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OutlookOutlook

Large variety of nonparametric trendLarge variety of nonparametric trend--cycle estimators, cycle estimators, 

based on different smoothing assumptions:based on different smoothing assumptions:

�� density functions (kernel estimators)density functions (kernel estimators)

�� local polynomial fitting (Loess smoother)local polynomial fitting (Loess smoother)

�� graduation theory (Henderson filter)graduation theory (Henderson filter)

�� smoothing spline regressionsmoothing spline regression

AimAim: : to introduce a unified approach by means of the to introduce a unified approach by means of the 

Reproducing Kernel Hilbert Space (RKHS) methodologyReproducing Kernel Hilbert Space (RKHS) methodology



Main advantagesMain advantages

(1) It enables the comparison of TC nonparametric predictors in (1) It enables the comparison of TC nonparametric predictors in the time the time 

domain. The nonparametric predictors are transformed into densitdomain. The nonparametric predictors are transformed into density y 

functions which provide the initial weighting shape for near neifunctions which provide the initial weighting shape for near neighborhood ghborhood 

observations.observations.

(2) From the density function, a hierarchy of higher order kerne(2) From the density function, a hierarchy of higher order kernels is derived.ls is derived.

(3) It enables to find TC nonparametric predictor kernel represe(3) It enables to find TC nonparametric predictor kernel representations for ntations for 

relatively short bandwidths mainly used in real time analysis.relatively short bandwidths mainly used in real time analysis.

(4) It enables asymmetric filters for most recent observations w(4) It enables asymmetric filters for most recent observations which are hich are 

coherent with the corresponding symmetric ones . In particular, coherent with the corresponding symmetric ones . In particular, these these 

asymmetric filters have superior properties of signal passing, nasymmetric filters have superior properties of signal passing, noise oise 

suppression, and revisions relative to the classical ones.suppression, and revisions relative to the classical ones.

�� A RKHS is a Hilbert space characterized by a kernel that A RKHS is a Hilbert space characterized by a kernel that 

reproduces, via an inner product, every function of the space. reproduces, via an inner product, every function of the space. 

�� The concept was first introduced by Aronszajn (1950) and The concept was first introduced by Aronszajn (1950) and 

Bergman (1950) and it was Parzen (1959) the first to applied it Bergman (1950) and it was Parzen (1959) the first to applied it 

in time series. Parzen used a parametric approachin time series. Parzen used a parametric approach

�� The RKHS approach followed in our study is strictly The RKHS approach followed in our study is strictly 

nonparametric.nonparametric.

�� It basically consists in transforming all these filters into It basically consists in transforming all these filters into 

kernel functions of order two which are densities, andkernel functions of order two which are densities, and from from 

which hierarchies of estimators are derivedwhich hierarchies of estimators are derived..



A Hilbert space is a linear  finite or infinite complete A Hilbert space is a linear  finite or infinite complete 

space with an inner product. In particular, we will space with an inner product. In particular, we will 

consider the space consider the space LL22(f(f00)) of square integrable functions of square integrable functions 

with respect to a density function with respect to a density function ff00 defined on defined on TT (e.g. (e.g. 

T = [T = [--1,1]; [0,1), or (1,1]; [0,1), or (--∞∞,,∞∞))))..

That is, That is, Y(t)Y(t) belongs to belongs to LL22(f(f00)) if if ∫∫TTY(t)Y(t)22ff00(t)dt<(t)dt<∞∞..

For For YY11 and and YY22 in in LL22(f(f00)) ,,

∫=><
TTL

dttftYtYtYtY )()()()(),( 021)(21 2

AssumptionsAssumptions

1) 1) 

wherewhere

yytt: input seasonally adjusted series;: input seasonally adjusted series;

ggtt : signal or nonstationary mean (trend: signal or nonstationary mean (trend--cycle);cycle);

uutt: noise assumed to be either a white noise, : noise assumed to be either a white noise, WN(0,WN(0,σσ22
uu)), or more , or more 

generally to follow a stationary and invertible ARMA process.generally to follow a stationary and invertible ARMA process.

2)2) {y{ytt,t=1,2,,t=1,2,……,N},N} is a finite realization of a stochastic process, whose is a finite realization of a stochastic process, whose 

trajectories belong to the Hilbert space trajectories belong to the Hilbert space LL22(f(f00)) ..

Ntugy ttt ,...,2,1=+=



Assumptions Assumptions –– continuecontinue

3)3) The signal  The signal  gg is a smooth function of timeis a smooth function of time, , hence hence gg can be can be locally locally 

approximated by a polynomial functionapproximated by a polynomial function of the time distance of the time distance jj between between 

yytt and the neighboring observations and the neighboring observations yyt+j,   t+j,   that is,that is,

aa00,a,a11,,…….,a.,app are real and are real and εεtt is assumed to be purely random and mutually is assumed to be purely random and mutually 

uncorrelated with uncorrelated with uutt..

This implies that the analysis of the signal can be performed inThis implies that the analysis of the signal can be performed in the space the space PPpp

of polynomials of degree at most of polynomials of degree at most pp, being , being pp a nonnegative integer.a nonnegative integer.
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aa00,a,a11,,…….,a.,app are estimated by projecting the observations in a are estimated by projecting the observations in a 

neighborhood of neighborhood of yytt on the subspace on the subspace PPpp, or equivalently by minimizing , or equivalently by minimizing 

the weighted least square fitting criterionthe weighted least square fitting criterion

(1)    (1)    

denotes the denotes the PPpp--norm.norm.

The The solutionsolution for for aa00 provides the trendprovides the trend--cycle estimate cycle estimate ggtt, for which a , for which a 

general characterization and explicit general characterization and explicit representationrepresentation can be provided can be provided 

by means of the RKHS methodologyby means of the RKHS methodology..
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Fundamental resultsFundamental results

The space The space PPpp is a reproducing kernel Hilbert space of polynomials on some dois a reproducing kernel Hilbert space of polynomials on some domain main TT, that is , that is 

there exists an element there exists an element RRpp(t,.)(t,.) belonging to belonging to PPpp, such that, such that

Under assumptions 1,2, and 3, the minimization problem (1) has aUnder assumptions 1,2, and 3, the minimization problem (1) has a unique and explicit unique and explicit 

solution given bysolution given by

Hence, the estimate Hence, the estimate ggtt can be seen as a local weighted average of the observations, whcan be seen as a local weighted average of the observations, where the ere the 

weights are derived by a kernel function of order weights are derived by a kernel function of order p+1p+1

where where pp is the degree of the fitted polynomial.is the degree of the fitted polynomial.
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Kernels of order Kernels of order pp

Given Given pp≥≥22, , KKpp is said to be of order is said to be of order pp if if 

andand

In other words, it will reproduce a polynomial trend of degreeIn other words, it will reproduce a polynomial trend of degree pp--11 without distortion.without distortion.

∫ =
T p dssK 1)(

(Berlinet, 1993).(Berlinet, 1993). Kernels of order Kernels of order p+1p+1, , pp≥≥11, can be written as products of the , can be written as products of the 

reproducing kernel reproducing kernel RRpp(t,.)(t,.) of the space of the space PPpp and a density function and a density function ff00 with with 

finite moments up to order finite moments up to order 2p2p. That is. That is

Remark 1 (ChristoffelRemark 1 (Christoffel--Darboux formula).Darboux formula). For any sequence For any sequence (P(Pii))00≤≤ii≤≤pp of of p+1p+1

orthonormal polynomials in orthonormal polynomials in LL22(T)(T)
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Applied to real data, Applied to real data, 

where where wwjj,  j = ,  j = --m,m,……,m,m, depend on the degree , depend on the degree pp of the of the 
polynomial, the polynomial, the bb bandwidth length and the shape of bandwidth length and the shape of 
the density function the density function ff00..

When  When  ff00 is defined on is defined on T = [T = [--1, 1]1, 1], symmetric weights for a , symmetric weights for a 
filter length filter length 2m+12m+1 are derived by  fixing are derived by  fixing b = m+1b = m+1, that is, that is
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Several nonparametric estimators developed in the Several nonparametric estimators developed in the 

literature for smoothing functional data. Two main literature for smoothing functional data. Two main 

approaches: (a) least squares (kernel estimation, local approaches: (a) least squares (kernel estimation, local 

polynomial fitting, graduation theory), and (b) polynomial fitting, graduation theory), and (b) 

roughness penalty (smoothing spline regression).roughness penalty (smoothing spline regression).

Unified perspective by means of RKHSUnified perspective by means of RKHS:: different different 

nonparametric estimators are transformed into kernel nonparametric estimators are transformed into kernel 

functions and grouped into hierarchies with the functions and grouped into hierarchies with the 

following property: each hierarchy is identified by a following property: each hierarchy is identified by a 

density fdensity f00 and contains estimators of order 2,3,4,and contains estimators of order 2,3,4,……

which are products of orthonormal polynomials with fwhich are products of orthonormal polynomials with f00..



Polynomial kernel regressionPolynomial kernel regression

ProblemProblem: fitting a polynomial trend to the observations : fitting a polynomial trend to the observations yyt+jt+j, j=, j=--m,m,……,m,m, by , by 

minimizingminimizing

where where b b determines the bandwidth of the symmetric and nonnegative weightdetermines the bandwidth of the symmetric and nonnegative weighting ing 

function, since function, since KK00(z)=0(z)=0, if , if |z||z|≥≥11..

Kernel estimators, local polynomial regression smoothers and filKernel estimators, local polynomial regression smoothers and filters derived in ters derived in 

the graduation theory differ in:the graduation theory differ in:

�� degree of the fitted polynomial;degree of the fitted polynomial;

�� shape of the weighting function;shape of the weighting function;

�� neighborhood of observations taken into account.neighborhood of observations taken into account.

To derive the corresponding kernel hierarchy by means of the RKHTo derive the corresponding kernel hierarchy by means of the RKHS S 

methodology, the density function corresponding to Kmethodology, the density function corresponding to K00 and its and its 

orthonormal polynomials have to be determined.orthonormal polynomials have to be determined.
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Polynomial kernel regression : (1) Kernel estimatorsPolynomial kernel regression : (1) Kernel estimators

Kernel estimates are obtained by Kernel estimates are obtained by locally fitting linear (locally fitting linear (p=1p=1) polynomial trends) polynomial trends

weightingweighting the observations in a neighborhood of the target point t using the observations in a neighborhood of the target point t using a a 

density functiondensity function..

Gaussian kernelGaussian kernel family wellfamily well--known in the literature as Gramknown in the literature as Gram--Charlier Charlier 

hierarchy hierarchy (Deheveuls, 1977; Wand and Schucany, 1990; Granovsky and Muller,(Deheveuls, 1977; Wand and Schucany, 1990; Granovsky and Muller, 1991)1991)

Corresponding density function                                 ,Corresponding density function                                 , with Hermite with Hermite 

orthonormal polynomials.orthonormal polynomials.

Third order kernel within the hierarchyThird order kernel within the hierarchy

Clear relationship between different order estimators within theClear relationship between different order estimators within the hierarchy.hierarchy.
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Polynomial kernel regression : (2) Loess smootherPolynomial kernel regression : (2) Loess smoother

The Loess estimator is based on nearest neighbor weights and is The Loess estimator is based on nearest neighbor weights and is applied in an applied in an 

iterative manner for robustification. It consists of iterative manner for robustification. It consists of locally fitting a polynomial locally fitting a polynomial 

of degree p by weighted least squaresof degree p by weighted least squares, where the weighting function , where the weighting function 

proposed by Cleveland (1979) is the tricube oneproposed by Cleveland (1979) is the tricube one

Dagum and Bianconcini (2006) derived the Dagum and Bianconcini (2006) derived the Loess kernel hierarchy Loess kernel hierarchy based on based on 

the tricube densitythe tricube density

Third order kernelThird order kernel
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Polynomial kernel regression : (3) Henderson filtersPolynomial kernel regression : (3) Henderson filters

HendersonHenderson’’s s starting pointstarting point was the requirement that the filters should was the requirement that the filters should 

reproduce  a cubic polynomial trend without distortionreproduce  a cubic polynomial trend without distortion. . 

Three alternative smoothing criteriaThree alternative smoothing criteria give the same weight diagram give the same weight diagram (Kenny and (Kenny and 

Durbin, 1982; Gray and Thomson, 1996):Durbin, 1982; Gray and Thomson, 1996):

�� minimization of the variance of the third differences of the smominimization of the variance of the third differences of the smoothed series;othed series;

�� minimization of the sum of squares of the third differences of tminimization of the sum of squares of the third differences of the coefficients he coefficients 

of the moving average formula;of the moving average formula;

�� fitting a cubic polynomial by weighted least squares, with weighfitting a cubic polynomial by weighted least squares, with weighting function ting function 

given bygiven by

(2)(2)}j)3m}{(j)2m}{(j)1m{()t(K 222222
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Dagum and Bianconcini (2008) showed that the weight diagram of tDagum and Bianconcini (2008) showed that the weight diagram of the he 

Henderson smoother is wellHenderson smoother is well--reproduced by two different  density functions:reproduced by two different  density functions:

�� the exact density the exact density ff0H0H derived by the penalty function derived by the penalty function KK0H0H;;

�� the the biweight densitybiweight density

Advantages Advantages ff0B0B

�� the biweight density function, and the corresponding hierarchy, the biweight density function, and the corresponding hierarchy, does not does not 

need to be calculated any time that the length of the filter chaneed to be calculated any time that the length of the filter changes, as nges, as 

happens for happens for ff0H0H;;

�� it belongs to the wellit belongs to the well--known Beta distribution family;known Beta distribution family;

�� the corresponding orthonormal polynomials are the Jacobi ones, fthe corresponding orthonormal polynomials are the Jacobi ones, for which or which 

explicit expressions for computation are available.explicit expressions for computation are available.
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Symmetric Kernel and Classical 13 Symmetric Kernel and Classical 13 
Term FiltersTerm Filters



Smoothing spline regressionSmoothing spline regression

ProblemProblem: search for an : search for an optimal solution between fitting and smoothing of the dataoptimal solution between fitting and smoothing of the data, under , under 

the assumption that the the assumption that the signal follows signal follows locallylocally a polynomial of degree a polynomial of degree pp..

Schoenberg (1964) showed that natural smoothing spline estimatorSchoenberg (1964) showed that natural smoothing spline estimator of order of order ℓℓ arises as arises as 

the solution of the minimization problemthe solution of the minimization problem

(3)(3)

where where denotes the denotes the WW22
ℓℓ, defined, defined

Where p=2Where p=2ℓℓ--1. For 1. For ℓℓ=2, hence =2, hence p=3p=3, , (Wahba, 1990; Green and Silverman, 1994)(Wahba, 1990; Green and Silverman, 1994)

�� Influential matrixInfluential matrix
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Equivalent kernel representation in Sobolev spacesEquivalent kernel representation in Sobolev spaces

For each For each yytt belonging to belonging to LL22(T)(T), it can be shown that the solution to the minimization , it can be shown that the solution to the minimization 

problem (3) exists and is unique. It is determined by the uniqueproblem (3) exists and is unique. It is determined by the unique GreenGreen’’s functions function

GGλλ(t,s(t,s), such that), such that

The derivation of The derivation of GGλλ(t,s)(t,s) corresponding to a smoothing spline of order corresponding to a smoothing spline of order ℓℓ requires the requires the 

solution of a solution of a (2p+2)x(2p+2) (2p+2)x(2p+2) system of linear equations for each value of system of linear equations for each value of λ.λ.

A simplification is provided by studying A simplification is provided by studying GGλλ(t,s)(t,s) as the reproducing kernel as the reproducing kernel RRℓℓ,,λλ(t,s)(t,s) of the of the 

Sobolev space, where Sobolev space, where TT is an open subset of the real space. is an open subset of the real space. 

When When T T is the real space, Thomasis the real space, Thomas--Agnan (1991) provided a general formula for Agnan (1991) provided a general formula for RRℓℓ,,λλ(t,s)(t,s)
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Equivalent kernel representation in the Equivalent kernel representation in the 

polynomial spacepolynomial space
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Sobolev  minimization problem

Weighted least square criterion

Problem: find the density function f0 according to which the spline estimates are 

obtained by minimizing the weighted least squares fitting criterion.
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Considered densities

� Standard Laplace density

� Student’s t with 8 degrees of freedom

� Logistic density with mean α=0  and dispersion parameter β=0.2
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3rd order kernel

Filter length

9 13 23

weights gain weights gain weights gain

Sobolev space 0,144 3,213 0,428 1,925 0,482 1,709 

Std Laplace 0,049 1,088 0,609 3,863 0,583 2,916 

Student's t 0,028 0,626 0,287 0,678 0,303 0,619 

Logistic a=0, β=0.2 0,021 0,480 0,280 0,592 0,260 0,471 
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Behavior at the boundaries Behavior at the boundaries –– Polynomial kernel regressionPolynomial kernel regression

The kernel derived by means of the RKHS methodology provide a new and 

unified way to represent nonparametric estimators based on different 

assumptions of fitting and smoothing.

For Loess and Henderson filter, Dagum and Bianconcini (2006 and 2008) 

showed how this has important consequences in the derivation of the 

asymmetric weights. 

The third order kernel in the tricube and biweight hierarchies are continuous 

versions of the classical Loess of degree 2 (LOESS 2) and Henderson filters 

respectively. On the other hand, no comparisons can be made for the third 

order Gaussian kernel which is already a kernel function, and for which no 

counterpart exists in the literature.

In the RKHS approach, all the filters are transformed into kernel functions 

and  applied as local weighted averages to the data. At the boundary of the 

observation interval the local averaging process get asymmetric, that is, half 

of the weights are non defined and outside the boundary.



Behavior at the boundaries in RKHSBehavior at the boundaries in RKHS
The third order kernels are unbiased estimators of a local quadratic/cubic 

polynomial trend when applied in the middle of the observation interval (m+1 ≤ t 

≤ N-m+1). However, when applied to the first and last m observations, the 

unbiasedness condition is not fulfilled.

Common approach is to compute the asymmetric weights by applying the so 

called “cut-and-normalized” method.

where

� j: distance to the target point t (t=N-m+1,…,N);

� b: bandwidth parameter ensuring a symmetric filter of length 2m+1

� m+q+1: asymmetric filter length.
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Behavior at the boundaries Behavior at the boundaries –– 1313--term Loess filtersterm Loess filters
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Behavior at the boundaries Behavior at the boundaries –– 2323--term Loess filtersterm Loess filters
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Behavior at the boundaries Behavior at the boundaries –– 1313--term Henderson filtersterm Henderson filters
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Behavior at the boundaries Behavior at the boundaries –– 2323--term Henderson filtersterm Henderson filters
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Behavior at the boundaries Behavior at the boundaries –– Kernel splinesKernel splines
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K3 is an unbiased estimator of a local cubic polynomial trend when applied in 

the middle of the observation interval (m+1 ≤ t ≤ N-m+1). However, when applied 

to the first and last m observations the unbiasedness condition are not still 

fulfilled.

As before, in the RKHS
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Behavior at the boundaries Behavior at the boundaries –– Natural splinesNatural splines

The problem of an erratic polynomial behavior near the boundaries 

is exacerbated with natural cubic smoothing splines.

Natural cubic smoothing splines add additional constraints, 

ensuring that the function is of degree 1 beyond the boundary 

knots. 

In this study, the asymmetric classical splines are obtained by 

fixing the λ parameter in view of ensuring a 2m+1-term symmetric 

filter, and then selecting the last m rows of the influential matrix 

A(λ).
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MSE REVISION RATIO BETWEEN KERNEL AND MSE REVISION RATIO BETWEEN KERNEL AND 

CLASSICAL LAST POINT PREDICTORSCLASSICAL LAST POINT PREDICTORS

Closings of the Dow-Jones industrial index

-LOESS 0.383  

-HENDERSON 0.886 

-SPLINE 0.860

Temperature, coppermine

-LOESS 0.539 

-HENDERSON 0.663 

-SPLINE 0.609

U.S. male (20 years and over) unemployment

-LOESS 0.478 

-HENDERSON 0.789 

-SPLINE 0.721

U.S. female (20 years and over)unemployment

-LOESS 0.540 

-HENDERSON 0.893 

-SPLINE 0.867





ConclusionsConclusions

A unified approach for studying different nonparametric smoothers was found within the 

context of RKHS.

We identified the density function or kernel of order two for LOESS, Henderson filter and 

the cubic smoothing spline. It provides the “initial weighting shape" from which the higher 

order kernels inherit their properties.

Hierarchies of higher order kernels have been generated via the multiplication of the 

density functions by their orthonormal polynomials.

Advantages:

� if f0 is optimal according to a specific smoothing criteria, each kernel of the hierarchy 

inherits the optimality property at its own order; 

� kernel functions can be compared by considering smoothers of different order within 

the same hierarchy as well as kernels of the same order, but belonging to different 

hierarchies;

� filters of any length, including the infinite ones.

In real cases the most often applied are estimators of order three, and we calculated their 

asymmetric last point kernels. A comparison was made with the corresponding classical 

smoothers. The results showed that the former are superior to the latter in terms signal 

passing, noise suppression and revisions.
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