	Firm FE
Trend Log Employment	$\begin{gathered} 0.2875 \\ (0.0167) \end{gathered}$	0.3003(0.0178)	0.3024	$\begin{gathered} 0.2750 \\ (0.0609) \end{gathered}$	$\begin{gathered} 0.2989 \\ (0.0635) \end{gathered}$	$\begin{gathered} 0.2883 \\ (0.0619) \\ -3.1226 \\ (1.8391) \end{gathered}$
			(0.0177)			
			-2.2025			
			(0.5167)			
Observations	95,311	94,916	95,311	9,406	9,383	9,406
R2	0.538	0.602	0.539	0.668	0.716	0.669

Note: Each estimate is the result of OLS estimation of firm level labor share on time trends, for four samples: all firms, firms with more than 50 employees, 100 employees, and 1000 employees. The balanced panel corresponds to firms present in the data from 1984 to 2016 (these firms account of 20 to 25% of total value-added). All regressions include a set of firm-level fixed effect. Columns "Firm x Size FE" also include a set of size category fixed effect. Standard errors are clustered at the firm level. Results are expressed in percentage points.

Table C3-1 presents the results of these regressions. We find that average firm experienced a trend increase in labor share of around 0.6 percentage points per year, including controlling for changes in the employment level. Table C3-1 also reports results on a balanced panel of firms present in the data from 1984 to 2016. It shows that firm-level labor shares have increased by close to 0.3 percentage points per

Market Power and Labor Share
Arthur Bauer and Jocelyn Boussard

Annexes en ligne / Online appendices
year across all specifications and samples.
We conduct a similar analysis for firm-level markups. We run the following regression:

$$
\begin{equation*}
\mu_{i t}=F E_{i}+\Psi_{\mu} t+\text { Control }_{i t}+\varepsilon_{i t}, \tag{4}
\end{equation*}
$$

where $\mu_{i t}$ is firm i markup in year $t, F E_{i}$ is a firm fixed effect, and Control $_{i t}$ is either the logarithm of employment or a set of categories of employment size fixed effects. We run this regression on four samples, with different thresholds of employment size.

Table C3-2 - Firm Level Markup Trends, Rolling

All Firms	No Size Threshold			More than 50 Employees		
	No FE	Industry FE	Firm FE	No FE	Industry FE	Firm FE
Trend Log Employment	$\begin{aligned} & -1.3232 \\ & (0.0035) \end{aligned}$	$\begin{aligned} & -1.5490 \\ & (0.0038) \end{aligned}$	-1.3424	$\begin{aligned} & -0.1024 \\ & (0.0150) \end{aligned}$	$\begin{gathered} -0.1969 \\ (0.0151) \end{gathered}$	$\begin{gathered} -0.1760 \\ (0.0151) \\ 6.4540 \\ (0.2861) \end{gathered}$
			(0.0035)			
			2.6418			
			(0.0403)			
ObservationsR2	$\begin{gathered} 25,092,615 \\ 0.616 \end{gathered}$	$\begin{gathered} \hline 24,535,649 \\ 0.650 \end{gathered}$	$\begin{gathered} 25,092,615 \\ 0.616 \end{gathered}$	$\begin{gathered} \hline 789,696 \\ 0.661 \end{gathered}$	$\begin{gathered} \hline 775,795 \\ 0.723 \\ \hline \end{gathered}$	$\begin{gathered} 789,696 \\ 0.663 \end{gathered}$
	More than 100 Employees			Mo FE	an 1000 Em	loyees
	No FE	Industry FE	Firm FE		Industry FE	Firm FE
Trend Log Employment	$\begin{gathered} -0.0600 \\ (0.0235) \end{gathered}$	-0.1344(0.0233)	-0.1213	$\begin{gathered} 0.2335 \\ (0.1114) \end{gathered}$	$\begin{gathered} 0.2068 \\ (0.1147) \end{gathered}$	0.1708 (0.1093) 9.9853 (2.0191) 26.261
			(0.0239)			
			6.4650			
			(0.4478)			
Observations	$\begin{gathered} 391,061 \\ 0.675 \end{gathered}$	$\begin{gathered} 386,202 \\ 0.730 \end{gathered}$	$\begin{gathered} 391,061 \\ 0.677 \end{gathered}$	$\begin{gathered} 26,261 \\ 0.745 \end{gathered}$	$\begin{gathered} 26,072 \\ 0.784 \\ \hline \end{gathered}$	$\begin{gathered} 26,261 \\ 0.747 \end{gathered}$
R2						
Balanced Panel	No Size Threshold			More than 50 Employees		
	No FE	Industry FE	Firm FE	No FE	Industry FE	Firm FE 0.0165 (0.0278) 6.4115 (0.7099) 1
Trend Log Employment	$\begin{gathered} -0.2269 \\ (0.0102) \end{gathered}$	$\begin{aligned} & -0.2853 \\ & (0.0113) \end{aligned}$	-0.2478	$\begin{gathered} 0.0712 \\ (0.0274) \end{gathered}$	$\begin{gathered} 0.0063 \\ (0.0275) \end{gathered}$	
			(0.0101)			
			6.4068 (0.2564)			
Observations R2	$\begin{gathered} 879,223 \\ 0.514 \end{gathered}$	$\begin{gathered} 872,598 \\ 0.613 \end{gathered}$	$\begin{gathered} 879,223 \\ 0.519 \end{gathered}$	$\begin{gathered} 163,698 \\ 0.594 \end{gathered}$	$\begin{gathered} 162,859 \\ 0.688 \end{gathered}$	$\begin{gathered} 163,698 \\ 0.597 \end{gathered}$
	More than 100 Employees			More than 1000 Em No FE Industry FE		loyees
	$\begin{gathered} \hline \text { No FE } \\ \hline 0.1088 \\ (0.0416) \end{gathered}$	Industry FE	Firm FE			Firm FE
Trend Log Employment		$\begin{gathered} 0.0585 \\ (0.0410) \end{gathered}$	$\begin{gathered} 0.0686 \\ (0.0423) \end{gathered}$	$\begin{gathered} 0.3305 \\ (0.1669) \end{gathered}$	$\begin{gathered} 0.2772 \\ (0.1728) \end{gathered}$	$\begin{gathered} 0.2752 \\ (0.1599) \end{gathered}$
			5.8994 (1.1011)			$\begin{aligned} & 12.9552 \\ & (4.2156) \end{aligned}$
Observations	$\begin{gathered} 94,072 \\ 0.615 \end{gathered}$	$\begin{gathered} \hline 93,670 \\ 0.702 \\ \hline \end{gathered}$	$\begin{gathered} \hline 94,072 \\ 0.617 \\ \hline \end{gathered}$	$\begin{aligned} & 9,309 \\ & 0.744 \end{aligned}$	$\begin{aligned} & \hline 9,286 \\ & 0.798 \end{aligned}$	$\begin{aligned} & 9,309 \\ & 0.747 \end{aligned}$
R2						

Note: Each estimate is the result of OLS estimation of markups from rolling estimates on time trends, for four samples: all firms, firms with more than 50 employees, 100 employees, and 1000 employees. The balanced panel corresponds to firms present in the data from 1984 to 2016 (these firms account of 20 to 25% of total value-added). Markups are computed using rolling estimation of a translog production function. All regressions include a set of firm-level fixed effect. Columns "Firm x Size FE" also include a set of size category fixed effect. Standard errors are clustered at the firm level. Results are expressed in percentage points.

Table C3-2 reports results for markups obtained with rolling estimation. We find that the average firm experienced a trend decrease in markup of around 1.3 to 1.6 percentage points per year. Table C3-3 reports the trends in firm level markups obtained with non-rolling estimation, or on a balanced panel of firms. The decrease in firm level non rolling markups is observed across all samples and panels. Large firms in the balanced panel have experienced an average positive trend in markups, but not statistically significant. The decrease in larger firm markups is close to zero. For the balanced panel of firms that remain in the sample, markups decreased close to zero according to rolling estimates. Overall, we find

Market Power and Labor Share

Arthur Bauer and Jocelyn Boussard
Annexes en ligne / Online appendices
that firm level markups on average decreased, but less so for large and surviving firms. This result indicates that part of the decrease of the within-quantile contribution to aggregate markup is driven by smaller firms and by firm entry and exit.

Table C3-3 - Firm Level Markup Trends, Non-Rolling

All Firms	No Size Threshold			More than 50 Employees		
	No FE	Industry FE	Firm FE	No FE	Industry FE	Firm FE
Trend Log Employment	$\begin{aligned} & -1.4066 \\ & (0.0030) \end{aligned}$	$\begin{aligned} & -1.5764 \\ & (0.0033) \end{aligned}$	$\begin{gathered} -1.4209 \\ (0.0030) \end{gathered}$	$\begin{gathered} -0.7991 \\ (0.0141) \end{gathered}$	$\begin{gathered} -0.8802 \\ (0.0145) \end{gathered}$	$\begin{gathered} -0.8711 \\ (0.0142) \\ 6.3147 \\ (0.2662) \end{gathered}$
			$\begin{gathered} 1.9781 \\ (0.0379) \end{gathered}$			
Observations R2	25,092,615	24,535,649	25,092,615	789,696	775,795	789,696
	0.617	0.649	0.617	0.676	0.733	0.678
	More than 100 Employees			More than 1000 Employees		
	No FE	Industry FE	Firm FE	No FE	Industry FE	Firm FE
Trend Log Employment	$\begin{aligned} & -0.8326 \\ & (0.0218) \end{aligned}$	$\begin{aligned} & -0.8936 \\ & (0.0221) \end{aligned}$	$\begin{gathered} -0.8911 \\ (0.0222) \end{gathered}$	$\begin{aligned} & \hline-0.9272 \\ & (0.1028) \end{aligned}$	$\begin{gathered} -0.9639 \\ (0.1051) \end{gathered}$	$\begin{gathered} -0.9774 \\ (0.1019) \\ 7.9760 \\ (1.8552) \end{gathered}$
			$\begin{gathered} 6.1678 \\ (0.4134) \end{gathered}$			
Observations R2 Balanced Panel	$\begin{gathered} 391,061 \\ 0.694 \end{gathered}$	$\begin{gathered} \hline 386,202 \\ 0.743 \\ \hline \end{gathered}$	$\begin{gathered} 391,061 \\ 0.696 \end{gathered}$	$\begin{gathered} \hline 26,261 \\ 0.781 \end{gathered}$	26,0720.815	$\begin{gathered} \hline 26,261 \\ 0.782 \end{gathered}$
	No Size Threshold			More than 50 Employees		
	No FE	Industry FE	Firm FE	No FE	Industry FE	Firm FE
Trend Log Employment	$\begin{aligned} & \hline-0.5987 \\ & (0.0089) \end{aligned}$	$\begin{gathered} \hline-0.6431 \\ (0.0097) \end{gathered}$	$\begin{gathered} -0.6200 \\ (0.0088) \end{gathered}$	$\begin{gathered} \hline-0.6928 \\ (0.0256) \end{gathered}$	$\begin{aligned} & -0.7419 \\ & (0.0262) \end{aligned}$	-0.7458 (0.0259) 6.2127 (0.6554) 1
			$\begin{gathered} 6.5040 \\ (0.2481) \end{gathered}$			
ObservationsR2	$\begin{gathered} 879,223 \\ 0.556 \end{gathered}$	$\begin{gathered} 872,598 \\ 0.644 \end{gathered}$	879,223	$\begin{gathered} 163,698 \\ 0.630 \end{gathered}$	$\begin{gathered} 162,859 \\ 0.711 \end{gathered}$	$\begin{gathered} 163,698 \\ 0.632 \end{gathered}$
			0.561			
	More than 100 Employees			More than 1000 Employees		
	No FE	Industry FE	Firm FE	No FE	Industry FE	Firm FE
Trend Log Employment	$\begin{gathered} -0.7380 \\ (0.0384) \end{gathered}$	$\begin{aligned} & -0.7764 \\ & (0.0387) \end{aligned}$	$\begin{gathered} -0.7762 \\ (0.0389) \end{gathered}$	$\begin{aligned} & -0.9368 \\ & (0.1551) \end{aligned}$	$\begin{gathered} -1.0228 \\ (0.1610) \end{gathered}$	$\begin{gathered} \hline-0.9738 \\ (0.1510) \\ 8.6591 \\ (3.7272) \end{gathered}$
			$\begin{gathered} 5.6164 \\ (0.9855) \end{gathered}$			
Observations	94,072	93,670	94,072	9,309	9,286	9,309
R2	0.652	0.725	0.654	0.785	0.829	0.787

Note: Each estimate is the result of OLS estimation of markups from non-rolling estimates on time trends, for four samples: all firms, firms with more than 50 employees, 100 employees, and 1000 employees. The balanced panel corresponds to firms present in the data from 1984 to 2016 (these firms account of 20 to 25% of total value-added). Markups are computed using non-rolling estimation of a translog production function. All regressions include a set of firm-level fixed effect. Columns "Firm x Size FE" also include a set of size category fixed effect. Standard errors are clustered at the firm level. Results are expressed in percentage points.

Market Power and Labor Share
Arthur Bauer and Jocelyn Boussard
Annexes en ligne / Online appendices

Online Appendix C4 - Estimation wih proxy variable method (Ackerberg et al., 2015)

Figure C4-I shows how relying on the proxy-variable method of Ackerberg et al. (2015) (ACF) would have changed our results. The level of the estimated markups differ, because DP estimates of the output elasticity of labor are on average lower than the ACF estimates. Second, in non-rolling estimation, the unweighted markup is not always larger than the weighted markup, suggesting that the increasing relationship between size and markups is not verified. Third, the trend of the average ACF estimated aggregate markup, is significantly different from the average DP estimated aggregate markup. For instance, with rolling estimations, average markup remained however broadly stable around 1.6 according to the ACF estimates.

Figure C4-I - Aggregate Markup - Proxy Variable Method (Ackerberg et al., 2015)

$$
\begin{array}{ll}
\text { (a) ACF - Non Rolling } & \text { (b) ACF - Rolling }
\end{array}
$$

Note: This figures reports the levels of the weighted and unweighted mean markup based on non-rolling and rolling estimation of a translog value-added production function following the ACF procedure.

Market Power and Labor Share
Arthur Bauer and Jocelyn Boussard
Annexes en ligne / Online appendices

Online Appendix C5 - Results in manufacturing and non manufacturing industries

This appendix reproduces the analysis conducted in the main text on firms operating in manufacturing and non manufacturing industries separately, and shows that our results (mainly the rise in concentration, the labor share reallocation, and the firm-level decrease in markup and increase in labor share) are not driven by either one broad sector but that they in fact hold in both.

Figure C5-I shows that the average rise in concentration is observed across broad sectors of the economy: the magnitude of the increase is similar in both the manufacturing (3 to 7 percentage points from the lowest point to 2016, depending on the index) and non-manufacturing sector (4 to 10 percentage points).

Figure C5-I - Cumulative Change in Concentration in Manufacturing and non Manufacturing Industries

Note: This figure reports the cumulative change of concentration in sales across each 3-digit industry. Sample is firms in the market sectors, excluding agriculture, finance and real estate. Industry changes in concentration are weighted by the share of each industry in total sales the previous year.

Figure C5-II shows that the market shares gains by low labor share firms and the upward shift of the raw distribution of labor shared are observed across broad sectors of the economy, in manufacturing as well as non-manufacturing industries. Figure C5-III shows the 1984-2016 cumulative results of the decomposition described in Appendix B for manufacturing and non-manufacturing industries separately.

Figure C5-II - Distributions of Labor Shares and Value Added in Manufacturing and non Manufacturing Industries
$\begin{array}{ll}\text { (a) Manufacturing Industries } & \text { (b) Non Manufacturing Industries }\end{array}$

-. 1984-1989, Labor Share 2011-2016, Labor Share
\square 1984-1989, Share of VA \square 2011-2016, Share of VA

Note: The connected lines (right axis) reflect the raw cross-firm distribution of labor shares. The vertical bars (left axis) reflect the share of industry value added of firms in each unweighted decide of labor share. These distributions are averaged across 3-digit industries using value added weights in a given year, and then average across 5 year periods.

In both macro sectors, as in the whole economy, the reallocation across industries had a negligible impact, the reallocation of value-added contributed negatively to the aggregate labor share and the labor

Market Power and Labor Share
Arthur Bauer and Jocelyn Boussard
Annexes en ligne / Online appendices

Figure C5-III - Decomposition of the Cumulative Change in Aggregate Labor Share in Manufacturing and non Manufacturing Industries

Note: This figures reports the results of decomposition of the aggregate labor share described in Appendix B. Quantiles of labor share are calculated each year within 3-digit industries.

Table C5-1 - Correlations Between Variations in Industry-Level Concentration and Labor Shares in Manufacturing and non Manufacturing Industries

Manufacturing	Industry Labor Share		Across Labor Share Quantiles		WithinLow Labor Share Quantiles	
Top 1\% Share	$\begin{aligned} & \hline-0.0694 \\ & (0.0188) \end{aligned}$		$\begin{gathered} \hline-0.0793 \\ (0.0156) \end{gathered}$		$\begin{gathered} 0.0387 \\ (0.0139) \end{gathered}$	
Top 5\% Share		$\begin{gathered} -0.1178 \\ (0.0254) \end{gathered}$		$\begin{aligned} & -0.1355 \\ & (0.0214) \end{aligned}$		$\begin{gathered} 0.0663 \\ (0.0190) \end{gathered}$
Observations	2,131	2,143	2,135	2,143	2,130	2,142
R2	0.0805	0.0828	0.0553	0.0641	0.0622	0.0647
4 Largest Share	$\begin{aligned} & -0.0955 \\ & (0.0232) \end{aligned}$		$\begin{gathered} -0.0852 \\ (0.0196) \end{gathered}$		$\begin{gathered} 0.0424 \\ (0.0177) \end{gathered}$	
20 Largest Share		$\begin{gathered} -0.1764 \\ (0.0285) \\ \hline \end{gathered}$		$\begin{array}{r} -0.1796 \\ (0.0239) \\ \hline \end{array}$		$\begin{gathered} 0.0008 \\ (0.0215) \\ \hline \end{gathered}$
Observations	2,121	2,147	2,122	2,148	2,119	2,144
R2	0.0816	0.0879	0.0580	0.0705	0.0618	0.0588
Non-Manufacturing	Industry Labor Share		Across Labor Share Quantiles		Within Low Labor Share Quantiles	
Top 1\% Share	$\begin{gathered} \hline-0.0943 \\ (0.0171) \end{gathered}$		$\begin{gathered} \hline-0.0458 \\ (0.0161) \end{gathered}$		$\begin{gathered} \hline-0.0014 \\ (0.0139) \end{gathered}$	
Top 5\% Share		$\begin{gathered} -0.1054 \\ (0.0238) \end{gathered}$		$\begin{aligned} & -0.1448 \\ & (0.0223) \end{aligned}$		$\begin{gathered} -0.0310 \\ (0.0189) \end{gathered}$
Observations	2,202	2,201	2,202	2,196	2,192	2,190
R2	0.0234	0.0192	0.0298	0.0419	0.0354	0.0422
4 Largest Share	$\begin{aligned} & \hline-0.0601 \\ & (0.0194) \end{aligned}$		$\begin{gathered} \hline-0.0629 \\ (0.0181) \end{gathered}$		$\begin{gathered} 0.0690 \\ (0.0156) \end{gathered}$	
20 Largest Share		$\begin{gathered} -0.1102 \\ (0.0208) \end{gathered}$		$\begin{array}{r} -0.1196 \\ (0.0198) \\ \hline \end{array}$		$\begin{gathered} 0.0597 \\ (0.0171) \\ \hline \end{gathered}$
Observations	2,172	2,145	2,176	2,150	2,163	2,137
R2	0.0146	0.0272	0.0355	0.0454	0.0448	0.0455

Note: Each estimate is the result of OLS estimation at the 3-digit industry with year fixed-effects. The dependent variable in columns "Industry Labor Share" is the long-term change of the industry aggregate labor share, defined as the ratio of the sum of firm level compensation and taxes paid on labor over the sum of firm level value added in that industry. The dependant variable in columns "Across Labor Share Quantiles" and "Within Low Labor Share Quantiles" are the corresponding contributions to the industry aggregate labor share according to the decomposition described in Appendix B. The independent variables are the changes of the share of sales of the top 1%, top 5%, largest 4 and largest 20 firms.
share distribution shifted upwards and contributed positively to the aggregate labor share. In manufacturing, the aggregate labor share decreased because the upward shift in the labor share distribution did not offset the reallocation. Interestingly, the aggregate labor share decreased in both manufacturing and

Market Power and Labor Share
Arthur Bauer and Jocelyn Boussard

Annexes en ligne / Online appendices
non-manufacturing but it does not on aggregate. This is because while reallocation across industries within each macro sectors contributed negatively to each macro sectors aggregate labor share, reallocation from manufacturing to non-manufacturing industries contributed positively to the total aggregate labor share.

Table C5-1 replicates the results from Table 2 in the main text to manufacturing and non-manufacturing industries separately. This first two columns show that the negative correlation observed between the rise in concentration and the decline in labor share is present in both manufacturing and non-manufacturing industries. The next two columns confirm that both with manufacturing and non-manufacturing sectors, concentration is correlated with a negative contribution of reallocation in both sectors. Finally, the last two column show that the correlation between variations of concentration and variations of the labor share of low-labor-share firms is positive in manufacturing, indicating that the 'superstar' firms in manufacturing today have not only higher market shares but also higher labor shares. Results for nonmanufacturing are mixed and vary with the concentration index, but we do not find a negative correlation that is significant at the 5% level.

Table C5-2 - Average Output Elasticities, Non Rolling Estimation

	θ_{l}	θ_{k}	N		θ_{l}	θ_{k}	N
Mining	0.607	0.297	45,698	Gas and electricity	0.677	0.231	22,243
	(0.048)	(0.081)			(0.193)	(0.169)	
Food products	0.759	0.130	1,277,913	Water supply and waste	0.652	0.183	118,249
	(0.053)	(0.100)			(0.141)	(0.125)	
Textiles	0.588	0.111	282,598	Construction	0.649	0.057	4,969,117
	(0.136)	(0.048)			(0.145)	(0.082)	
Wood, paper and printing	0.813	0.041	552,510	Wholesale and retail trade	0.758	0.086	8,502,337
	(0.118)	(0.105)			(0.171)	(0.138)	
Coke and refined petroleum	0.736	0.323	2,472	Transportation	0.830	0.049	988,348
	(0.250)	(0.074)			(0.151)	(0.145)	
Chemicals	0.819	0.156	62,567	Accomodation and food services	0.601	0.184	3,076,031
	(0.059)	(0.073)			(0.151)	(0.128)	
Pharmaceuticals	0.901	0.050	11,657	Publishing and motion pictures	1.033	0.010	309,540
	(0.344)	(0.295)			(0.237)	(0.214)	
Rubber and plastic products	0.774	0.119	245,896	Telecommunications	1.089	-0.055	25,191
	(0.150)	(0.164)			(0.187)	(0.213)	
Basic Metals	0.729	0.108	545,742	ICT	0.938	-0.016	324,622
	(0.131)	(0.094)			(0.128)	(0.135)	
Computers and electronics	0.764	0.104	110,072	Legal, accounting and engineering	0.859	-0.025	1,499,590
	(0.071)	(0.023)			(0.150)	(0.144)	
Electrical equipments	0.750	0.135	50,476	Scientific research	0.935	0.055	30,461
	(0.026)	(0.048)			(0.242)	(0.211)	
Machinery and equipments	0.839	0.073	161,603	Advertising and market research	0.998	-0.103	406,636
	(0.071)	(0.046)			(0.091)	(0.092)	
Transport equipments	0.836	0.115	71,000	Administrative and support	0.746	0.044	1,401,753
	(0.159)	(0.139)			(0.120)	(0.157)	
Other manufacturing products	0.797	0.008	650,254	Total	0.736	0.078	25,744,576
	(0.089)	(0.073)			(0.175)	(0.137)	

Note: This table reports the output elasticities from non rolling estimation of the translog production function. Columns θ_{l} and θ_{k} report the average estimated output elasticity with respect to each factor of production for the translog production function for all firms. Column N report the number of observations in each sector. Standard deviations (not standard errors) of the output elasticities are reported in brackets.

Tables C5-2, C5-3, and C5-4 provide respectively the average output elasticities from non rolling estimation, median output elasticities from non rolling estimation, and median output elasticities from rolling estimation.

Figure C5-IV present the levels of the unweighted and weighted average markups for all firms and for firms in the manufacturing and non-manufacturing sectors separately, using rolling and non rolling estimation. The top right panel is the same as Figure VI in the main text. Patterns are qualitatively similar Economie et Statistique / Economics and Statistics, 520-521, 2020

Market Power and Labor Share
Arthur Bauer and Jocelyn Boussard
Annexes en ligne / Online appendices

Table C5-3 - Median Output Elasticities, Non-Rolling Estimation

	θ_{l}	θ_{k}	N		θ_{l}	θ_{k}	N
Mining	0.606	0.308	45,698	Gas and electricity	0.648	0.276	22,243
	(0.048)	(0.081)			(0.193)	(0.169)	
Food products	0.754	0.138	1,277,913	Water supply and waste	0.665	0.182	118,249
	(0.053)	(0.100)			(0.141)	(0.125)	
Textiles	0.569	0.110	282,598	Construction	0.643	0.063	4,969,117
	(0.136)	(0.048)			(0.145)	(0.082)	
Wood, paper and printing	0.813	0.048	552,510	Wholesale and retail trade	0.752	0.098	8,502,337
	(0.118)	(0.105)			(0.171)	(0.138)	
Coke and refined petroleum	0.720	0.341	2,472	Transportation	0.822	0.063	988,348
	(0.250)	(0.074)			(0.151)	(0.145)	
Chemicals	0.821	0.156	62,567	Accomodation and food services	0.590	0.197	3,076,031
	(0.059)	(0.073)			(0.151)	(0.128)	
Pharmaceuticals	1.013	0.067	11,657	Publishing and motion pictures	1.118	-0.005	309,540
	(0.344)	(0.295)			(0.237)	(0.214)	
Rubber and plastic products	0.772	0.127	245,896	Telecommunications	1.160	-0.083	25,191
	(0.150)	(0.164)			(0.187)	(0.213)	
Basic Metals	0.734	0.115	545,742	ICT	0.937	-0.015	324,622
	(0.131)	(0.094)			(0.128)	(0.135)	
Computers and electronics	0.757	0.104	110,072	Legal, accounting and engineering	0.857	-0.017	1,499,590
	(0.071)	(0.023)			(0.150)	(0.144)	
Electrical equipments	0.749	0.130	50,476	Scientific research	0.956	0.067	30,461
	(0.026)	(0.048)			(0.242)	(0.211)	
Machinery and equipments	0.842	0.076	161,603	Advertising and market research	1.006	-0.109	406,636
	(0.071)	(0.046)			(0.091)	(0.092)	
Transport equipments	0.840	0.122	71,000	Administrative and support	0.737	0.052	1,401,753
	(0.159)	(0.139)			(0.120)	(0.157)	
Other manufacturing products	0.795	0.015	650,254	Total	0.734	0.086	25,744,576
	(0.089)	(0.073)			(0.175)	(0.137)	

Note: This table reports the output elasticities from non rolling estimation of the translog production function. Columns θ_{l} and θ_{k} report the median estimated output elasticity with respect to each factor of production for the translog production function for all firms. Column N report the number of observations in each sector. Standard deviations (not standard errors) of the output elasticities are reported in brackets.
in both sectors to what they are in the overall economy. We find a decrease in unweighted markups for both non-rolling and rolling estimations both in manufacturing and non-manufacturing sectors, that broadly matches the one observed in the whole economy. Similarly, the variations of the weighted average markup estimates observed in both manufacturing and non-manufacturing, and according to both sets of estimates, quantitatively matches the one observed in the whole economy. These aggregate patterns are therefore neither specific to one sector nor driven by a reallocation from manufacturing to non-manufacturing. Interestingly, our results show that, regardless of the pre-crisis trend, the weighted average markup of manufacturing firms sharply dropped after 2008 , and only recovered its pre-crisis level at the end of the period.

The top two panels of Figure C5-VI show that the increasing relationship between markup and firm size holds both in manufacturing and non-manufacturing sectors separately, although for larger manufacturing firms the relationship flattens out. The other four panels of Figure C5-VI show that the decreasing relationship between firm size and intensity of labor and the increasing relationship between firm size and returns to scale are present both in the manufacturing and non-manufacturing sectors.

Figure C5-V shows that the reallocation from low to high markup firms holds both in manufacturing and non-manufacturing separately. Comparing rolling and non-rolling window estimations shows why accounting for variations over time of the production function parameters matter. Even though both estimations yield qualitatively similar contributions of the within and across terms, the within term dominates with rolling estimations and the cross term dominates with non-rolling estimations. This quantitative differences translate into qualitative difference in the aggregate trends of markups estimated

Economie et Statistique / Economics and Statistics, 520-521, 2020

Market Power and Labor Share
Arthur Bauer and Jocelyn Boussard
Annexes en ligne / Online appendices

Figure C5-IV - Aggregate Markup in Manufacturing and non Manufacturing Industries

Note: This figures reports the levels of the weighted and unweighted mean markup based on non-rolling and rolling estimation of a translog value-added production function.
with both estimations.

Table C5-5 replicates Table 4 in the main text with non-rolling estimates. The relationships observed between industry-level concentration and markups are similar for markups estimated with rolling window estimation and for markups estimated with non-rolling estimation.

Tables C5-6 and C5-7 show that this is also the case both in the manufacturing and the non-manufacturing sectors. The last two columns of these two tables show that the relationship between concentration and high markups is not significantly postive in manufacturing, and is significantly positive in non manufacturing only when concentration is proxied with top shares.

Market Power and Labor Share
Arthur Bauer and Jocelyn Boussard Annexes en ligne / Online appendices

Table C5-4 - Median Output Elasticities, Rolling Estimation

	θ_{l}	θ_{k}	N		θ_{l}	θ_{k}	N
Mining	0.612	0.334	45,698	Gas and electricity	0.688	0.265	22,243
	(0.199)	(0.162)			(0.190)	(0.174)	
Food products	0.750	0.134	1,277,913	Water supply and waste	0.639	0.211	118,249
	(0.052)	(0.104)			(0.178)	(0.146)	
Textiles	0.540	0.118	282,598	Construction	0.605	0.084	4,969,117
	(0.221)	(0.157)			(0.175)	(0.087)	
Wood, paper and printing	0.803	0.050	552,510	Wholesale and retail trade	0.762	0.105	8,502,337
	(0.110)	(0.104)			(0.175)	(0.145)	
Coke and refined petroleum	0.258	0.433	2,472	Transportation	0.835	0.060	988,348
	(0.391)	(0.258)			(0.156)	(0.148)	
Chemicals	0.808	0.179	62,567	Accomodation and food services	0.585	0.192	3,076,031
	(0.143)	(0.122)			(0.174)	(0.133)	
Pharmaceuticals	0.981	0.106	11,657	Publishing and motion pictures	1.163	-0.023	309,540
	(0.359)	(0.286)			(0.245)	(0.215)	
Rubber and plastic products	0.759	0.136	245,896	Telecommunications	1.111	-0.056	25,191
	(0.159)	(0.176)			(0.242)	(0.217)	
Basic Metals	0.726	0.117	545,742	ICT	0.921	0.008	324,622
	(0.128)	(0.095)			(0.140)	(0.140)	
Computers and electronics	0.756	0.091	110,072	Legal, accounting and engineering	0.843	-0.012	1,499,590
	(0.084)	(0.068)			(0.164)	(0.150)	
Electrical equipments	0.774	0.142	50,476	Scientific research	0.881	0.017	30,461
	(0.136)	(0.101)			(0.259)	(0.230)	
Machinery and equipments	0.823	0.093	161,603	Advertising and market research	0.887	-0.056	406,636
	(0.137)	(0.069)			(0.269)	(0.140)	
Transport equipments	0.837	0.131	71,000	Administrative and support	0.753	0.047	1,401,753
	(0.180)	(0.156)			(0.126)	(0.165)	
Other manufacturing products	$\begin{gathered} 0.748 \\ (0129) \end{gathered}$	0.051	650,254	Total	$\left\|\begin{array}{c} 0.733 \\ 0.193) \end{array}\right\|$	0.096	25,744,576
	(0.129)	(0.080)			(0.193)	(0.143)	

Note: This table reports the output elasticities from rolling estimation of the production function. Columns θ_{l} and θ_{k} report the median estimated output elasticity with respect to each factor of production for the translog production function for all firms. Column N report the number of observations in each sector.Standard deviations (not standard errors) of the output elasticities are reported in brackets.

Figure C5-V - Decomposition of Aggregate Markup in Manufacturing and non Manufacturing Industries

Note: This figures reports the results of decomposition of the aggregate markup described in Appendix B. Quantiles of markup are calculated each year within 3-digit industries.

Market Power and Labor Share

Arthur Bauer and Jocelyn Boussard
Annexes en ligne / Online appendices

Figure C5-VI - Correlations of Markups, Labor Intensities, and Returns to Scale with Size, in Manufacturing and non Manufacturing Industries
(a) Markup, Non Rolling

(c) Labor Intensity, Non Rolling

(e) Returns to Scale, Non Rolling

(b) Markup, Rolling

(d) Labor Intensity, Rolling

(f) Returns to Scale, Rolling

Note: This figure reports the conditional average markup, labor intensity and returns to scale by firm size, with 99% confidence interval. Averages are conditional on a set of flexible fixed effects constructed from the interaction of 3-digit industry codes and year.

Market Power and Labor Share

Arthur Bauer and Jocelyn Boussard
Annexes en ligne / Online appendices

Table C5-5 - Correlations Between Variations in Industry-Level Concentration and Markup

Non-Rolling	Industry Markup		Across Markup Quantiles		WithinHigh MarkupQuantiles	
Top 1\% Share	$\begin{gathered} 0.1754 \\ (0.0157) \end{gathered}$		$\begin{gathered} 0.1205 \\ (0.0140) \end{gathered}$		$\begin{gathered} \hline 0.0143 \\ (0.0112) \end{gathered}$	
Top 5\% Share		$\begin{gathered} 0.2416 \\ (0.0216) \end{gathered}$		$\begin{gathered} 0.2207 \\ (0.0190) \end{gathered}$		$\begin{gathered} 0.0219 \\ (0.0153) \end{gathered}$
Observations	4,664	4,664	4,670	4,668	4,665	4,669
R2	0.0607	0.0609	0.0269	0.0389	0.0346	0.0355
4 Largest Share	$\begin{gathered} 0.1855 \\ (0.0190) \end{gathered}$		$\begin{gathered} 0.1653 \\ (0.0170) \end{gathered}$		$\begin{aligned} & -0.0952 \\ & (0.0135) \end{aligned}$	
20 Largest Share		$\begin{gathered} 0.2008 \\ (0.0220) \end{gathered}$		$\begin{gathered} 0.2288 \\ (0.0193) \end{gathered}$		$\begin{aligned} & -0.0823 \\ & (0.0157) \end{aligned}$
Observations	4,649	4,649	4,650	4,650	4,655	4,655
R2	0.0544	0.0532	0.0328	0.0417	0.0451	0.0413
Rolling	Industry Markup		Across Markup Quantiles		WithinHigh MarkupQuantiles	
Top 1\% Share	$\begin{gathered} 0.2640 \\ (0.0257) \end{gathered}$		$\begin{gathered} \hline 0.0790 \\ (0.0245) \end{gathered}$		$\begin{gathered} 0.0092 \\ (0.0145) \end{gathered}$	
Top 5\% Share		$\begin{gathered} 0.3577 \\ (0.0353) \end{gathered}$		$\begin{gathered} 0.1460 \\ (0.0337) \end{gathered}$		$\begin{gathered} 0.0400 \\ (0.0199) \end{gathered}$
Observations	4,660	4,660	4,654	4,654	4,663	4,663
R2	0.0569	0.0586	0.0120	0.0140	0.0168	0.0177
4 Largest Share	$\begin{gathered} 0.2098 \\ (0.0321) \end{gathered}$		$\begin{gathered} \hline 0.0995 \\ (0.0298) \end{gathered}$		$\begin{gathered} \hline-0.0536 \\ (0.0175) \end{gathered}$	
20 Largest Share		$\begin{gathered} 0.1702 \\ (0.0372) \end{gathered}$		$\begin{gathered} 0.1101 \\ (0.0346) \end{gathered}$		$\begin{gathered} -0.0242 \\ (0.0202) \end{gathered}$
Observations	4,647	4,646	4,644	4,644	4,650	4,650
R2	0.0482	0.0447	0.0108	0.0112	0.0172	0.0173

Note: Each estimate is the result of OLS estimation at the 3-digit industry with year fixed-effects. The dependent variable in columns "Industry Markup" is the long-term change of the industry aggregate markup. The dependant variable in columns "Across Markup Quantiles" and "Within High Markup Quantiles" are the corresponding contributions to the industry aggregate markup according to the decomposition described in Appendix B. The independent variables are the changes of the share of sales of the top 1%, top 5%, largest 4 and largest 20 firms.

Market Power and Labor Share

Arthur Bauer and Jocelyn Boussard
Annexes en ligne / Online appendices

Table C5-6 - Correlations Between Variations in Industry-Level Concentration and Markup in Manufacturing and non Manufacturing Industries, Non Rolling

Manufacturing	Industry Markup		Across Markup Quantiles		WithinHigh MarkupQuantiles	
Top 1\% Share	$\begin{gathered} 0.1759 \\ (0.0242) \end{gathered}$		$\begin{gathered} 0.1480 \\ (0.0202) \end{gathered}$		$\begin{gathered} -0.0111 \\ (0.0174) \end{gathered}$	
Top 5\% Share		$\begin{gathered} 0.3109 \\ (0.0329) \end{gathered}$		$\begin{gathered} 0.2818 \\ (0.0274) \end{gathered}$		$\begin{aligned} & -0.0177 \\ & (0.0237) \end{aligned}$
Observations	2,122	2,131	2,129	2,138	2,125	2,136
R2	0.0893	0.0985	0.0543	0.0768	0.0536	0.0573
4 Largest Share	$\begin{gathered} 0.2511 \\ (0.0303) \end{gathered}$		$\begin{gathered} 0.2081 \\ (0.0258) \end{gathered}$		$\begin{gathered} -0.0788 \\ (0.0219) \end{gathered}$	
20 Largest Share		$\begin{gathered} 0.3305 \\ (0.0371) \\ \hline \end{gathered}$		$\begin{gathered} 0.3267 \\ (0.0314) \end{gathered}$		$\begin{aligned} & -0.0433 \\ & (0.0268) \\ & \hline \end{aligned}$
Observations	2,112	2,138	2,118	2,144	2,113	2,139
R2	0.0918	0.0944	0.0628	0.0787	0.0580	0.0546
Non-Manufacturing	Industry Markup		Across Markup Quantiles		WithinHigh MarkupQuantiles	
Top 1\% Share	$\begin{gathered} 0.2438 \\ (0.0207) \end{gathered}$		$\begin{gathered} 0.1465 \\ (0.0201) \end{gathered}$		$\begin{gathered} 0.0534 \\ (0.0152) \end{gathered}$	
Top 5\% Share		$\begin{gathered} 0.2679 \\ (0.0294) \end{gathered}$		$\begin{gathered} 0.2296 \\ (0.0281) \end{gathered}$		$\begin{gathered} 0.0782 \\ (0.0210) \end{gathered}$
Observations	2,218	2,213	2,211	2,205	2,215	2,212
R2	0.0809	0.0628	0.0311	0.0367	0.0490	0.0499
4 Largest Share	$\begin{gathered} 0.1671 \\ (0.0241) \end{gathered}$		$\begin{gathered} 0.1565 \\ (0.0230) \end{gathered}$		$\begin{aligned} & -0.0541 \\ & (0.0175) \end{aligned}$	
20 Largest Share		$\begin{gathered} 0.1891 \\ (0.0267) \end{gathered}$		$\begin{gathered} 0.2202 \\ (0.0251) \end{gathered}$		$\begin{aligned} & -0.0643 \\ & (0.0194) \end{aligned}$
Observations	2,191	2,165	2,185	2,159	2,191	2,165
R2	0.0443	0.0482	0.0286	0.0424	0.0495	0.0507

Note: Each estimate is the result of OLS estimation at the 3-digit industry with year fixed-effects. The dependent variable in columns "Industry Markup" is the long-term change of the industry aggregate markup. The dependant variable in columns "Across Markup Quantiles" and "Within High Markup Quantiles" are the corresponding contributions to the industry aggregate markup according to the decomposition described in Appendix B. The independent variables are the changes of the share of sales of the top 1%, top 5%, largest 4 and largest 20 firms.

Market Power and Labor Share

Arthur Bauer and Jocelyn Boussard
Annexes en ligne / Online appendices

Table C5-7 - Correlations Between Variations in Industry-Level Concentration and Markup in Manufacturing and non Manufacturing Industries, Rolling

Manufacturing	Industry Markup		Across Markup Quantiles		Within High Markup Quantiles	
Top 1\% Share	$\begin{gathered} 0.2142 \\ (0.0340) \end{gathered}$		$\begin{gathered} 0.1339 \\ (0.0299) \end{gathered}$		$\begin{aligned} & \hline-0.0136 \\ & (0.0217) \end{aligned}$	
Top 5\% Share		$\begin{gathered} 0.3852 \\ (0.0471) \\ \hline \end{gathered}$		$\begin{gathered} 0.2882 \\ (0.0417) \\ \hline \end{gathered}$		$\begin{gathered} 0.0279 \\ (0.0297) \\ \hline \end{gathered}$
Observations	2,135	2,146	2,135	2,145	2,131	2,142
R2	0.0959	0.1068	0.0697	0.0755	0.0704	0.0675
4 Largest Share	$\begin{gathered} 0.2977 \\ (0.0435) \end{gathered}$		$\begin{gathered} 0.1667 \\ (0.0390) \end{gathered}$		$\begin{gathered} -0.0237 \\ (0.0274) \end{gathered}$	
20 Largest Share		$\begin{gathered} 0.4232 \\ (0.0531) \\ \hline \end{gathered}$		$\begin{gathered} 0.2449 \\ (0.0476) \end{gathered}$		$\begin{gathered} 0.0518 \\ (0.0334) \\ \hline \end{gathered}$
Observations	2,126	2,152	2,126	2,152	2,117	2,143
R2	0.1004	0.1067	0.0636	0.0672	0.0632	0.0665
Non-Manufacturing	Industry Markup		Across Markup Quantiles		Within High Markup Quantiles	
	$\begin{gathered} 0.3458 \\ (0.0403) \end{gathered}$		$\begin{gathered} 0.0906 \\ (0.0381) \end{gathered}$		$\begin{gathered} 0.0804 \\ (0.0192) \end{gathered}$	
Top 5\% Share		$\begin{gathered} 0.3685 \\ (0.0570) \end{gathered}$		$\begin{gathered} 0.0591 \\ (0.0535) \end{gathered}$		$\begin{gathered} 0.0729 \\ (0.0270) \end{gathered}$
Observations	2,199	2,194	2,183	2,178	2,198	2,193
R2	0.0515	0.0393	0.0406	0.0370	0.0267	0.0216
4 Largest Share	$\begin{gathered} 0.1344 \\ (0.0475) \end{gathered}$		$\begin{gathered} 0.1047 \\ (0.0432) \end{gathered}$		$\begin{aligned} & -0.0756 \\ & (0.0223) \end{aligned}$	
20 Largest Share		$\begin{gathered} 0.0327 \\ (0.0533) \end{gathered}$		$\begin{gathered} 0.0968 \\ (0.0484) \end{gathered}$		$\begin{aligned} & -0.1055 \\ & (0.0248) \\ & \hline \end{aligned}$
Observations	2,174	2,147	2,156	2,130	2,175	2,149
R2	0.0248	0.0222	0.0422	0.0411	0.0259	0.0278

Note: Each estimate is the result of OLS estimation at the 3-digit industry with year fixed-effects. The dependent variable in columns "Industry Markup" is the long-term change of the industry aggregate markup. The dependant variable in columns "Across Markup Quantiles" and "Within High Markup Quantiles" are the corresponding contributions to the industry aggregate markup according to the decomposition described in Appendix B. The independent variables are the changes of the share of sales of the top 1%, top 5%, largest 4 and largest 20 firms.

Market Power and Labor Share
Arthur Bauer and Jocelyn Boussard

Annexes en ligne / Online appendices

Tables C5-8, C5-9, and C5-10 report the results of regressions of labor shares on markup, similar to those reported in Table 5 in the main text, but with non rolling markups, and/or for firms in manufacturing or non-manufacturing industries separately. In all cases, we find a negative correlation.

Table C5-8 - Correlation between Labor Share and Markup, Non Rolling

	No Size Threshold			More than 50 Employees		
	No FE	Industry FE	Firm FE	No FE	Industry FE	Firm FE
Markup	-0.3487	-0.3713	-0.3575	-0.4202	-0.4460	-0.4989
	(0.0037)	(0.0024)	(0.0027)	$(0.0039$	(0.0034)	(0.0043)
Observations	$25,554,561$	$25,554,533$	$25,092,587$	808,003	807,805	789,488
R2	0.449	0.518	0.772	0.519	0.602	0.816
More than 100 Employees	More than 1000 Employees					
	No FE	Industry FE	Firm FE	No FE	Industry FE	Firm FE
	-0.3991	-0.4268	-0.4754	-0.3320	-0.3633	-0.4129
	(0.0033)	(0.0039)	(0.0051)	(0.0079)	(0.0077)	(0.0106)
Observations	398,301	398,018	390,768	26,684	25,305	24,839
R2	0.513	0.614	0.825	0.502	0.721	0.900

Note: Each estimate is the result of OLS estimation of firm level labor share on markups, for four samples: all firms, firms with more than 50 employees, 100 employees, and 1000 employees. All columns include year fixed effects. Columns "No FE" include no industry nor firm fixed effect. Columns "Industry FE" include 3-digit industry-level fixed effects. Columns "Firm FE" include firm-level fixed effects. Standard errors are clustered at the 3-digit x year industry level.

Table C5-9 - Correlation between Labor Share and Markup in Manufacturing and non Manufacturing Industries, Non Rolling

No Size Threshold	Manufacturing			Non-Manufacturing		
	No FE	Industry FE	Firm FE	No FE	Industry FE	Firm FE
Markup	-0.3766	-0.3768	-0.3614	-0.3435	-0.3703	-0.3567
	(0.0099)	(0.0066)	(0.0087)	(0.0031)	(0.0025)	(0.0028)
Observations	4,189,494	4,189,478	4,133,837	21,365,067	21,365,055	20,958,750
R2	0.568	0.590	0.774	0.429	0.506	0.772
More than 50 Employees	Manufacturing			Non-Manufacturing		
	No FE	Industry FE	Firm FE	No FE	Industry FE	Firm FE
Markup	-0.4789	-0.5017	-0.5483	-0.4019	-0.4180	-0.4678
	(0.0045)	(0.0051)	(0.0060)	(0.0041)	(0.0039)	(0.0054)
Observations	296,014	295,922	291,562	511,989	511,883	497,926
R2	0.566	0.640	0.806	0.523	0.578	0.822
More than 100 Employees	Manufacturing			Non-Manufacturing		
	No FE	Industry FE	Firm FE	No FE	Industry FE	Firm FE
Markup	-0.4490	-0.4765	-0.5204	-0.3823	-0.3988	-0.4420
	(0.0040)	(0.0058)	(0.0071)	(0.0037)	(0.0047)	(0.0066)
Observations	157,602	157,514	155,793	240,699	240,504	234,975
R2	0.551	0.644	0.809	0.527	0.587	0.833
More than 1000 Employees	Manufacturing			Non-Manufacturing		
	No FE	Industry FE	Firm FE	No FE	Industry FE	Firm FE
Markup	-0.3782	-0.4376	-0.4396	-0.3241 (0.0122)	-0.3387 $\begin{aligned} & -0.538 / \\ & (0.0084) \end{aligned}$	-0.3949
Observations	10,154	9,347	9,238	16,530	15,958	15,601
R2	0.504	0.739	0.871	0.556	0.706	0.911

Note: Each estimate is the result of OLS estimation of firm level labor share on markups, for four samples: all firms, firms with more than 50 employees, 100 employees, and 1000 employees; and two panels: manufacturing and non manufacturing firms. All columns include year fixed effects. Columns "No FE" include no industry nor firm fixed effect. Columns "Industry FE" include 3-digit industry-level fixed effects. Columns "Firm FE" include firm-level fixed effects. Standard errors are clustered at the 3-digit x year industry level.

The left panel of Figure C5-VII presents the results of the decomposition for the representative firm. The total variation of the aggregate labor share from 1984 to 2016 is small and positive, and ignoring the role of reallocation, aggregate markups have contributed positively to the aggregate labor share according to the non-rolling estimates. This is consistent with evidence above that the conclusions in terms of the variations of the aggregate markup are not the same in both sets of estimates. The contribution Economie et Statistique / Economics and Statistics, 520-521, 2020

Market Power and Labor Share
Arthur Bauer and Jocelyn Boussard
Annexes en ligne / Online appendices

Table C5-10 - Correlation between Labor Share and Markup in Manufacturing and non Manufacturing Industries, Rolling

No Size Threshold	Manufacturing			Non-Manufacturing		
	No FE	Industry FE	Firm FE	No FE	Industry FE	Firm FE
Markup	$\begin{gathered} -0.3625 \\ (0.0090) \end{gathered}$	$\begin{aligned} & -0.3719 \\ & (0.0061) \end{aligned}$	$\begin{gathered} -0.3566 \\ (0.0081) \end{gathered}$	$\begin{aligned} & \hline-0.3100 \\ & (0.0035) \end{aligned}$	$\begin{gathered} -0.3485 \\ (0.0024) \end{gathered}$	$\begin{gathered} -0.3338 \\ (0.0029) \end{gathered}$
Observations	4,189,494	4,189,478	4,133,837	21,365,067	21,365,055	20,958,750
R2	0.532	0.567	0.767	0.387	0.475	0.760
More than 50 Employees	Manufacturing			Non-Manufacturing		
	No FE	Industry FE	Firm FE	No FE	Industry FE	Firm FE
Markup	-0.4354 (0.0102)	$\begin{gathered} -0.4727 \\ (0.0061) \end{gathered}$	$\begin{gathered} -0.5062 \\ (0.0071) \end{gathered}$	$\begin{gathered} -0.4013 \\ (0.0038) \end{gathered}$	$\begin{gathered} -0.4153 \\ (0.00411 \end{gathered}$	$\begin{gathered} -0.4617 \\ (0.0054) \end{gathered}$
Observations	296,014	295,922	291,562	511,989	511,883	497,926
R2	0.506	0.600	0.783	0.511	0.567	0.817
More than 100 Employees	Manufacturing			Non-Manufacturing		
	No FE	Industry FE	Firm FE	No FE	Industry FE	Firm FE
Markup	$\begin{gathered} -0.4004 \\ (0.0074) \end{gathered}$	$\begin{gathered} -0.4463 \\ (0.0067) \end{gathered}$	-0.4754 (0.0083)	$\begin{gathered} -0.3818 \\ (0.0047) \end{gathered}$	$\begin{gathered} -0.3981 \\ (0.0050) \end{gathered}$	$\begin{gathered} -0.4390 \\ (0.0067) \end{gathered}$
Observations	157,602	157,514	155,793	240,699	240,504	234,975
R2	0.486	0.604	0.786	0.511	0.577	0.829
More than 1000 Employees	Manufacturing			Non-Manufacturing		
	No FE	Industry FE	Firm FE	No FE	Industry FE	Firm FE
Markup	-0.3053	-0.3912	-0.3805	-0.3439	-0.3624	-0.4000
	(0.0138)	(0.0188)	(0.0214)	(0.0065)	(0.0077)	(0.0141)
Observations	10,154	9,347	9,238	16,530	15,958	15,601
R2	0.409	0.691	0.852	0.543	0.707	0.909

Note: Each estimate is the result of OLS estimation of firm level labor share on markups, for four samples: all firms, firms with more than 50 employees, 100 employees, and 1000 employees; and two panels: manufacturing and non manufacturing firms. All columns include year fixed effects. Columns "No FE" include no industry nor firm fixed effect. Columns "Industry FE" include 3-digit industry-level fixed effects. Columns "Firm FE" include firm-level fixed effects. Standard errors are clustered at the 3-digit x year industry level.
of weighted average output elasticity of labor, is negative according to non-rolling estimates. Taking reallocation into account, results with non rolling estimates are similar to results with rolling estimates reporter in Figure VIII in the main text, namely that reallocation contributed negatively and markups positively.

Figures C5-VIII and C5-IX show that these results hold in both the manufacturing and non-manufacturing sectors, with the exception of rolling estimation in the manufacturing sector where markup seem to have contributed negatively to the manufacturing labor share, but the contribution is small.

Figure C5-VII - Contributions to the Evolution of the Aggregate Labor Share, Non Rolling
(a) Representative firm
(b) With Reallocation

Note: This figure reports the decomposition of the variation of the aggregate labor share from 1984 to 2016, including the reallocation term, based on translog non-rolling and rolling value-added estimation of the production function. See section 6 for detail.

Figure C5-VIII - Contributions to the Evolution of the Aggregate Labor Share, Representative Firm

Note: This figure reports the decomposition of the variation of the aggregate labor share of the representative firm from 1984 to 2016, based on translog non-rolling and rolling value-added estimation of the production function. See section 6 for detail.

Figure C5-IX - Contributions to the Evolution of the Aggregate Labor Share, With Reallocation
(a) Manufacturing, Non Rolling
(b) Manufacturing, Rolling

(c) Non Manufacturing, Non Rolling

(d) Non Manufacturing, Rolling

Note: This figure reports the decomposition of the variation of the aggregate labor share from 1984 to 2016, including the reallocation term, based on translog non-rolling and rolling value-added estimation of the production function. See section 6 for detail.

References

Ackerberg, D. A., Caves, K. \& Frazer, G. (2015). Identification Properties of Recent Production Function Estimators. Econometrica, 83(6), 2411-2451. http://dx.doi.org/10.3982/ECTA13408.

De Loecker, J. \& Warzynski, F. (2012). Markups and Firm-Level Export Status. American Economic Review, 102(6), 2437-2471. http://dx.doi.org/10.1257/aer.102.6.2437.

Dobbelaere, S. \& Kiyota, K. (2018). Labor market imperfections, markups and productivity in multinationals and exporters. Labour Economics, 53, 198-212. http://dx.doi.org/10.1016/j.labeco.2018.05.004.

Dobbelaere, S. \& Mairesse, J. (2013). Panel data estimates of the production function and product and labor market imperfections. Journal of Applied Econometrics, 28(1), 1-46. http://dx.doi.org/10.1002/jae. 1256.

Doraszelski, U. \& Jaumandreu, J. (2019). Using Cost Minimization to Estimate Markups. http://people. bu . edu/jordij/papers/robust_markups20190625.pdf.

