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Outlook

Large variety of nonparametric trend-cycle estimators,
based on different smoothing assumptions:

density functions (kernel estimators)
local polynomial fitting (Loess smoother)
graduation theory (Henderson filter)

smoothing spline regression

Aim: to introduce a unified approach by means of the
Reproducing Kernel Hilbert Space (RKHS) methodology




Main advantages

(1) It enables the comparison of TC nonparametric predictors in the time
domain. The nonparametric predictors are transformed into density
functions which provide the initial weighting shape for near neighborhood
observations.

(2) From the density function, a hierarchy of higher order kernels is derived.

(3) It enables to find TC nonparametric predictor kernel representations for
relatively short bandwidths mainly used in real time analysis.

(4) It emables asymmetric filters for most recemt observations which are
coherent with the corresponding symmetric ones . In particular, these
asymmetric filters have superior properties of signal passing, noise
suppression, and revisions relative to the classical ones.

A RKHS is a Hilbert space characterized by a kernel that
reproduces, via an inner product, every function of the space.

The concept was first introduced by Aronszajn (1950) and
Bergman (1950) and it was Parzen (1959) the first to applied it
in time series. Parzen used a parametric approach

The RKHS approach followed in our study is strictly

nonparametric.

It basically comsists in transforming all these filters into
kernel functions of order two which are densities, and from
which hierarchies of estimators are derived.




A Hilbert space is a linear finite or infinite complete
space with an inner product. In particular, we will
consider the space L?(f,) of square integrable functions
with respect to a density function f, defined on T (e.g.

T=[-1,1];[0,1), or (-=,2)).

That is, Y(t) belongs to L?(f,) if [:Y(t)>f,(t)dt<co.
For Y; and Y, in L?(f,),

<Y, (), Y1) >, = [ MO (1) Fo(t)lt

Assumptions
1) Y, =g, tu, t=12..,N

where
Y, input seasonally adjusted series;
g, : signal or nonstationary mean (trend-cycle);

u;; noise assumed to be either a white noise, WN(0,0?,), or more
generally to follow a stationary and invertible ARMA process.

2) {y,t=1,2,...,N} is a finite realization of a stochastic process, whose
trajectories belong to the Hilbert space L2(f,) .




Assumptions — continue

3) The signal g is a smooth function of time, hence g can be locally
approximated by a polynomial function of the time distance j between
Yy, and the neighboring observations y,,, thatis,

- - -2 - =,
Oirj =8 T3] +3,) +"'+apJp t & J=-m,...m

ap,ay,---» 0, are real and & is assumed to be purely random and mutually
uncorrelated with u,.

This implies that the analysis of the signal can be performed: in the space P,
of polynomials of degree at most p, being p a nonnegative integer.

apa;....,a, are estimated by projecting the observations in a
neighborhood of y, on the subspace P, or equivalently by minimizing

the weighted least square fitting criterion

minly - g’s, = [, (/(t=9)~g(t=9)"fo(s)ds

H[ufpp denotes the P -norm.

The solution for a, provides the tremd-cycle estimate g, for which a
general characterization and explicit representation can be provided
by means of the RKHS methodology.

R:TxT - [

Reproducing kernel

LR(t,.)OH,0tOT;
2.<g(.),R(t,.)>=g(t),0t0Tand gOOH




Fundamental results

The space P, is a reproducing kernel Hilbert space of polynomials on some domain 7, that is

there exists an element R (t,.) belonging to P,, such that

P(t)=<P(),R,(t,)> tOT,POP,

Under assumptions 1,2, and 3, the minimization problem (1) has a unique and explicit

G, = [ Y(t-9)R, (50 fo(s)ds

Hence, the estimate g, can be seen as a local weighted average of the observations, where the

weights are derived by a kernel function of order p+1

Ko (1) =R, (10) (1)

where p is the degree of the fitted polynemial.

Kernels of order p

Given p=2, K, is said to be of order p if

jTKp(s)dszl

L sK,(s)ds=0 i=12...,p-1

In other words, it will reproduce a polynomial trend of degree p-1 without distortion.

(Berlinet, 1993). Kernels of order p+1, p=1, can be written as products of the
reproducing kernel R (t.) of the space P, and a density function f, with

finite moments up to order 2p. That is

P
Koa(t) = R, (t0) fo(t) = 3 R(1)R(0)fo(t)
=
Remark 1 (Christoffel-Darboux formula). For any sequence (P}, of p+l

orthonormal polynomials in L?(7)

R,(10)=3" P(UR(0)




Applied to real data,

m
= 2 WY,
j=—m
where w, j=-m,...,m, depend on the degree p of the

polyndmial, the b bandwidth length and the shape of
the density function f,.

When f,is defined on T = [-1, 1], symmetric weights for a
filter length 2m+1 are derived by fixing b = m+1, that is

et
__ "+

m ! j:_
:Zprﬂ((mﬂ)j

Several nonparametric estimators developed in the
literature for smoothing functional data. Two main
approaches: (a) least squares (kernel estimation, local
polynomial fitting, graduation theory), and (b)
roughness penalty (smoothing spline regression).

Unified perspective. by means of RKHS: different
nonparametric estimators are transformed into kernel
functions and grouped into hierarchies with the
following property: each hierarchy is identified by a
density f, and contains estimators of order 2,3,4,...
which are products of orthonormal polynomials with f,.




Polynomial kernel regression

Problem: fitting a polynomial trend to the observations y,, j=m,...,m, by
minimizing

Ko(t_bjj[yt —8 - (t-j)-..ma(t- J')p]2

where b determines the bandwidth of the symmetric and nonnegative weighting
function, since K,(z)=0, if |z|=1.

Kernel estimators, local polynomial regression smoothers and filters derived in
the graduation theory differ in:

> degree of the fitted polynomial;
> shape of the weighting function;

> neighborhood of observations taken into account.

To derive the corresponding kernel hierarchy by means of the RKHS
methodology, the density function corresponding to K, and its
orthonormal polynomials have to be determined.

Polynomial kernel regression : (1) Kernel estimators

Kernel estimates are obtained by locally fitting linear (p=1) polynomial trends
weighting the observations in a neighborhood of the target point t using a

density function.

Gaussian kernel family well-known in the Iliterature as Gram-Charlier
hierarchy (Deheveuls, 1977; Wand and Schucany, 1990; Granovsky and Muller, 1991)
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Corresponding density function f expl —— | , with Hermite

orthonormal polynomials. : A/ 2 2
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Clear relationship between different order estimators within the hierarchy.




Polynomial kernel regression : (2) Loess smoother

The Loess estimator is based on nearest neighbor weights and is applied in an
iterative manner for robustification. It consists of locally fitting a polynomial

of degree p by weighted least squares, where the weighting function
proposed by Cleveland (1979) is the tricube one

Kor(t)= (1_|t|3)3|[—1,1](t)

Dagum and Bianconcini (2006) derived the Loess kernel hierarchy based on
the tricube density

fo ()= (-1

Third order kernel
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Polynomial kernel regression : (3) Henderson filters

Henderson’s starting point was the requirement that the filters should

reproduce a cubic polynomial trend without distortion.

Three alternative smoothing criteria give the same weight diagram (Kenny and
Durbin, 1982; Gray and Thomson, 1996):

minimization of the variance of the third differences of the smoothed series;

minimization of the sum of squares of the third differences of the coefficients
of the moving average formula;

fitting a cubic polynomial by weighted least squares, with weighting function
given by

Ko (1) D{(m+1)° = " H(m+2)* - > H(m+3)* - *} ()

Dagum and Bianconcini (2008) showed that the weight diagram of the
Henderson smoother is well-reproduced by two different density functions:

> the exact density f,, derived by the penalty function K ,;

> the biweight density

_15 2\
fOB(t)_E(l_t ) I[—1,1](t)
Advantages t

> the biweight density function, and the corresponding hierarchy, does not
need to be calculated any time that the length of the filter changes, as
happens for f;

it belongs to the well-known Beta distribution family;

the corresponding orthonoermal polynomials are the Jacobi ones, for which
explicit expressions for computation are available.
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Symmetric Kernel and Classical 13
Term Filters
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13-term (a) Second and (b) Third Order Kernels.




ain Functions of Symmetric 13-term Third Order Kernels.

Smoothing spline regression

Problem: search for an optimal solution between fitting and smoothing of the data, under
the assumption that the signal follows locally a polynomial of degree p.

Schoenberg (1964) showed that natural smoothing spline estimator of order ¢ arises as
the solution of the minimization problem

g (T)

where H% denotes the W, defined

ly-dl, = [(y®)-g)?dt+A[{g” ®)) dt

Where p=2f-1. For {=2, hence p=3, (Wahba, 1990; Green and Silverman, 1994)

g=A(A)y

> 0=(0,,0,--0y) and Y= (Y50 )’ Influential matrix




Equivalent kernel representation in Sobolev spaces

For each y, belonging to L?(T), it can be shown that the solution to the minimization
problem (3) exists and is unique. It is determined by the unique Green’s function

G;,(t,s), such that
G(t) =[G, (13 9ds
T

The derivation of G,(ts) corresponding to a smoothing spline of order / requires the
solution of a (2p+2)x(2p+2) system of linear equations for each value of A.

A simplification is provided by studying G,(t,s) as the reproducing kernel R,,(t,s) of the
Sobolev space, where T'is an open subset of the real space.

When T is the real space, Thomas-Agnan (1991) provided a general formula for Ry,(t,s)

Corollary 2 1
Rii(t)= EeXp(—It )

T N2 T
R,,(t)==e'2sin |t|—+=
,a(t) > f{l | > 4]

0
R31(t):% &+ 2p2 sir(|t|‘f+gj

Equivalent kernel representation in the
polynomial space
Sobolev minimization problem

min
oW,

ly-dli, =[(y-g)%dt+A[ (g ®)

Weighted least square criterion

min|y - g, = [ (y(t=5)-g(t-9))* fo(s)ds

gDPp

Problem: find the density function f, according to which the spline estimates are
obtained by minimizing the weighted least squares fitting criterion.




Considered densities

» Standard Laplace density

1
foap(t) = €Xp(=[t])

/'9 2
2 t?) 2
1

Fou(t) =——="-73

Jenr(@)\~ 8

» Student’s t with 8 degrees of freedom

> Logistic density with mean a=0 and dispersion parameter 5=0.2

o .
forog(t) = 1] sech? 1[H

4p 2\ B

Symmetric weights of 23-
term equivalent kernels and
classical cubic splines.

Gain functions of symmetric
23-term equivalent kernels
and classical cubic spline.
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Filter length

13
3rd order kernel

weights weights weights
Sobolev space 0,144 3,213 0,428 1,925 0,482 1,709
Std Laplace 0,049 1,088 0,609 3,863 0,583 2,916
Student's t 0,028 0,626 0,287 0,678 0,303 0,619
Logistic a=0, =0.2 0,021 0,480 0,280 0,592 0,260 0,471

Behavior at the boundaries — Polynomial kernel regression

The kernel derived by means of the RKHS methodology provide a new and
unified way to represent nonparametric estimators based on different
assumptions of fitting and smoothing.

For Loess and Henderson filter, Dagum and Bianconcini (2006 and 2008)
showed how this has important consequences in the derivation of the
asymmetric weights.

The third order kernel in the tricube and biweight hierarchies are continuous
versions of the classical Loess of degree 2 (LOESS 2) and Henderson filters
respectively. On the other hand, no comparisons can be made for the third
order Gaussian kernel which is already a kernel function, and for which no
counterpart exists in the literature.

In the RKHS approach, all the filters are transformed into kernel functions
and applied as local weighted averages to the data. At the boundary of the
observation interval the local averaging process get asymmetric, that is, half
of the weights are non defined and outside the boundary.




Behavior at the boundaries in RKHS

The third order kernels are unbiased estimators of a local quadratic/cubic
polynomial trend when applied in the middle of the observation interval (m+1 < ¢t

< N-m+1). However, when applied to the first and last m observations, the
unbiasedness condition is not fulfilled.

Common approach is to compute the asymmetric weights by applying the so
called “cut-and-normalized” method.

()

W

j=-m,...,q,q=0,..,m-1

where
> j. distance to the target point t (t=N-m+1,...,N);
> b: bandwidth parameter ensuring a symmetric filter of length 2m+1

» m+q+1: asymmetric filter length.

ASYMMETRIC KERNEL (left) and CLASSICAL (right) LOESS FILTERS




Behavior at the boundaries — 13-term Loess filters

Classical (Cleveland)
Asymmetric Filter
Last Point Asymmetric
Kernel
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Behavior at the boundaries — 23-term Loess filters

Gain functions
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ASYMMETRIC KERNEL (left) and CLASSICAL (right) 13-TERM HENDERSON FIL-
TERS

Behavior at the boundaries — 13-term Henderson filters

Classical Henderson Asymmetric Filter

—— Last Point Asymmetric Kernel

ClassicalHenderson Asymmetric Filter

——Last Point Asymmetric Kernel




Behavior at the boundaries — 23-term Henderson filters

Last point asymmetric kernel
1,400

Classical Henderson Asymmetric Filter
1,200
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Classical Henderson asymmetric filter

Behavior at the boundaries — Kernel splines

Third order kernel within the logistic hierarchy

5.\ 21_2085,
2 \16 878

K,(t) = %sedﬁ2

K, is an unbiased estimator of a local cubic polynomial trend when applied in
the middle of the observation interval (m+1 <t < N-m+1). However, when applied
to the first and last m observations the unbiasedness condition are not still
fulfilled.

As before, in the RKHS




Behavior at the boundaries — Natural splines

The problem of an erratic polynomial behavior near the boundaries
is exacerbated with natural cubic smoothing splines.

Natural cubic smoothing splines add additional constraints,
ensuring that the function is of degree 1 beyond the boundary
knots.

In this study, the asymmetric classical splines are obtained by
fixing the A parameter in view of ensuring a 2m+I-term symmetric
filter, and then selecting the last m rows of the influential matrix
A(A).

ASYMMETRIC KERNEL (left) and LINEAR APPROXIMATION of CLASSICAL (right)
13-TERM CUBIC SMOOTHING SPLINES

N




Gain functions

3rd order kernel
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Phaseshift functions
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MSE REVISION RATIO BETWEEN KERNEL AND
CLASSICAL LAST POINT PREDICTORS

Closings of the Dow-Jones industrial index
-LOESS 0.383

-HENDERSON 0.886

-SPLINE 0.860

Temperature, coppermine

-LOESS 0.539

-HENDERSON 0.663

-SPLINE 0.609

U.S. male (20 years and over) unemployment
-LOESS 0.478

-HENDERSON 0.789

-SPLINE 0.721

U.S. female (20 years and overjunemployment
-LOESS 0.540

-HENDERSON 0.893

-SPLINE 0.867
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Conclusions

A unified approach for studying different nonparametric smoothers was found within the
context of RKHS.

We identified the density function or kernel of order two for LOESS, Henderson filter and
the cubic smoothing spline. It provides the “initial weighting shape" from which the higher
order kernels inherit their properties.

Hierarchies of higher order kernels have been generated via the multiplication of the
density functions by their orthonormal polynomials.

Advantages:

> if f, is optimal according to a specific smoothing criteria, each kernel of the hierarchy
inherits the optimality property at its own order;

» kernel functions can be compared by considering smoothers of different order within
the same hierarchy as well as kernels of the same order, but belonging to different
hierarchies;

> filters of any length, including the infinite ones.

In real cases the most often applied are estimators of order three, and we calculated their
asymmetric last point kernels. A comparison was made with the corresponding classical
smoothers. The results showed that the former are superior to the latter in terms signal
passing, noise suppression and revisions.
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