Corriger les effets de calendrier au Maroc pose-t-il des problèmes de colinéarité ?

Réalisé par: -Ali ELGUELLAB (INAC /HCP Maroc)
-Abderrahim MIRHOUAR (INAC /HCP Maroc)
- Oussama RIDA (INAC /HCP Maroc)

Sixièmes Journées sur la Correction de la Saisonnalité (JCS 2016)

Les 24 et 25 octobre 2016

INSEE, Paris

1

Plan

- Contexte et questions posées
- Revue de littérature
 - Traitement des effets de calendrier
 - Diagnostic de la colinéarité
 - effets de calendrier vs colinéarité
- Application au cas marocain
 - Approche
 - Données
 - résultats
- Conclusion et essai de recommandation

Contexte

- Selon les standard internationaux, le HCP est amené à produire des séries CVS
- En attendant, l'analyse de la conjoncture et dans l'obligation de traiter la saisonnalité et les effets de calendrier
- L'expérience montre l'existence de soucis liés à l'interdépendance du calendrier marocain...
- ...ce qui implique des estimations moins robustes et, le cas échéant, erronées

3

Revue de littérature: Diagnostic de la colinéarité

- Effets de la colinéarité:
 - Signes de paramètres inattendus;
 - R² élevé avec des coefficients non significatifs;
- Mal conditionnement :
 - 1. erreurs standards importantes
 - 2. Sensibilité importantes des paramètres

Questions posées

- Les régresseurs du calendrier marocain sontils corrélés entre eux?
- Si oui:
 - Est-ce que cette colinéarité dépend de la forme du modèle Reg ARIMA?
 - Est-ce qu'elle dépend du type de contraste et du centrage?
 - Est-ce qu'elle dépend de la taille de l'échantillon de la série?

.

Revue de littérature: effets de calendrier

- Approche standard: Modèles Reg-ARIMA $\phi_p(B)\phi_p(B^s)(1-B)^d(1-B^s)^D \left[Y_t \beta^t X_t \sum_{\tau} \alpha_{\tau} H(\tau, t) \right] = \theta_q(B)\Theta_{\mathcal{Q}}(B^s)\varepsilon_t$
- Prise en compte des effets du calendrier solaire (les variables X)...:
 - Les jours de la semaine
 - Les jours ouvrables
- ...et du calendrier lunaire :
 - Ramadan et fêtes religieuses (les variables H)

Revue de littérature: effets de calendrier

- Jours de la semaine:
- 1. modèle de base:

$$Y_{t} = \sum_{i=1}^{6} \beta_{i} (N_{it} - N_{7t}) + \overline{\alpha} N_{t} + \varepsilon_{t}$$

Notation:

 Y_t :Série brute observée à la période t

 N_{it} : Nombre de lundi......de dimanche à la période t

 ε_t :Terme d'erreur qui suit ARIMA

2. modèle canonique

$$X_t = \sum_{i=1}^{6} \beta_i \left(N_{it} - \frac{1}{8} \sum_{i=7}^{14} N_{it} \right) + \overline{\alpha} L Y_t + \varepsilon_t$$

7

Revue de littérature: effets de calendrier

- Jours ouvrables:
- 1. modèle de base

$$Y_t = \beta_1 \left[\sum_{i=1}^{i=5} N_{it} - \frac{5}{2} \left(N_{6t} + N_{7t} \right) \right] + \overline{\alpha} N_t + \varepsilon_t$$

2. modèle canonique

$$X_t = \beta_1 \left(\sum_{i=1}^5 N_{it} - \frac{5}{9} \sum_{i=6}^{14} N_{it} \right) + \overline{\alpha} L Y_t + \varepsilon_t$$

Revue de littérature: effets de calendrier

• Fêtes mobiles:

H(au,t) Nombre de jours du mois t (trimestre) coïncidant avec la fête au

Généralement on utilise ces fêtes:

Ramadan, Aid Adha, fête du fitre, fête du Mawlid, fête du nouvel an hijir

(

Revue de littérature: Diagnostic de la colinéarité

- Outils de diagnostic de la colinéarité:
- Matrice de corrélation;
- ACP...

et encore mieux: l'approche BKW

Revue de littérature: Diagnostic de la colinéarité

- Approche BKW (Belsley, Kuh et Welsch (1980))
 - 1. Indices de conditionnement pour les variables explicatives 1..k
 - 2. Décomposition de la variance des coefficients de régression

la matrice X des régresseurs peut être décomposé sous cette forme :

$$X = UDV^T$$

où
$$V^T V = U^T U = I_p$$
 et $D = diag(\mu_1, \dots, \mu_p)$

- 1. Indices de conditionnement $\eta_k = \frac{\mu_{max}}{\mu_k}$ ibles explicatives 1..k:
- Si η_k est \geq à un seuil (10 ..30), alors il y a un risque de colinéarité

11

Revue de littérature: Diagnostic de la colinéarité

2. Décomposition de la variance des coefficients de régression:

$$E[Y] = X\beta$$
 et $VAR(Y) = \sigma^2 I_n$

$$VAR(\hat{\beta}) = \sigma^2 (X^T X)^{-1}$$

$$VAR(\hat{\beta}_k) = \sigma (X | X)$$

$$VAR(\hat{\beta}_k) = \sigma^2 \sum_{j=1}^p \frac{v_{kj}^2}{\mu_j^2} \qquad \qquad \left(X = UDV^T \right)$$

$$X = UDV^T$$

Si on pose:

$$\phi_{kj}=rac{v_{kj}^2}{\mu_j^2}$$
 et $\phi_k=\sum_{j=1}^prac{v_{kj}^2}{\mu_j^2}$

 $\pi_{kj} = rac{\phi_{kj}}{\phi_k}$: la part de la variance du kième coefficient qui fait apparaître la jième valeur propre de la matrice X.

Revue de littérature: Diagnostic de la colinéarité

Indice de		Proport	ion de la variance	
conditionnement	$VAR(\widehat{\boldsymbol{\beta}}_1)$	$VAR(\widehat{\boldsymbol{\beta}}_2)$		$VAR(\widehat{\boldsymbol{\beta}}_p)$
η_1	π_{11}	π_{12}		π_{1p}
η_2	π_{21}	π_{22}		π_{2p}
$oldsymbol{\eta}_p$	π_{p1}	π_{p2}		π_{pp}
Total	1	1	1	1

Belsley, Welch et Kush (1980) affirme que lorsqu'un indice de conditionnement (supérieur à un seuil 10,20 ou 30) est associé à deux ou plusieurs variables avec des parts de variance importantes (50% ou plus), ces variables constituent une origine du phénomène de colinéarité (dépendance proche« dominante »).

13

Revue de littérature: effets de calendrier vs colinéarité

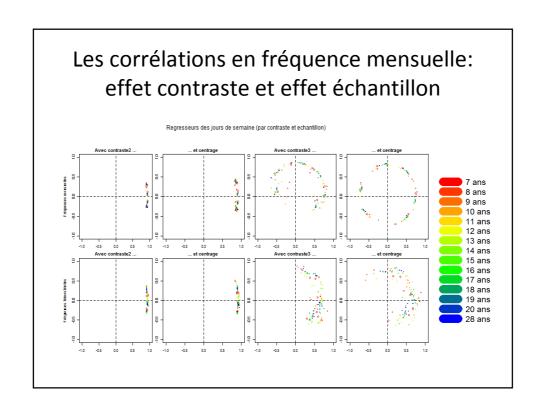
• Colinéarité et effets de calendrier (Salinas et Hilmer, 1987) en adoptant l'approche BKW:

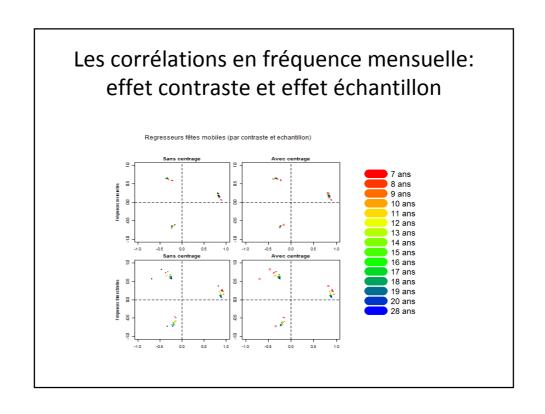
Tableau 1 : Résultats des travaux de Salinas et Hillmer (1987)

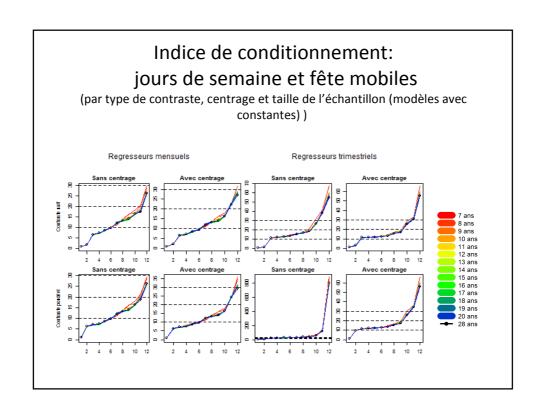
Opérateurs de	Reparamétrage (Contraste)										
Différenciation	Non	Oui									
Sans	La colinéarité semble poser un problème	La colinéarité n'a pas été réduite avec le reparamétrage									
(1-B)	La colinéarité ne semble pas être un problème	-									
(1-B ¹²)	La colinéarité est présente pour les	Il n y a aucune preuve du problème de									
(1-B)(1-B ¹²)	deux cas	colinéarité									
Conclusion général	Risque de multicolinéarité notamment pour modèle saisonnier	Présence non évidente de colinéarité avec reparametrage du modèle									

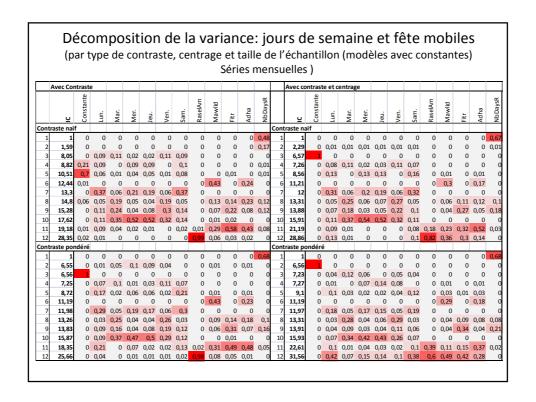
Application au cas marocain

Données et approche

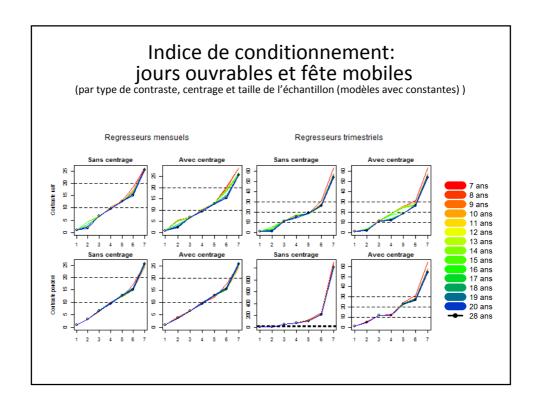

• Régresseurs solaires:

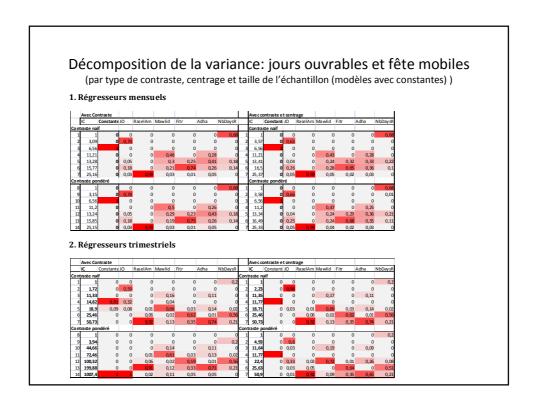

	Contraste simple	Contraste pondéré
jours de la semaine	$reg_i^2 = N_{it} - \sum_{i=7}^{14} N_{it}$	$reg_{i}^{3} = N_{it} - \frac{1}{8} \sum_{i=7}^{14} N_{it}$
jours ouvrables	$reg_{JO}^2 = \sum_{i=1}^5 N_{ii} - \frac{5}{2} \sum_{i=6}^{14} N_{ii}$	$reg_{JO}^{3} = \sum_{i=1}^{5} N_{ii} - \frac{5}{9} \sum_{i=6}^{14} N_{ii}$

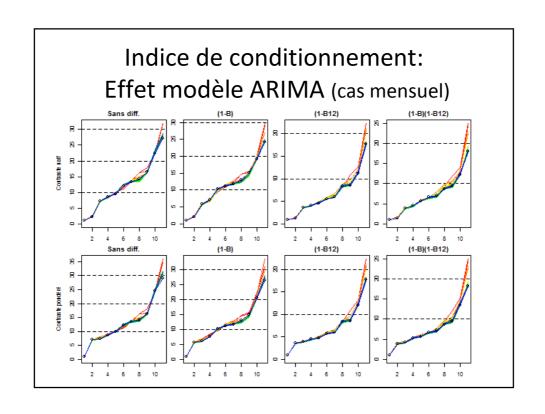

- La période de calcul des régresseurs sur 400 ans (entre 1956 et 2356)
- Régresseurs pour fêtes mobiles: (mois de Ramadan, la fête du Sacrifice (Aid Adha), fête du Fitre, fête du Mawlid et fête du nouvel an hijir)
- Divers échantillons:
 - Fréquence mensuelle: 15 échantillons (de 7 ans à 20 ans en plus de 28 ans)
 - Fréquence mensuelle: 17 échantillons (de 5 ans à 20 ans en plus de 28 ans)
 - Périodes finissant en 2016
- Divers ARIMA: différence saisonnière, différence non saisonnière, et la combinaison des deux.

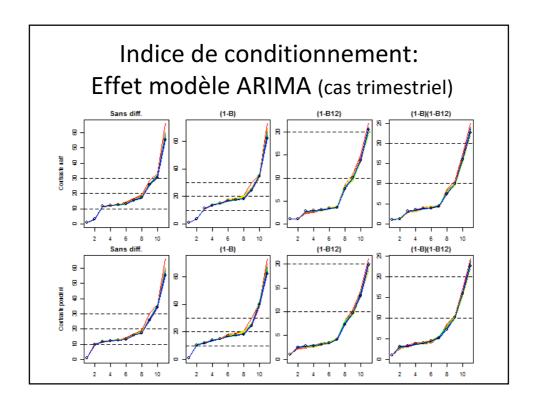

				Les	C	orr	éla	ati	ons	•				
Contraste naif														
	Lun.	Mar.	Mer.	Jeu.	Ven.	Sam.	JO	JF	RaselAm	Mawlid	Fitr	Adha	NbDays	
Fréquences r	nensuelle	es												
Lun.		0,829	0,731	0,685	0,669	0,671	0,75	-0,645	-0,26	-0,361	-0,339	-0,419	-0,10	
Mar.	0,829		0,848	0,747	0,702	0,668	0,664	-0,679	-0,228	-0,31	-0,312	-0,375	-0,09	
Mer.	0,731	0,848		0,852	0,752	0,684	0,606	-0,692	-0,226	-0,304	-0,298	-0,365	-0,09	
Jeu.	0,685	0,747	0,852		0,846	0,722	0,577	-0,689	-0,228	-0,308	-0,297	-0,355	-0,09	
Ven.	0,669	0,702	0,752	0,846		0,822	0,543	-0,677	-0,235	-0,316	-0,309	-0,377	-0,09	
Sam.	0,671	0,668	0,684	0,722	0,822		0,481	-0,641	-0,252	-0,358	-0,337	-0,419	-0,1	
JO	0,75	0,664	0,606	0,577	0,543	0,481		-0,512	-0,197	-0,298	-0,245	-0,3	-0,07	
JF	-0,645	-0,679	-0,692	-0,689	-0,677	-0,641	-0,512		0,201	0,275	0,266	0,325	0,08	
RaselAm	-0,26	-0,228	-0,226	-0,228	-0,235	-0,252	-0,197	0,201		-0,098	-0,093	0,265	-0,11	
Mawlid	-0,361	-0,31	-0,304	-0,308	-0,316	-0,358	-0,298	0,275	-0,098		-0,097	-0,097	-0,12	
Fitr	-0,339	-0,312	-0,298	-0,297	-0,309	-0,337	-0,245	0,266	-0,093	-0,097		-0,092	0,55	
Adha	-0,419	-0,375	-0,365	-0,355	-0,377	-0,419	-0,3	0,325	0,265	-0,097	-0,092		-0,11	
NbDaysR	-0,102	-0,099	-0,094	-0,094	-0,099	-0,11	-0,071	0,084	-0,116	-0,122	0,553	-0,115		
Fréquences t	rimestrie	lles												
Lun.		0,805	0,756	0,764	0,772	0,741	0,279	-0,748	-0,384	-0,184	-0,201	-0,437	0,01	
Mar.	0,805		0,809	0,746	0,777	0,767	0,281	-0,759	-0,38	-0,147	-0,203	-0,424	0,00	
Mer.	0,756	0,809		0,801	0,763	0,767	0,283	-0,757	-0,383	-0,17	-0,193	-0,432	0,00	
Jeu.	0,764	0,746	0,801		0,807	0,736	0,285	-0,75	-0,364	-0,164	-0,208	-0,424	0,00	
Ven.	0,772	0,777	0,763	0,807		0,797	0,272	-0,761	-0,374	-0,153	-0,202	-0,43	0,00	
Sam.	0,741	0,767	0,767	0,736	0,797		0,192	-0,741	-0,394	-0,183	-0,201	-0,435	0,01	
JO	0,279	0,281	0,283	0,285	0,272	0,192		-0,247	-0,115	-0,065	-0,036	-0,125	0,02	
JF	-0,748	-0,759	-0,757	-0,75	-0,761	-0,741	-0,247		0,351	0,154	0,187	0,398	-0,00	
RaselAm	-0,384	-0,38	-0,383	-0,364	-0,374	-0,394	-0,115	0,351		-0,04	-0,312	0,706	-0,37	
Mawlid	-0,184	-0,147	-0,17	-0,164	-0,153	-0,183	-0,065	0,154	-0,04		-0,35	-0,335	-0,37	
Fitr	-0,201	-0,203	-0,193	-0,208	-0,202	-0,201	-0,036	0,187	-0,312	-0,35		-0,017	0,83	
Adha	-0,437	-0,424	-0,432	-0,424	-0,43	-0,435	-0,125	0,398	0,706	-0,335	-0,017		-0,24	
NbDaysR	0,017	0,001	0,009	0,003	0,009	0,013	0,023	-0,008	-0,373	-0,375	0,834	-0,249		

				on	tra	ast	. •.	.	ions ndé				
	Lun.	Mar.	Mer.	Ieu.	Ven.	Sam.	10	IF	RaselAm	Mawlid	Fitr	Adha	NbDavsl
Fréquences m			1-1011	jeu	vem	Juin	,,	,.	rascana	- iu ii ii ii	110	710110	Duy5
Lun.		0,349	-0,058	-0,222	-0,246	-0,137	0,31	-0,186	-0,124	-0,186	-0,16	-0,203	-0,04
Mar.	0,349		0,381	-0,021	-0,174	-0,25	0,613	-0,381	-0,107	-0,148	-0,166	-0,191	-0,05
Mer.	-0,058	0,381		0,395	-0,001	-0,234	0,691	-0,447	-0,119	-0,151	-0,156	-0,193	-0,04
Jeu.	-0,222	-0,021	0,395		0,382	-0,084	0,597	-0,429	-0,121	-0,157	-0,15	-0,17	-0,04
Ven.	-0,246	-0,174	-0,001	0,382		0,319	0,299	-0,376	-0,12	-0,157	-0,159	-0,193	-0,05
Sam.	-0,137	-0,25	-0,234	-0,084	0,319		-0,341	-0,161	-0,104	-0,169	-0,145	-0,19	-0,05
JO	0,31	0,613	0,691	0,597	0,299	-0,341		-0,638	-0,199	-0,259	-0,261	-0,31	-0,07
JF	-0,186	-0,381	-0,447	-0,429	-0,376	-0,161	-0,638		0,201	0,275	0,266	0,325	0,08
RaselAm	-0,124	-0,107	-0,119	-0,121	-0,12	-0,104	-0,199	0,201		-0,098	-0,093	0,265	-0,11
Mawlid	-0,186	-0,148	-0,151	-0,157	-0,157	-0,169	-0,259	0,275	-0,098		-0,097	-0,097	-0,12
Fitr	-0,16	-0,166	-0,156	-0,15	-0,159	-0,145	-0,261	0,266	-0,093	-0,097		-0,092	0,55
Adha	-0,203	-0,191	-0,193	-0,17	-0,193	-0,19	-0,31	0,325	0,265	-0,097	-0,092		-0,11
NbDaysR	-0,042	-0,054	-0,048	-0,047	-0,053	-0,051	-0,079	0,084	-0,116	-0,122	0,553	-0,115	
Fréquences tr	rimestrie	lles											
Lun.		0,185	-0,02	0,024	0,05	-0,06	0,48	-0,354	-0,191	-0,118	-0,099	-0,221	0,0
Mar.	0,185		0,191	-0,065	0,07	0,024	0,523	-0,427	-0,211	-0,055	-0,116	-0,223	-0,01
Mer.	-0,02	0,191		0,164	0,005	0,02	0,504	-0,407	-0,209	-0,095	-0,089	-0,233	0,00
Jeu.	0,024	-0,065	0,164		0,191	-0,093	0,517	-0,368	-0,156	-0,076	-0,112	-0,2	-0,00
Ven.	0,05	0,07	0,005	0,191		0,149	0,487	-0,454	-0,209	-0,072	-0,12	-0,249	0,00
Sam.	-0,06	0,024	0,02	-0,093	0,149		-0,188	-0,301	-0,19	-0,104	-0,085	-0,193	0,01
JO	0,48	0,523	0,504	0,517	0,487	-0,188		-0,707	-0,334	-0,135	-0,186	-0,392	0,00
JF	-0,354	-0,427	-0,407	-0,368	-0,454	-0,301	-0,707		0,351	0,154	0,187	0,398	-0,00
RaselAm	-0,191	-0,211	-0,209	-0,156	-0,209	-0,19	-0,334	0,351		-0,04	-0,312	0,706	-0,37
Mawlid	-0,118	-0,055	-0,095	-0,076	-0,072	-0,104	-0,135	0,154	-0,04	0.05	-0,35	-0,335	-0,37
Fitr	-0,099	-0,116	-0,089	-0,112	-0,12	-0,085	-0,186	0,187	-0,312	-0,35	0.047	-0,017	0,83
Adha NbDaysR	-0,221 0.02	-0,223 -0,013	-0,233 0,005	-0,2 -0,007	-0,249 0.005	-0,193 0.012	-0,392 0.003	0,398 -0,008	0,706 -0.373	-0,335 -0.375	-0,017 0.834	-0.249	-0,249

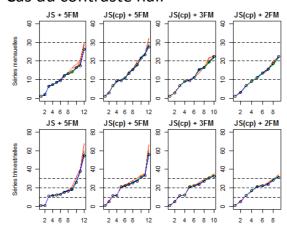


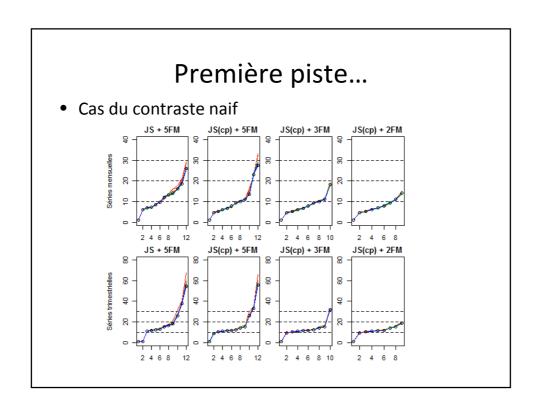






	(pa	ar ty	/pe	de	con	tra	ste,	cer	ntra	ıge	et t	aille	e de	e l'	éch	ant	illoı	า (ท	nod	èle	s av	ec (con	star	ntes	;)	
										Sé	érie	s tr	ime	esti	riell	es)											
	Avec Co	ntraste	. 1	_											Avec	ontras	te et c	entrac	70					_		_	
	AVEC CO.								_				~		AVEC	_	ic et c	Circiae	,e				_				0
	U	Constante	ų.	Mar.	Mer.	en.	Ven.	Sam.	RaselAm	Mawlid	ŧ	Adha	NbDaysR		U	Constante	E	Mar.	Mer.	en.	Ven.	Sam.	RaselAm	Mawlid	ŧ	Adha	NhOaveR
Conti	raste nai	f		_				- 47			_	_		Cont	raste r	aif	_	_	_			- 47	_			_	
1	1	0	0	0	0	0	0	0	0	0	0	0	0,2	1	1	0	0	0	0	0	0	0	0	0	0	0	0,
2	2,48	0	0,01	0,01	0,01	0,01	0,01	0,01	0	0	0	0	0	2	2,9	0	0,01	0,01	0,01	0,01	0,01	0,01	0	0	0	0	
3	11,57	0	0	0	0	0	0	0	0	0,18	0	0,09	0	3	11,7	0	0	0	0	0	0	0	0	0,17		0,08	
4	11,77	1	0	0	0	0	0	0	0	0	0	0	0		11,8	1	0	0	0	0	0	0	0	0	0	0	
5 6	12,1 12.64		0,13	0,29	0,02	0,18	0,24	0,02	0	0	0	0	0	5 6	12,1	0	0,13	0,29	0,02	0,17	0,24	0,02	0	0	0	0	
7	13.04	0	0,01	0,01	0,24	-, -	0,11	0,31	0	0	0	0	0	- 5	12,6 13	0	0,01	.,.	0,24	-,	0,11	0,29	0	0	0	0	
8	14,89	-	0.25	0.37		0.02	0.36	0,23	0	0	0	0	0	8	14,9	0	0.25	0.37		0.02	0.35	0,22	0	0	0	0	
9	16.79		0.11	0.31	_	0.46	0.25	0.09	0	0	0	0	0	9	16.8	-	0.11	0.31	0.45	0.46	0.25	0.09	0	0	0	0	
10	23,24	0	0,03	0,01	0,01	0	0	0,02	0,03	0,74	0	0,28	0,11	10	25	0	0,01	0	0,01	0	0	0,01	0,07	0,27	0,27	0,14	0,5
11	25,7	0	0	0	0	0	0	0	0,04	0,01	0,64	0	0,48	11	27,5	0	0,05	0	0,01	0,01	0	0,05	0	0,52	0,36	0,25	0,0
12	51,12	0	0	0	0	0	0	0	0,92	0,07	0,36	0,62	0,21	12	51,4	0	0	0	0	0	0	0	0,92	0,04	0,37	0,53	0,2
_	raste po	_												Cont	Contraste pondéré												
13	1	0	0	0	0	0	0	0	0	0	0	0	0,2	1	1	0	0	0	0	0	0	0	0	0	0	0	0,
14	9,2	0	0,04	0,07	-,	0,05	0,09	0,02	0	0		0,03	0	2	9,71	0	0,03	0,06	-,	0,03	0,09	0,01	0	0		0,04	
15 16	11,77 11.92	0	0.02	0.01	0.02	0.03	0.01	0	0	0.22	0	0.06	0	3	11,8 12.1	0	0.09	0.24	0	0.14	0.21	0.01	0	0	0	0	
17	12.1		0,02	0,01	.,.	0,03	0,01	0.02	0	0,22	0	0,06	0		12,1	0	0.03	0.03	0.04	0.03	0,21	0,01	-	0.21		0.04	
18	12,64		0,01	0,01	-,-	0,23	0,11	0,25	0	0	0	0	0	6	12,6	0	0,01	0,01	0,17	0,19	0,13	0,2		0,01	0	0	
19	13,04		0,35		0,24	-, -	0,03	0,19	0	0	0	0	0	7	13,1	0	0,3	0,01	0,22	-,	0,02	0,17	0	0	0	0	
20	14,91	0	0,23	0,3	0,01	0,02	0,28	0,27	0	0	0	0	0	8	14,9	0	0,21	0,27	0,01	0,02	0,24	0,24	0	0,01	0	0,01	
21	16,82	0	0,08	0,3	0,36	0,42	0,2	0,09	0	0	0	0	0	9	16,8	0	0,06	0,28	0,33	0,38	0,19	0,08	0	0	0	0	
22	24,72		0,06	0,01	0,06	0,02	0,02	0,07	0,07	0,46	0,13	0,21	0,4	10	25,3	0	0,01	0	0,01	0	0	0,01	0,07	0,1		0,06	0,5
23	26,42	0		-,-	-,-	-,	-,-	.,	0,01	0,25	0,5	0,1	0,19	11	30,4	0	0,26	-,	0,15	-,		0,26	0	0,63		0,35	
24	51,17	0	0	0,01	0	0	0	0,01	0,92	0,06	0,36	0,61	0,21	12	51,5	0	0,01	0,01	0	0,01	0,01	0,02	0,93	0,03	0,38	0,51	0,2




Rappel des résultats:

- Colinéarité est globalement forte
 - La colinéarité est très forte dans le cas trimestriel (selon tous les critères)
 - JO vs JS:
 - Cas mensuel: colinéarité présente
 - Centrage des régresseurs permet
 - de réduire cette colinéarité mais sans l'annuler
 - De rendre les deux contrastes comparables
 - Effet échantillon est présent ...
 - Petits échantillons sont plus colinéaires
 - ...sans être important
 - Effet modèle ARIMA:
 - 1-B12 réduit substantiellement la présence de colinéarité...
 - ...contrairement à 1-B

Première piste...

- ACP des JS: régresseurs-composantes principales
- Une sélection des FM? 3 vs 2 régresseurs
- Cas du contraste naif

Conclusion

- La colinéarité des régresseurs s'avère un problème latent et sérieux
- Heureusement réduit par
 - La désaisonnalisation (centrage) des régresseurs
 - La présence de la saisonnalité quasi assurée si les effets de calendrier le sont aussi (1-B12)
- Mais faire plus attention notamment pour:
 - Les cours échantillons
 - Les séries trimestrielles
 - La multiplicité des fêtes mobiles
- Instaurer des diagnostics de colinéarité dans X13?