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The Effect of Computer Networks on U.S. Manufacturing Productivity 
 

B.K. Atrostic and Sang V. Nguyen 
 
 
 

Abstract 
 

How do computers affect productivity?  Many recent studies argue that using information 
technology, particularly computers, is a significant source of U.S. productivity growth.  The 
specific mechanism remains elusive.  Detailed data on the use of computers and computer 
networks have been scarce.  Plant-level data on the use of computer networks and electronic 
business processes in the manufacturing sector of the United States were collected for the first 
time in 1999.  Using these new data, we find strong links between labor productivity and the 
presence of computer networks at the plant level.  Plants with networks have higher average 
labor productivity.  Computer networks show a positive and significant effect on labor 
productivity, controlling for capital intensity, skill mix, plant size, industry, and whether the 
plant is part of a multi-unit firm.  Networks increase estimated labor productivity by roughly 10 
to 20 percent, depending on model specification.   

 
Keywords:  Productivity, computer networks 
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1. Introduction 
  
 Many studies link the strong economic performance of the United States in the late 1990s 
economy to the use of computers.  These studies took up the challenge of Solow’s 1987 paradox 
that “you can see the computer age everywhere except in the productivity statistics.”  How 
computers affect performance remains an open question.  Official statistics provided scant 
information about how computers are used.  New data from the U.S. Census Bureau begin 
addressing this gap.  The Computer Network Use Supplement (CNUS) to the 1999 Annual 
Survey of Manufactures (ASM) surveyed some 50,000 manufacturing plants about their use of 
on-line purchasing and ordering, the presence of computer networks, the kind of network (EDI, 
Internet, both), about 25 business processes (such as procurement, payroll, inventory, etc., 
conducted over computer networks; “e-business processes”), and whether those networked 
processes are used to interact internally, or with the manufacturing plant’s customers or 
suppliers.  The CNUS focused on the use of computer networks, rather than the presence of 
computers alone.  The first official statistics, based on the responses of over 38,000 U.S. 
manufacturing plants, were released in June 2001.   
 
 This paper uses the new plant-level data on computer networks to estimate the effect of 
computer networks on labor productivity across manufacturing industries.  Ours is the first study 
to make such estimates for the U.S. manufacturing sector.  We link the CNUS supplement data 
to current and previous information for the same plant collected in the 1999 Annual Survey of 
Manufactures and the 1997 Census of Manufactures.  Previous plant-level studies of the link 
between use of computer networks and productivity in the U.S. manufacturing sector were 
limited to five manufacturing industries covered in the 1988 and 1993 Surveys of Manufacturing 
Technology (SMT) collected by the U.S. Census Bureau.   

 
Our research has two principal findings.  First, average labor productivity is higher in 

manufacturing plants with networks than in plants without networks.  Second, computer 
networks have a positive and significant effect on labor productivity after controlling for capital 
intensity, skill mix, plant size, industry, and whether the plant is part of a multi-unit business.  
Networks increase estimated labor productivity by roughly 10 to 20 percent, depending on model 
specification.  This network effect is an important contributor to labor productivity, with an 
effect similar to the estimated 10 to 20 percent elasticities of capital intensity and skill mix. 

 
We review the previous literature using plant-level data to estimate the effects of 

computer networks on productivity.  Because the CNUS data we use are new, we describe them 
in some detail.  We present our underlying economic model, derive empirical specifications, and 
describe the specific variables we use in the empirical analysis.  We present the results of 
econometric estimates of our model, highlight our key findings, and discuss their implications. 
The research we present is the first estimates of the relationship between labor productivity and 
computer networks using these new data.  Our results are preliminary, and we expect to refine 
and extend them.  Some of those extensions will draw on the rich information the CNUS 
contains on the intensity and specific types of computer network use.  We briefly indicate some 
directions we expect to take in future research using these new data. 
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2. Computers and Productivity:  Previous Findings 
 

The literature on the Solow paradox finds that the use of computers affects economic 
performance, including productivity.  Computers, information technology (IT), and information 
and communications technology (ICT) often are used interchangeably in this literature.  Many 
recent studies find that computers play an important role in the strong economic performance of 
the United States economy, particularly the surge of productivity growth in the late 1990s (e.g., 
Oliner and Sichel (2000); Jorgenson and Stiroh (2000); Jorgenson (2001); Stiroh (2001); 
Nordhaus (2001); and Triplett and Bosworth (2000)).  Gullickson and Harper (1999) discuss a 
number of possible sources of measurement bias in aggregate productivity growth.  Jorgenson 
(2001) finds that IT contributes substantially to the growth in total factor productivity throughout 
the 1948 – 1999 period, and particularly for the 1990s.  That study finds both investments in IT 
and its use – consumption of IT services – contribute separately to the growth of gross domestic 
product, and recommends research distinguishing between using and producing computers.    

 
International comparisons of the pervasiveness of ICT use among businesses and its 

effect on national economic performance also are underway.  Some cross-country comparisons, 
(e.g. Schreyer (2000)), find a clear role for ICT in the U.S. and perhaps Japan, but not for other 
G7 countries.  Official statistical surveys of the business use of ICT (including the use of a few 
e-business processes) have been initiated in many countries (e.g., Canada, Australia, Denmark, 
Finland, Norway, Japan, France, and the U.S. among others).  International collaborations 
include the Nordic countries, which established a working group on ICT statistics, and the 
OECD’s Working Party on Statistics for the Information Society, which is developing a model 
survey on ICT use by businesses (Boegh-Nielsen (2001)).  Assessments of the effects of the ICT 
measured in these surveys are, of course, just beginning.   

 
Computers may affect productivity in at least two ways.  Computers may be used directly 

as inputs to the production process, as a specific form of capital.  This is the approach taken in 
most existing studies, including both the national and industry-level studies cited above, as well 
studies at the plant or business level.   

 
But computers may also be used to organize or streamline related business processes, 

such as order taking, inventory control, accounting services, and tracking product delivery.  
When these computers are linked into networks, they are electronic business processes (e-
business processes; Atrostic, Gates, and Jarmin (2000)).  Consider a steel mill.  Computers and 
automated processes are used to control production processes in modern steel mills.  Many 
support processes also can be computerized.  For example, computers can be used to maintain a 
database of customers or shipments, or to do accounting or payroll.  These computerized 
processes may be freestanding.  Some of them may also occur over internal or external computer 
networks that allow information from a process to be exchanged readily.  Shipments may be 
tracked on-line, inventories may be automatically monitored and suppliers notified when pre-
determined levels are reached. 

 
Adopting e-business processes automates existing business processes.  It can also change 

the way companies conduct these processes and their businesses.  The surge of interest in supply 
chains exemplifies this potential for computers to affect productivity growth outside of the 
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manufacturing subsectors that produce them.  These effects are thought to occur through 
organizational change.  Many core supply chain processes are widely cited as examples of 
successful e-business processes that, in turn, are expected to shift the location of the process 
among the participants in the supply chain.  Brynjolfsson and Hitt (2000) argue that the effects of 
organizational changes may rival the effects of changes in the production process.  Viewed this 
way, computer networks are a productivity-enhancing technology.   

 
Few studies assess the effect of computer networks on productivity.  McGuckin et al., 

(1996) use plant-level data for the five manufacturing industries included in the 1988 and 1993 
SMTs.  Grennan and Mairesse (1996) analyze panel data for French manufacturing and services 
firms over 1986 – 1990 and 1990 – 1994.  Motohasi (2001) uses firm-level data for 
manufacturing, wholesale, and retail sectors in Japan in 1991.  Motohashi (2001) and 
Brynjolfsson and Hitt find that IT affects total factor productivity only in firms with higher 
human capital and flatter workforce organization.  However, causality is complex to model and 
the available micro data present challenges to economic measurement, so this literature does not 
yet shed definitive light on how IT affects productivity. 

 
Official U.S. data on the use of e-business processes also has been very limited.  The U.S. 

Census Bureau's Survey of Manufacturing Technology (SMT) was conducted in 1988 and 1993.  
Information was collected only from plants in the five major industry groups in manufacturing 
that were thought to be primary users of such technology:  Fabricated metal products (SIC 34), 
Industrial machinery and equipment (SIC 35), Electronic and other electric equipment (SIC 36), 
Transportation equipment (SIC 37), and Instruments and related products (SIC 38).  This data 
gap limited studies of e -business processes in the U.S. to the five manufacturing industries in the 
SMT (e.g., McGuckin et al. , (1996)), or to relatively small samples of firms drawn from 
proprietary data sets (e.g., 600 firms in Brynjolfsson and Hitt (2000)). 

 
McGuckin et al. use the SMT data to examine the relationship between the use of 

advanced technologies and productivity and productivity growth rates in five manufacturing 
industries in 1988 and 1993.  They find that diffusion differs across the several surveyed 
technologies.  Productivity is higher at plants using advanced technologies, even after accounting 
for multiple economic characteristics of the plant.  The relationship between productivity and 
advanced technology use holds both in terms of the number of technologies used and in the 
intensity of that use.  But the use of advanced technologies does not necessarily cause higher 
productivity.  In particular, McGuckin et al. conclude that the positive relationship between 
average productivity and the use of advanced technologies arises because operations that are 
performing well are more likely to use advanced technologies than poorly performing operations.   
 

Atrostic and Gates (2001) use the new 1999 CNUS data to model two new indicators of 
the use of e-business processes in U.S. manufacturing:  the use of computer networks, and of 
fully integrated enterprise resource planning software  (FIERP).  FIERP is a specific kind of 
enterprise resource planning software that integrates separate automated business processes such 
as payroll and procurements into a single system.  They find computer networks are widespread 
within manufacturing.  For example, they find that the Transportation equipment subsector (as 
classified in the North American Industrial Classification System (NAICS)) is one of the most 
intense users of fully integrated enterprise software, second only to the NAICS Electrical 
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Equipment subsector.  While the estimates in Atrostic and Gates are based on plant-level 
responses, they are calculated from data aggregated to the subsector level, and their analysis does 
not address labor productivity.   

 
 
3. New Data on Computers and E-Business Processes in U.S. Manufacturing 
 

The Computer Network Use Supplement (CNUS) to the 1999 Annual Survey of 
Manufactures (ASM) surveyed some 50,000 manufacturing plants about their use of on-line 
purchasing and ordering, the presence of computer networks, the kind of network (EDI, Internet, 
both), about 25 business processes (such as procurement, payroll, inventory, etc., conducted over 
computer networks; “e-business processes”), and whether those networked processes are used to 
interact internally, or with the manufacturing plant’s customers or suppliers.  In June 2001, the 
U.S. Census Bureau released the first official statistics on the use of e-business processes (E-
stats, at www.census.gov/estats).  The statistics are based on responses of more than 38,000 U.S. 
manufacturing plants, with a response rate of 82 percent.  All CNUS data are on a NAICS basis.  
Detailed information about the CNUS and ASM are contained in Appendix A. 
 

The E-stats report highlights several e-businesses processes that appear closely related to 
the commercial activities of accepting and placing orders online.  But manufacturing plants use 
networks for much more than on-line sales and orders.  Only half of manufacturing plants 
reporting a network present also reported that they accepted and/or placed orders online.  
Research focusing on commercial transactions occurring online would omit uses of computer 
networks at roughly half of the plants reporting they use such networks.  While the CNUS data 
clearly have the potential to provide new and exciting insights, the E-stats report is limited to 
presenting statistics about the use of e-business processes for respondents to the supplement. 
   
  
4. New Estimates of the Effect of Computer Networks on Plant -Level Productivity 
 

Assessing the effect of computer networks on productivity in manufacturing plants 
requires specifying a theoretical model of how computer networks affect labor productivity, then 
determining how best to implement it with the data available.  In this section, we develop our 
theoretical model and describe how we implement it empirically.  We use the newly available 
CNUS data to estimate plant-level labor productivity and the effect of computer network use on 
productivity.  Data for responding plants is linked to information these plants reported in the 
1999 ASM and the 1997 Census of Manufacturing to develop the variables required.  We first 
examine whether average labor productivity differs in plants that use networks, then present and 
discuss the results of our econometric estimates. 
 
 
A. Theoretical Model 
 

To examine the effect of computer networks on labor productivity we specify the 
following Cobb-Douglas production function 
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 Q = AKα
1Lα

2                                  (1) 
 
where Q, K and L denote output, capital and labor, respectively. A is the usual “technological 
advance” term. The parameters α1 and α2 represent output elasticities of capital and labor.  
 
 To incorporate computer network (CNET) into the production function, we specify the 
technological advance term, A, as a function of CNET. That is, 
 
 A =  e (β

0
 + β

1
CNET)                                (2) 

 
where CNET =1, if the plant has a computer network; else CNET=0.   
 

Equation (2) is specified based on the idea that, at any given point in time, the plant that 
uses computer network in its production process is likely to produce a higher level of output than 
that of its counterpart that does not has a computer network.  Technically, equation (2) is based 
on the assumption of “disembodied technical advance” that is not captured by K and L.  That is, 
productivity can differ across plants even though they employ the same levels and types of 
inputs.  In particular, in a cross-section study such as ours, differences in productivity across 
plants can be explained by plant-specific disembodies technical advance such as computer 
networks, which generate a positive externality to productivity.  Thus we expect that β1 is 
positive. 
 
 Substituting (2) into (1), dividing both side by L, and taking logarithms on both sides, we 
have 
 
 Log(Q/L) =  β0 + β1CNET + α1 log(K/L) + (α1 + α2 – 1) log(L)              (3)                    
 
 Equation (3) directly relates computer network to log-labor productivity.  In this 
formulation, β1 is our parameter of interest.  β1  can be interpreted as measuring the effect of 
computer networks on labor productivity, controlling for capital intensity (K/L), and total labor, 
which, in turn, can be considered as a proxy for plant size.  Note that if α1 + α2 = 1 (or  α1 + α2 – 
= 0), we have constant returns to scale.  If α1 + α2 is less (greater) than 1, we have decreasing 
(increasing) returns to scale. 
  
 
B. Empirical Specification 
 

The theoretical model does not take into account other important plant characteristics that 
may significantly affect plant labor productivity. We therefore specify and estimate the following 
empirical model: 
 
                             
 Log(Q/L) =  β0 + β1CNET + α1 log(K/L) + α3SIZE 
                                   
                 + α4log(SKILL) + α5MULTI + ∑γiINDi + ε    (4) 
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Average labor productivity, Q / L, is the plant’s total value of shipments (TVS) divided 
by its total employment (TE).  Both the numerator and denominator of this ratio are reported on 
the 1999 ASM.  Average value-added productivity is the plant’s total value of shipments (Q) 
minus its cost of materials including energy (M), divided by its total employment.  The costs of 
materials and energy both are reported on the 1999 ASM.  While the value -added measure 
incorporates inputs other than labor, plant-level materials data in the ASM are known to be very 
noisy.  Value-added measures are widely used in plant-level productivity analyses (e.g., 
McGuckin et al. , Greenan and Mairesse).  Using both productivity measures allows us to 
consider whether our estimates seem sensitive to our choice of dependent variable, and to have 
estimates comparable to others in the literature.  Unless specifically stated, results presented in 
this paper are based on labor productivity defined as the value of total shipments to employment. 
 

Average labor productivity is higher in plants with computer networks.  For 
manufacturing as a whole, labor productivity is nearly 30 percent higher in plants with computer 
networks.  Both gross output and value -added labor productivity measures are shown in Table 1.  
The size of the productivity differential varies within manufacturing, but is of roughly similar 
magnitudes using either productivity measure.  McGuckin et al., found similar differentials in 
average labor productivity for a set of 17 advanced technologies involving the use of computers 
in the five SMT manufacturing industries.   

 
“Network” is the key explanatory variable in this study.  The new network variable, 

reported for the first time on the CNUS, takes on a value of one if the plant reported having a 
computer network, and zero otherwise.  About 88 percent of the plants responding to the CNUS 
used computer networks (see Table 1).  The CNUS network variable differs from what was 
available in earlier studies using the SMT.  The SMT included three kinds of networks among its 
17 advanced technologies, but did not ask whether any other kind of network was used.  The 
CNUS asks whether the plant has a computer network, then queries about specific types of 
network and whether the plant uses each of two-dozen networked e-business processes.   

 
Many plant-level productivity studies consider computers as an input, splitting capital 

into computer and non-computer measures.  The perspective in our analysis is that using 
computer networks is a shift in technology, as specified in equation (2).  This approach is also 
taken, for example, in McGuckin et al. (1998), Motohasi (2001), and Greenan and Mairesse 
(1996).  Because we use the new CNUS data, our study of necessity is cross-sectional, rather 
than the longitudinal or panel study common in the plant-level productivity literature.  In a cross-
section, we assume existing production technologies are available to all plants, with competition 
yielding a rough convergence in productivity across plants of different ages and initial 
technologies (e.g., Jensen, McGuckin, and Stiroh (2000)).  To continue the steel mill example, 
the new computer-controlled steel-making processes are available to all plants.  Using computer 
networks to link computerized processes to track staffing, shipments requested by customers, or 
raw material deliveries needed or on order from suppliers, shifts the production frontier for given 
steel-making technologies.  In practice, the CNUS data, like many other plant-level data (e.g., 
Mairesse and Greenan (1996)) show substantial variation among plants in both gross output and 
value-added productivity measures.  At the three-digit NAICS level, gross output productivity 
for CNUS respondents ranges from 47 percent to over 400 percent of the manufacturing sector 
average. 
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“K/L” is the plant’s capital / labor ratio as reported in the 1997 Economic Census.  

Capital is total asset value, that is, the book value of buildings and machinery.  Labor in the 
denominator of this variable is total employment in 1997.  We use 1997 data on capital intensity 
(K/L) because data on total capital stock are not available in 1999, which is not an Economic 
Census year.  The measure is not adjusted for either capital or labor quality.  We note that our 
capital measure is a stock measure, not a flow of services.  However, developing plant-level 
service flows is beyond the scope of this initial research.  We assume that the flow of services is 
proportional to book value.  Following many other plant-level studies (e.g., McGuckin et al., and 
Greenan, Mairesse, and Topiol-Bensaid (2001)), we use the book value of the capital / labor ratio 
as our measure of capital intensity.   

 
Finer detail on capital stock and capital spending, particularly a split into computer vs. 

other machinery stock and spending would obviously be highly desirable in testing the separate 
effects of computers and the presence of computer networks on productivity.  Such de tail on 
computer investment, but not on the presence of networks, was collected in Economic Census 
years through 1992.  Stolarick, 1999, for example, makes use of the computer investment 
measure in papers examining the relationship between productivity and computer and other 
information technology spending.  However, he is not able to test for the effect of computer 
networks.  Ideally, we would like to test for both computer investment and the presence of 
networks.  However, computer investment not collected in the 1997 ASM.  It will be collected in 
the 2000 ASM.  Once those data are available, it will be possible to link responses for plants in 
the 1999 CNUS and the 2000 ASM.  We are not able to make use of the considerable detail on 
computer spending collected in 1998 in another U.S. Census Bureau survey, the Annual Capital 
Expenditure Survey (ACES), because information is reported at the firm level, and cannot be 
linked readily with individual plants in the ASM.  
 

“SKILL” is the ratio of the number of non-production workers to total employment in the 
plant, as reported on the 1999 ASM.  Computer networks require highly skilled workers to 
develop and maintain them.  Productivity might thus be higher at plants with a higher proportion 
of skilled labor because these workers are able to develop, use, and maintain advanced 
technologies, including computer networks.  But applications such as expert systems may allow 
a function to be carried out with employees who have lower skill levels, or with fewer 
employees.  Occupational detail would be desirable to test the relationship among productivity, 
networks, and the presence of such skilled occupations as computer programmers and systems 
support staff  (e.g., Greenan, Mairesse, and Topiol-Bensaid (2001) and Motohashi (2001)).  
However, the ASM only collects information on the total numbers of production and non-
production workers in the plant, with no further detail by process, function, or worker 
characteristic.  Dunne and Schmitz (1992) found that plants in the 1988 SMT that used advanced 
technologies had lower ratios of production to total workers.  We follow the precedent of many 
other plant-level studies (e.g., McGuckin et al., and Dunne et al.) in using this employment ratio 
to proxy for skill mix in our productivity estimates.  Production workers accounted for about 
one-quarter (27 percent) of employment among CNUS respondents in manufacturing.  This share 
is similar to shares reported for the five two-digit U.S. Standard Industrial Classification (SIC) 
industries in the 1988 and 1993 SMTs (e.g., McGuckin et al. 1998). 
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The “SIZE” variable is based on total employment.  We use three different proxies for 
SIZE. First we use log(L), where L is defined as total number of employees in the plant.  This 
measure is used elsewhere, e.g., Greenan and Mairesse (1996).  Note that because L enters both 
sides of the productivity equation it may introduce biases in the parameter estimates of the 
model.  We therefore develop two additional measures of size.  Our second measure classifies 
plants into six standard employment size groups:  less than 50, 50 to 99, 100 to 249, 250 to 499, 
500 to 999, and 1000 or more.  We then assign a value of 1 for group 1, a value of 2 for group 2, 
etc.  Our third measure specifies SIZE as a standard series of six dummy variables, that is, if total 
employment is less than 50 then size1 = 1; else size1 = 0, if 50 <total employment  <100 then 
size2 = 0; else size2 = 0, etc.  About 30 percent of the plants in our sample are in the smallest 
size class (fewer than 50 employees, 20 percent have between 50 and 99 employees, about 30 
percent have between 100 and 250 employees, and the remaining 20 percent are in larger plants.   

  
Many manufacturing plants are part of a multi-unit firm, so employment size alone is an 

inadequate indicator of available resources, managerial expertise, and scale.  “Multi” is a dummy 
variable that takes on the value of one if the plant is part of a multi-unit firm, and equals zero 
otherwise.  Nearly two-thirds of the plants in our sample are part of a mulit-unit firm. 

 
All previous studies of plant-level behavior note substantial heterogeneity among plants 

within detailed manufacturing industries, as well as between detailed industries.  There are 21 3-
digit NAICS manufacturing indus try groups in our sample (NAICS codes 311- 316, 321- 327 
and 331-337).  Industry dummies (“IND”) are included in the empirical model specifications to 
capture industry-specific effects on plant-level labor productivity. 

 
 
C. Empirical Findings  
 

The preliminary results reported in this paper find that plants using computer networks 
significantly affects labor productivity.  We already showed that these plants have higher average 
labor productivity, by any measure we calculate.  Many of the expected relationships with 
explanatory variables hold, and are consistent across empirical model specifications.  For a few 
explanatory variables, our results differ from theoretical expectations, but are consistent with 
some closely related empirical findings.  We first report our preliminary estimates, then discuss 
their consistency with other research findings, and draw implications for future research. 
 
i. Econometric Estimates 
 

Computer networks significantly affect plant -level labor productivity.  Labor productivity 
is 11 to 18 percent higher in plants that use computer networks, depending on how we 
empirically specify the model of labor productivity in equation (4).  Tables 2 and 3 report the 
results of our estimates.  The empirical specifications differ in how we measure plant size, and in 
whether we control for capital intensity.   

 
In the first set of estimates, reported in Table 2, we define “size” as a continuous variable 

that takes on the value of 1 if the plant is small (fewer than 50 workers), 2 if employment is 
between 50 and 99, etc.  The first two columns report results using our preferred measure of 
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labor productivity, gross output per worker.  Plants using computer networks have labor 
productivity that is 17 percent higher, controlling for skill mix, size, multi-unit firms, and 
industry subsector (column 1).  The effect of networks remains significant and substantial, but 
decreases to 13 percent when we also control for capital intensity (column 2).   

 
Capital intensity is positively and significantly related to labor productivity, with an 

elasticity of about 20 percent.  Being part of a multi-unit firm matters.  Productivity in plants that 
are part of multi-unit firms is nearly 50 percent higher than in single-unit plants, controlling for 
networks, skill mix, capital intensity, and size (column 1).  When we control for capital intensity, 
we find that plants in multi-unit firms still have higher labor productivity although the 
differential falls to about 40 percent (column 2).  

 
Skill mix is positively and significantly related to labor productivity in both 

specifications.  The skill mix elasticity is about 22 percent when we do not account for capital 
intensity (column 1).  In this specification, the estimated skill mix elasticity may be confounded 
by relationships between productivity and capital intensity.  However, skill mix still has a 
significant elasticity of 18 percent when we control for capital intensity (column 2).   This 
positive relationship is consistent with expectations that productivity is linked to the use of new 
production processes, including use of computer networks that require skilled workers. 

 
Our estimates for these specifications are qualitatively similar when we use the alternate 

definition of labor productivity, value added per worker.  Plants using computer networks have 
labor productivity that is 14 percent higher when we also control for skill mix, size, multi-unit 
firms, and industry subsector, but not for capital intensity (column 3).  Controlling for capital 
intensity lowers the effect of computer networks to about 11 percent (column 4).  Skill mix and 
capital intensity elasticities remain in the vicinity of 20 percent.  Being part of a multi-unit firm 
still has a strong relationship to productivity, but the effects fall to about 35 and 30 percent 
(columns 3 and 4). 
 

We find that larger plants have lower labor productivity.  The coefficients on the 
continuous size measure in all model specifications in Table 2 are negative and most are 
significant.  Unreported regressions using total employment as a size measure yield qualitatively 
similar results.  Similar results hold for the separate size class dummies reported in Table 3.  In 
each of the four model specifications, productivity relative to the smallest plant size (fewer than 
50 workers) decreases as size class increases.  We find returns to plant scale that are somewhat 
less than 1.  We have looked quickly at several alternative specifications using these data, at 
coefficients reported in McGuckin et al., and at coefficients using a different set of U.S. 
manufacturing panel data from a much earlier period, and find similar results.   

 
Overall our estimates of the effect of computer networks on U.S. manufacturing 

productivity are similar to findings in McGuckin et al. for an earlier period and a limited set of 
manufacturing industries.  In the specification most similar to ours, in their Table 7, computer 
networks and other communication and control technologies increase labor productivity by about 
12 percent in 1993.  Our estimate, in column 4 of Table 2, is about 11 percent.  Their elasticity of 
capital intensity is about 14 percent; ours is about 18 percent.   
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ii. Discussion 

 
The strong relationship we find between computer networks and productivity in U.S. 

manufacturing is consistent with the few other studies addressing this relationship in the U.S. or 
other countries (e.g., McGuckin et al. (1998) for five two-digit U.S. manufacturing industries; 
Greenan and Mairesses (1996) for France; and Motohashi (2001) for Japan).  Most of the 
relationships we find between productivity and other explanatory variables also are broadly 
similar to those in previous studies.  Finding strong effects of computers or computer networks in 
cross-section is consistent with a larger plant-level productivity literature.  That literature also 
finds, however, that strong effects are harder to discern in panel and time-series studies (e.g. 
Mairesse & Griliches (1995)).  Assessing how the cross-section findings hold up over time will 
require creative analysis because there is only one year of CNUS data. 

  
Our most surprising finding is of slightly decreasing returns to scale for plant size.  Being 

part of a larger corporate entity is strongly associated with increased labor productivity (the 
coefficient of “multi” discussed above).  But given that corporate association, it is better to be a 
very small plant.  While this finding is surprising, we note that it is consistent with other plant-
level studies of U.S. manufacturing productivity, although previous studies do not comment on 
it.  There are several possible interpretations.  There may indeed be decreasing returns to plant 
size.  But there may also be a correlation between the use of computer networks and capital 
intensity not captured in our empirical specification of the 1997 capital – labor ratio.  Finally, we 
may be capturing a quality correction for capital, for which our current specification has no other 
proxy. 

 
The relationship among size, skill mix, productivity, and computer networks is unclear a 

priori.  Computer networks require investment and skilled staff to develop and maintain.  Such 
investments may be more feasible for larger businesses.  However, more recent network 
technologies such as the Internet are said to have become more feasible for smaller businesses 
because support services, such as Web hosting, can be purchased relatively inexpensively.  
Untangling these relationships will require further research, including industry-specific analyses 
and specifications, such as interaction terms, that explicitly seek to estimate multi-faceted 
relationships. 
  
  
5. Conclusions 

 
Labor productivity is significantly and substantially higher, on the order of 10 to 20 

percent, in manufacturing plants that use computer networks.  This finding is robust, holding up 
for two definitions of labor productivity and several alternative model specifications that control 
for capital intensity, skill mix, being part of a multi-unit firm, plant size, and industry.  It also is 
consistent with other studies in the literature that look explicitly at the use of computer networks 
in the U.S. or in other countries.  For the U.S., this is the first study to analyze the effect on 
productivity for the entire manufacturing sector. 
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This strong empirical regularity needs to be tempered with some standard caveats.  
Causality is difficult to infer in a cross-section study.  Other studies suggest that unobserved 
differences in management practices or other aspects of organizing production activities are what 
cause the observed relationships.  Better-managed plants may have higher productivity and also 
adopt computer networks.  Our measures of the quality of labor, capital, and output all could be 
improved.  Some of those improvements are relatively straightforward, and are part of our 
expected next steps. 

 
The new CNUS data offer rich possibilities for further refinement and expansion of our 

analysis of how using computer networks and e-business processes affects productivity.  We 
have not explored how the surveyed plants use computer networks.  The CNUS data identify the 
business processes that are e-business processes, and whether those e-business processes are 
used to communicate within the firm, with customers, or with suppliers.  Several studies find 
strong links to productivity when computers or computer networks (depending on study) are 
used in making the basic product, but less of a productivity payoff when they are used for 
processes like customer support or accounting and payroll has (e.g., Greenan and Mairesse 
(1996) for France; and Motohashi (2001) for Japan).  One next step we will take is to use the 
new information on these processes for 1999 and see whether the patterns of strong and weak 
links to productivity found in these studies hold for the CNUS data.  A second clear direction for 
future research is to extend our model specification to incorporate standard plant-level 
productivity specifications, such as within- and between-plant studies, adding information on the 
use of computer networks and e-business processes.   
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Table 1.  Definitions and Means of Variables  
 

Variable Definition Sample 
  Network No network 
Labor Productivity TVS/TE 284.79 222.39 
Labor Productivity VA/TE 133.65 103.29 
Average Employment TE 235.70 118.64 
TVS Total value of shipments.  
TE 
 
 

Total employment (total number of 
production workers and non-
production workers).  

VA 
Total value of shipments minus 
materials and energy  

   
   
  Full Sample 
Labor Productivity TVS/TE 277.34 
Labor Productivity VA/TE 130.03 
TVS Total value of shipments.  
TE 
 
 

Total employment (total number of 
production workers and non-
production workers). 221.72 

VA   

Network 
Network = 1 if plant uses a  computer 
network 0.88 

K                  
Total asset value (book value of 
building and machinery) in 1997  

KL97 
Capital/labor ratio in 1997 
(K97/TE97). 107.50 

Skill mix OW/TE 0.27 
OW Non-production workers  

Multi            
Multi =1 if the plant owned by a 
multi-plant firm 0.64 

Size   

If  TE < 50 then Size =1; 
 if  50 < = TE < 99 then Size = 2;  
 if  100 < = TE < 250 then Size = 3;  
 if  250 < = TE < 499 then Size = 4;  
 if  500 < = TE < 999 then Size = 5;  
 if   TE > = 1000 then Size = 6. 

0.29 
0.19 
0.28 
0.14 
0.07 
0.03 

Industry    
Three-digit NAICS subsectors 
311 to 316; 321 to 327; & 331 to 337 N/a 
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Table 2. Productivity Regression Results 

 
Dependent Variable: Labor Productivity (TVS/TE or VA/TE) 

(T-statistics in parentheses) 
 

Dependent variable: Labor Productivity defined as 
Independent 

Variables 
Gross Output 

(TVS/TE) 
Value -Added 

(VA/TE) 
 (1) (2) (3) (4) 

 
Intercept 

 
3.991 

(176.38) 

 
3.553 

(157.11) 

 
3.466 

(145.69) 

 
3.103 

(127.67) 
 
 
Network 

.172 
(14.82) 

.134 
(12.17) 

.138 
(11.34) 

.109 
(9.18) 

 
 
Skill 

.221 
(47.38) 

.183 
(41.00) 

.216 
(43.88) 

.184 
(38.24) 

 
 
KL97 

(--) 
(--) 

.202 
(64.38) 

(--) 
(--) 

.167 
(49.32) 

 
 
Size 

-.024 
(8.15) 

-.037 
(12.87) 

-.002 
(0.70) 

-.012 
(3.92) 

 
 
Multi 

.486 
(56.76) 

.386 
(46.83) 

.355 
(43.88) 

.272 
(30.59) 

 
Industry 
(3-digit NAICS) Yes Yes Yes Yes 

 
R2 .34 .41 .22 .27 

 
Number of plants 35,506 35,146 35,175 34,819 
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Table 3. Productivity Regression Results 
 

Dependent Variable: Labor Productivity (TVS/TE or VA/TE) 
(T-statistics in parentheses) 

 

Dependent variable: Labor Productivity defined as 
Independent 

Variables 
Gross Output 

(TVS/TE) 
Value-Added 

(VA/TE) 

Intercept 
 

 
3.973 

(178.20) 
3.523 

(157.38) 
3.473 

(148.05) 
3.101 

(128.75) 

Network 

 
.180 

(15.46) 
.142 

(12.75) 
.148 

(12.02) 
.117 

(9.79) 

Skill 
 

 
.219 

(46.99) 
.181 

(40.68) 
.214 

(43.60) 
.183 

(38.03) 

KL97 

 
( -- ) 
( -- ) 

.202 
(64.18) 

( -- ) 
( -- ) 

.167 
(49.15) 

Multi 

 
.492 

(57.27) 
.392 

(47.30) 
.361 

(39.87) 
.277 

(31.06) 

Size2 

 
-.031 
(2.94) 

-.042 
(4.21) 

-.023 
(2.07) 

-.031 
(2.84) 

Size3 

 
-.073 
(7.16) 

-.094 
(9.72) 

-.037 
(3.49) 

-.053 
(5.15) 

Size4 

 
-.129 
(8.52) 

-.155 
(12.91) 

-.057 
(4.25) 

-075 
(5.86) 

Size5 

 
-.137 
(8.52) 

-.183 
(12.06) 

-029 
(1.74) 

-.066 
(4.09) 

Size6 

 
.040 

(1.83) 
-.044 
(2.11) 

.103 
(4.41) 

.033 
(1.49) 

Industry 
(3-digit NAICS) Yes Yes Yes Yes 

R2 
 

.34 .41 .22 .27 
Numbers of 
Plants 35,507 35,146 35,176 34,819 
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