Household Debt, Growth and Inequality

Gaël Giraud

AFD, French Development Agency, CNRS & Energy and Prosperity Chair with Matheus GRASSELLI (Mc Master University, Fields Institute, Toronto)

INSEE, June 16 2017
First: growth, second: distribution. “Changes in debt are ‘pure redistributions’ which should have no significant macro-economic effects” (Bernanke, 2000, p. 24).

A perfectly flexible market determines a unique static equilibrium (Debreu (1970)).

This static equilibrium is always first-best efficient (Pareto).

No ordinal axiomatization of any concept of justice (the cardinality curse).

No room for justice?
However, a perfectly flexible market is efficient only if there are no externalities, increasing returns to scale, incomplete markets.

Incomplete markets are (almost) always second-best inefficient (Geanakoplos-Polemarchakis (1986)).

Incomplete markets exhibit a huge indeterminacy of equilibria (Mas-Colell (1984)).

Financial innovation does not necessarily improve the (third-best) efficiency of incomplete markets (Elul (1995)).
Moreover...

- With incomplete markets static equilibria may fail to exist in a robust manner... (Momi (2000)).

- There exist only 3 types of equilibria (Giraud - Pottier (2016)):
 - with inflation and growth
 - deflation without growth (Irving Fisher)
 - with speculative bubbles on financial markets

- A crisis like 2008 cannot occur at a static equilibrium (of only as a "black swan" (Taleb (2009), Giaud-Pottier (2009))).

- How do we know that South-African economy is already at equilibrium (if any)?
Moreover...(2)

- A Utilitarian solution need not coincide with the “market solution”.

- Refinements of the mere Pareto-optimality notion (e.g., nucleolus, Shapley value, Harsanyi value...) need not coincide with Arrow-Debreu equilibria.

- Justice makes sense and does not emerge spontaneously from market interactions. (SDG 10.)
Banchard (PIIE, 2016):
I see the current DSGE models as seriously flawed...

Romer (2016):
For more than three decades, macroeconomics has gone backwards...

Kocherlakota (2016):
...we simply do not have a settled successful theory of the macroeconomy. *The choices made 25-40 years ago - made then for a number of excellent reasons - should not be treated as written in stone or even in pen.*
Need for **change in our analytical framework.**

Articulation between ecological sustainability / inequality / prosperity.

Main takeaways

1) Need to incorporate the dynamics of private debts

2) An increase of income inequality is a signal for a decline in growth in the long-run.

3) $r > g$ is a necessary condition for the stability of a debt-deflationary long-run equilibrium with exploding inequalities.

An increase in K/Y reinforces its stability.
I. Critics of Piketty (2014)

- \(Y_n = (Y_n - W) + W \) (total income equals capital income plus labor income)
- \(r_k = \frac{(Y_n-W)}{pK} \) (rate of return on capital)
- \(\alpha_k = \frac{Y_n-W}{Y_n} \) (capital share of total income)
- \(\beta_k = \frac{pK}{Y_n} \) (capital-to-income ratio)
I. Critics of Piketty (2014)

- First "fundamental law of capitalism" $\alpha_k = r_k \beta_k$: trivial accounting equation.
- Second "law" is false: $\beta \to s/g$ (Stiglitz, Acemoglu, Varoufakis, Taylor, Giraud...)
- $r_k > g$ well-known, and so what? (Acemoglu, Mankiw, IMF...). Confusion between r and r_k.
- Cambridge controversy about capital (Varoufakis, Giraud, Taylor...)
- A model without money? Is money neutral? No endogenous creation of credit by banks?
II. Debts and credit

Figure 6. The exponential increase in debt to GDP ratios till 2006

Figure: Keen (2017)
Debts and credit

Figure: Keen (2017)
Debts and credit

Figure: Households vs firms. Keen (2017)
Debts and credit

Figure: Keen (2017)
Debts and credit

Figure: Keen (2017)
Debts and credit

Figure: China (Keen (2017))
Debts and credit

Figure: UK (Keen (2017))
III. An alternative approach

Suppose our economy is a ball...
Figure: Les trajectoires du scénario *Business-As-Usual*.
Figure: Trajectoires du scénario Burke et al. (2015).
Figure: Portrait de phase de la combinaison de Burke et al. et de Dietz-Stern case.

Mclsaac et al. (2016).
The basin of attraction of a "good" equilibrium without climate change (McIsaac et al. (2016)).
With climate change (McIsaac et al. (2016)).
Properties

- Stock-Flow consistency (Godley-Lavoie (2012)).
- Money is non-neutral and endogenous (Diamond-Dybvig, Tobin, Bank of England...)
- Collapses are possible
- Long-run dynamics out-of-equilibrium.
- Multiple equilibria.
- Key role of private debts.
In general, there are 3 types of long-run equilibria.

One equilibrium is not locally stable.

One stable equilibrium "à la Solow".
\[g = \alpha + \beta + \text{"Golden rule"} \]
\[\lambda \rightarrow \text{NAIRU (Tobin).} \]
Inequality remains stable

One stable equilibrium leads to a collapse
Inequality explodes.
\[\lambda \rightarrow 0. \]
SFC table for the dual Akerlof-Stiglitz (1969) model

<table>
<thead>
<tr>
<th></th>
<th>Households</th>
<th>Firms</th>
<th>Banks</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance sheet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital stock</td>
<td></td>
<td>+pK</td>
<td></td>
<td>pK</td>
</tr>
<tr>
<td>Deposits</td>
<td>+M<sub>h</sub></td>
<td>+M<sub>f</sub></td>
<td>-(M<sub>h</sub> + M<sub>f</sub>)</td>
<td>0</td>
</tr>
<tr>
<td>Loans</td>
<td>-L<sub>h</sub></td>
<td>-L<sub>f</sub></td>
<td>+(L<sub>h</sub> + L<sub>f</sub>)</td>
<td>0</td>
</tr>
<tr>
<td>Sum (Net worth)</td>
<td>X<sub>h</sub></td>
<td>X<sub>f</sub></td>
<td>X<sub>b</sub></td>
<td>X</td>
</tr>
<tr>
<td>Transactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption</td>
<td>-pC<sub>h</sub></td>
<td>+pC</td>
<td>-pC<sub>b</sub></td>
<td>0</td>
</tr>
<tr>
<td>Investment</td>
<td>+pI</td>
<td>-pI</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Accounting memo [GDP]</td>
<td>[pY]</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Depreciation</td>
<td>-pδK</td>
<td>+pδK</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Wages</td>
<td>+wℓ</td>
<td>-wℓ</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Interest on loans</td>
<td>-rL<sub>h</sub></td>
<td>-rL<sub>f</sub></td>
<td>+r(L<sub>h</sub> + L<sub>f</sub>)</td>
<td>0</td>
</tr>
<tr>
<td>Interest on deposits</td>
<td>+rM<sub>h</sub></td>
<td>+rM<sub>f</sub></td>
<td>-r(M<sub>h</sub> + M<sub>f</sub>)</td>
<td>0</td>
</tr>
<tr>
<td>Dividends</td>
<td>+Δ<sub>b</sub></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Financial balances</td>
<td>S<sub>h</sub></td>
<td>S<sub>f</sub></td>
<td>-pI + pδK</td>
<td>S<sub>b</sub></td>
</tr>
<tr>
<td>Flows of funds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in capital stock</td>
<td>+Ṁ<sub>h</sub></td>
<td>+Ṁ<sub>f</sub></td>
<td>+p(I − δK)</td>
<td>+p(I − δK)</td>
</tr>
<tr>
<td>Change in deposits</td>
<td>+Ṁ<sub>h</sub></td>
<td>+Ṁ<sub>f</sub></td>
<td>-(Ṁ<sub>h</sub> + Ṁ<sub>f</sub>)</td>
<td>0</td>
</tr>
<tr>
<td>Change in loans</td>
<td>-L̇<sub>h</sub></td>
<td>-L̇<sub>f</sub></td>
<td>+(L̇<sub>h</sub> + L̇<sub>f</sub>)</td>
<td>0</td>
</tr>
<tr>
<td>Column sum</td>
<td>S<sub>h</sub></td>
<td>S<sub>f</sub></td>
<td>S<sub>b</sub></td>
<td>S<sub>b</sub></td>
</tr>
<tr>
<td>Change in net worth</td>
<td>Ẋ<sub>h</sub> = S<sub>h</sub></td>
<td>Ẋ<sub>f</sub> = S<sub>f</sub> + pK</td>
<td>Ẋ<sub>b</sub> = S<sub>b</sub></td>
<td>X = pK + pK</td>
</tr>
</tbody>
</table>

Table: SFC table for the dual Akerlof-Stiglitz (1969) model.
\(D_h := L_h - M_h \) and \(D_f := L_f - M_f \)
Assume \(\Delta_b = r(D_h + D_f) \) and \(C_b = 0 \).

\[\Rightarrow S_b = 0, \text{ so we take } X_b = 0, \Rightarrow D_h = -D_f. \]

\[
\dot{D}_h = pC_h - w\ell + rD_h - r(D_h + D_f) \\
= pY - pI - w\ell - rD_f = -\dot{D}_f.
\]

“Deposits create loans”...
Dual Akerlof-Stiglitz (1969) model - Definitions

- \(\omega := \frac{W}{pY} \), \(d_h := \frac{D_h}{pY} \)

- Assume consumption \(C := c(\omega - rd)Y \)
 Disposable income \((\omega - rd) \).

- \(I := Y - C \),

\[
\dot{K} = Y - C - \delta K = \left(\frac{1 - c(\omega - rd)}{\nu} - \delta \right) K
\]

where \(\nu := K/Y \) is a constant capital-to-output ratio.
Assume further a wage-price dynamics (short-run Phillips curve, Gordon (2012), Mankiw (2010), ECB...)

\[
\frac{\dot{w}}{w} = \Phi(\lambda) + \gamma \left(\frac{\dot{p}}{p} \right)
\]

\[
i(\omega) = \frac{\dot{p}}{p} = \eta_p (m\omega - 1),
\]

for a constant mark-up factor \(m \geq 1 \).

Imperfect competition on commodity market.
The model can now be described by the following system

\[\dot{\omega} = \omega \left[\Phi(\lambda) - \alpha - (1 - \gamma)i(\omega) \right] \]

\[\dot{\lambda} = \lambda \left[\frac{1 - c(\omega - rd_h)}{\nu} - (\alpha + \beta + \delta) \right] \]

\[\dot{d}_h = d_h \left[r - \frac{1 - c(\omega - rd_h)}{\nu} + \delta - i(\omega) \right] + c(\omega - rd_h) - \omega. \]
Analogously to the original Akerlof-Stiglitz (1969)/Goodwin (1967)/Van der Ploeg (1974) models, there is a good equilibrium characterized by

\[\bar{\omega}_1 = \eta + r \left[\frac{1 - \eta - \nu(\alpha + \beta + \delta)}{\alpha + \beta + i(\bar{\omega}_1)} \right]. \]

\[\bar{\lambda}_1 = \Phi^{-1} (\alpha + (1 - \gamma) i(\bar{\omega}_1)). \]

\[\bar{d}_1 = \frac{1 - \eta - \nu(\alpha + \beta + \delta)}{\alpha + \beta + i(\bar{\omega}_1)}, \]

where \(\eta_1 := c^{-1}(1 - \nu(\alpha + \beta + \delta)) \).

It also exhibits a bad equilibrium of the form \((0, 0, +\infty)\).

Both equilibria can be locally stable for some parameter values, but not at the same time.

There’s also an equilibrium of the form \((\bar{\omega}_3, 0, \bar{d}_{h3})\).
Example 1: convergence to the interior (good) equilibrium (phase space)

\[\omega_0 = 0.75, \lambda_0 = 0.9, d_0 = 0.5, Y_0 = 100 \]

Figure: \(\nu = 3, \eta_p = 0.35, \gamma = 0.8 \)
Example 1: convergence to the interior equilibrium (time)

\[\omega_0 = 0.75, \lambda_0 = 0.9, d_0 = 0.5, Y_0 = 100 \]
Example 2: business cycles (phase space)

Figure: $\nu = 3$, $\eta_p = 0.45$, $\gamma = 0.96$
Example 2: business cycles (time)

\(\omega_0 = 0.75, \lambda_0 = 0.9, d_0 = 0.5, Y_0 = 100 \)
Example 3: convergence to debt-deflationary equilibrium (phase)

\[\omega_0 = 0.75, \lambda_0 = 0.7, d_0 = 0.5, Y_0 = 100 \]

Figure: \(\nu = 15, \eta_p = 0.35, \gamma = 0.8 \)
Workers versus investors - motivation

Distribution of U.S. Wealth, 2010

Source: “The Asset Price Meltdown and the Wealth of the Middle Class,” by Edward N. Wolff, NYU (November 2012)

RESEARCH CENTER
Two different classes of households, namely workers and investors, with wealth given by

\[
X_w = -D_w \\
X_i = E_f + E_b - D_i.
\]

Budget constraint that

\[
\dot{D}_w = pC_w - w\ell + rD_w \\
\dot{D}_i = pC_i - r_k pK - \Delta_b + rD_i.
\]

Finally, assume that consumption is of the form

\[
C_w = c_w(y_w) Y \text{ and } C_i = c_i(y_i) Y
\]

with

\[
\frac{\partial c_w}{\partial y_w}(\omega - r_d) > \frac{\partial c_i}{\partial y_i}(r_k\nu - r_d).
\]
SFC table for the two-class Akerlof-Stiglitz (1969) model

<table>
<thead>
<tr>
<th></th>
<th>Workers</th>
<th>Investors</th>
<th>Firms</th>
<th>Banks</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance sheet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital stock</td>
<td></td>
<td></td>
<td>+pK</td>
<td></td>
<td>pK</td>
</tr>
<tr>
<td>Deposits</td>
<td>+M_w</td>
<td>+M_i</td>
<td>+M_f</td>
<td>-(M_w + M_i + M_f)</td>
<td>0</td>
</tr>
<tr>
<td>Loans</td>
<td>-L_w</td>
<td>-L_i</td>
<td>-L_f</td>
<td>+(L_w + L_i + L_f)</td>
<td>0</td>
</tr>
<tr>
<td>Equities</td>
<td>+p^E</td>
<td></td>
<td>-p^E</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Sum (Net worth)</td>
<td>X_w</td>
<td>X_i</td>
<td>X_f</td>
<td>X_b</td>
<td>X</td>
</tr>
<tr>
<td>Transactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption</td>
<td>-pC_w</td>
<td>-pC_i</td>
<td>+pC</td>
<td></td>
<td>-pC_b</td>
</tr>
<tr>
<td>Investment</td>
<td></td>
<td></td>
<td>+pI</td>
<td></td>
<td>-pI</td>
</tr>
<tr>
<td>Accounting memo [GDP]</td>
<td>wℓ</td>
<td></td>
<td>-wℓ</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Wages</td>
<td></td>
<td></td>
<td>-pδK</td>
<td>+pδK</td>
<td>0</td>
</tr>
<tr>
<td>Depreciation</td>
<td>-rL_w</td>
<td>-rL_i</td>
<td>-rL_f</td>
<td></td>
<td>+r(L_w + L_i + L_f)</td>
</tr>
<tr>
<td>Interest on loans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Interest on deposits</td>
<td>+rM_w</td>
<td>+rM_i</td>
<td>+rM_f</td>
<td></td>
<td>-r(M_w + M_i + M_f)</td>
</tr>
<tr>
<td>Dividends</td>
<td></td>
<td></td>
<td></td>
<td>-r_k pK</td>
<td>-Δ_b</td>
</tr>
<tr>
<td>Financial balances</td>
<td>S_w</td>
<td>S_i</td>
<td>S_f</td>
<td>-pI + pδK</td>
<td>S_b</td>
</tr>
<tr>
<td>Flows of funds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in capital stock</td>
<td></td>
<td></td>
<td>+p(l - δK)</td>
<td></td>
<td>p(l - δK)</td>
</tr>
<tr>
<td>Change in deposits</td>
<td>+Ṁ_w</td>
<td>+Ṁ_i</td>
<td>+Ṁ_f</td>
<td>-(Ṁ_w + Ṁ_i + Ṁ_f)</td>
<td>0</td>
</tr>
<tr>
<td>Change in loans</td>
<td>-L̇_w</td>
<td>-L̇_i</td>
<td>-L̇_f</td>
<td>+(L̇_w + L̇_i + L̇_f)</td>
<td>0</td>
</tr>
<tr>
<td>Change in equities</td>
<td></td>
<td>+p^E</td>
<td>-p^E</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Column sum</td>
<td>S_w</td>
<td>S_i</td>
<td>S_f</td>
<td>S_b</td>
<td>p(l - δK)</td>
</tr>
<tr>
<td>Change in net worth</td>
<td>X_w = S_w</td>
<td>X_i = S_i + p^E</td>
<td>X_f = S_f - p^E + pK</td>
<td>X_b = S_b</td>
<td>X = pK + pK</td>
</tr>
</tbody>
</table>

Table: SFC table for the workers and investors model.
Assume firms retain profits according to a constant retention rate Θ, leading to an endogenous return on capital given by

$$r_k := r_k(\omega, d_w, d_i) = \frac{\Theta(pY - w\ell - rD_f - p\delta K)}{pK}$$

$$= \frac{\Theta}{\nu} (1 - \omega + r(d_w + d_i) - \delta \nu),$$

Savings by firms are endogenous

$$S_f = (1 - \Theta)(pY - w\ell - rD_f - p\delta K) = pY - w\ell - rD_f - p\delta K - r_k pK$$

Therefore, the amount to be raised externally by firms is

$$p(l - \delta K) - S_f = pl - pY + w\ell + rD_f + r_k pK$$

$$= (\omega - r(d_i + d_w) - c + r_k \nu) pY,$$

As in the Akerlof-Stiglitz (1969) model, this is raised solely through new loans from the banking sector.
The main dynamical system

- Aggregate consumption

\[c(\cdot) \equiv c(w, d_w, d_i) = c_w(\omega - rd_w) + c_i(r_k \nu - rd_i), \]

- Dynamical system

\[
\begin{align*}
\dot{\omega} &= \omega \left[\Phi(\lambda) - \alpha - (1 - \gamma)i(\omega) \right] \\
\dot{\lambda} &= \lambda \left[\frac{1-c(\cdot)}{\nu} - (\alpha + \beta + \delta) \right] \\
\dot{d}_w &= d_w \left[r + \delta - \frac{1-c(\cdot)}{\nu} - i(\omega) \right] + c_w(\omega - rd_w) - \omega \\
\dot{d}_i &= d_i \left[r + \delta - \frac{1-c(\cdot)}{\nu} - i(\omega) \right] + c_i(r_k \nu - rd_i) - r_k \nu
\end{align*}
\]
With considerable more work, it is possible to show that the system exhibits a class of **good equilibria** of the form \((\overline{\omega}_1, \overline{\lambda}_1, \overline{d}_{w1}, \overline{d}_{i1})\) typically (but not always) satisfying \(\overline{d}_{w1} > 0\) and \(\overline{d}_{i1} < 0\).

In addition, the system admits a class of **bad equilibria** \((\overline{\omega}_2, \overline{\lambda}_2, \overline{d}_{w2}, \overline{d}_{i2}) = (0, 0, \pm\infty, \pm\infty)\)
Which are locally asymptotically stable only if \(r_k > g\).

Finally, it also exhibits **deflationary equilibria** of the form \((\overline{\omega}_3, 0, \overline{d}_{w3}, \overline{d}_{i3})\), where \(\overline{d}_{w3}\) and \(\overline{d}_{i3}\) can be either finite or infinite.
Example 4: convergence to the interior equilibrium (phase space)

\[\omega_0 = 0.75, \lambda_0 = 0.9, \text{dw}_0 = 0.5, \text{di}_0 = 0.5, Y_0 = 100 \]
Example 4: convergence to the interior equilibrium (time)
Example 5: business cycles (phase space)

ω₀ = 0.75, λ₀ = 0.9, dw₀ = 0.5, di₀ = 0.5, Y₀ = 100
Example 5: business cycles (time)

\[\omega_0 = 0.75, \lambda_0 = 0.9, d_0 = 0.5, d_{i0} = 0.5, Y_0 = 100 \]
Example 6: convergence to debt-deflationary equilibrium (phase)
Example 6: convergence to debt-deflationary equilibrium (time)

\[\omega_0 = 0.75, \lambda_0 = 0.9, d_0 = 0.75, d_i_0 = -0.25, Y_0 = 100 \]
Long-run inequality

- Income shares of nominal output for workers, investors, and firms:

\[y_w = \frac{Y^n_w}{pY} = \omega - rd_w \]
\[y_i = \frac{Y^n_i}{pY} = r_k \nu - rd_i \]
\[\pi_r = \frac{\Pi^n_r}{pY} = (1 - \Theta)(1 - \omega - rd_f - \delta \nu), \]

⇒ income share of capital

\[y_c = y_i + \pi_r = 1 - \omega + rd_w - \delta \nu = 1 - y_w - \delta \nu. \]

- Easy to see: the growth rate of real income for all three sectors coincide at the interior equilibrium = \(\alpha + \beta \).
Inequality as a hallmark of inefficiency

- However, at each of the equilibria $(\bar{\omega}_2, \bar{\lambda}_2, \bar{d}_{w2}, \bar{d}_{i2}) = (0, 0, \pm\infty, \pm\infty)$ we observe divergence in income between workers and capitalists.
- For example, if $d_w \to +\infty$ and $d_i \to -\infty$, then $y_w \to -\infty$, $y_i \to +\infty$, $\pi_r \to -\infty$, whereas $y_c \to +\infty$.
- Similarly, whenever $d_w \to +\infty$, we have $x_w \to -\infty$ and $x_i \to +\infty$.
- At the deflationary equilibrium $(\bar{\omega}_3, 0, \bar{d}_{w3}, \bar{d}_{i3})$, the income shares are $r_k \nu - r\bar{d}_{i3}$ and $\bar{\omega}^3 - r\bar{d}_{w3}$.
- An artifact of the fact that prices are falling faster than real output $Y \to \bar{\lambda}_3 N/a = 0$.
- Real income of both populations collapse, so both types of households end up ruined!
Concluding remarks

- We provided a stock-flow consistent model for debt dynamics of workers and investors.
- When the economy converges to an equilibrium with finite debt ratios, the income ratio between the two classes is constant.
- Increasing income (and wealth) inequality is a signature of convergence to the bad equilibrium with infinite debt ratios.
- In future work we explore the effects of default, variable capacity utilization, substitutability between capital and labor, and of migration between classes à la Acemoglu (2014).
- THANK YOU!