Direction de la Diffusion et de l'Action régionale

H 2014/01 La ségrégation spatiale dans les grandes unités urbaines de France métropolitaine :

une approche par les revenus

Gaëlle Dabet

Jean-Michel Floch

Document de travail

Institut National de la Statistique et des Études Économiques

Institut National de la Statistique et des Études Économiques

Série des documents de travail de la Direction de la Diffusion et de l'Action Régionale

H 2014/01 La ségrégation spatiale dans les grandes unités urbaines de France métropolitaine une approche par les revenus (*)

Gaëlle Dabet Elève-attachée à l'ENSAI

Jean-Michel Floch
Département de l'action régionale

Mars 2014

(*)Le travail exploratoire de Marine HADDAD, étudiante à l'Ensae, en stage en juillet 2012 a contribué à mettre en évidence les limites des indicateurs classiques

Ces documents de travail ne reflètent pas la position de l'INSEE et n'engagent que leurs auteurs.

Working papers do not reflect the position of INSEE but only their author's views.

Table des matières

RÉSUMÉ	6
INTRODUCTION	7
1 - Ségrégation	7
3 - Le champ de l'étude	10
4 -Ségrégation et pauvreté	11
1. LA MESURE DE LA SÉGRÉGATION	12
1.1 Les indicateurs selon Massey et Denton	12
1.2 Indicateurs spatiaux et aspatiaux	14
2 . DES INDICATEURS DE DISSIMILARITÉ ADAPTÉS AUX REVENUS	16
2.1 Les "rank ordered segregation measure (ROSM)"	16
2.2 Application à l'indice d'entropie	18
Tableau 3	19
2.3 Convergence des résultats obtenus	19
2.4 Profils de la ségrégation 2.4.1 Comparaison des profils	
2.5 Villes-centre et banlieue	23
3 DISSIMILARITÉ, ISOLEMENT, AGRÉGATION, CONCENTRATION ET NIVEAU DES REVENU	
3.1 Ségrégation, inégalité des revenus et logement	24
3.2 Dissimilarité et autres indicateurs 3.2.1 Dissimilarité globale et dissimilarité riches-pauvres	28 28
3.2.2 Dissimilarité, isolement, concentration, agrégation	
4 L'INSCRIPTION SPATIALE DE LA SÉGRÉGATION	30
4.1 La méthode	30
4.2 Global et local	30
4.3 Besançon et Poitiers	32
5- CONCLUSIONS ET PERSPECTIVES	34

5-1 Comparaison rapide entre 2007 et 2011	34
5.2 Sensibilité des indicateurs	35
5.3 Prolongements	36
Bibliographie	37
ANNEXE	
Annexe 1- Les indicateurs d'entropie	38
Rangs pour les 118 unités urbaines	38
Annexe 2- Les autres indicateurs	41
Rangs pour les 118 unités urbaines	41

Résumé

Les revenus fiscaux permettent d'appréhender la ségrégation socio-spatiale. La nature de cette variable nécessite d'adapter les indicateurs usuels de ségrégation, construits initialement pour des variables dichotomiques. Les « rank-ordered ségrégation indexes », proposés par Reardon & alii, permettent une mesure de la ségrégation pour des variables continues. Ils ont été calculés pour toutes les unités urbaines de France métropolitaine de plus de 50 000 habitants, et confrontés à d'autres indicateurs ('isolement, concentration, ségrégation). L'étude de ces indicateurs permet de hiérarchiser la situation des plus grandes agglomérations, et de mettre en relation la ségrégation et l'inégalité des revenus. Si le niveau moyen des revenus n'a pas beaucoup d'importance, les inégalités revenus expliquent pour une bonne part la ségrégation. Il est donc nécessaire de prendre en compte les aspects locaux et de proposer une cartographie de la ségrégation pour chacune des unités urbaines.

Mots clefs: revenus, statistique spatiale, estimation non-paramétrique, indicateurs de ségrégation.

Abstract

Fiscal incomes are used to understand the socio- spatial segregation. The nature of this variable requires adapting the usual indicators of segregation, originally built for dichotomous variables. The "rank -ordered indexes segregation" proposed by Reardon & alii, allow a measure of segregation for continuous variables. They were calculated for all urban units metropolitan France more than 50 000 inhabitants, and face other indicators (isolation, concentration, segregation). The study of these indicators allows you to rank position of largest cities and relate segregation and income inequality. If the average level of income does not matter much, income inequality explain a much segregation. It is therefore necessary to take into account local aspects and propose a mapping for each of urban segregation units.

<Keywords: income, spatial statistics, nonparametric estimation, segregation indexes</p>

Introduction

La division des villes en quartiers, selon des critères sociaux est un phénomène ancien. Les travaux désormais classiques de sociologie urbaine de l'école de Chicago montraient, sur des cas précis comment s'organise l'espace urbain. Comme beaucoup d'autres travaux anglo-saxons, ils insistaient sur la composante ethnique de la ségrégation résidentielle. Les études européennes, notamment françaises se sont plutôt orientées vers la ségrégation entre groupes sociaux.

Ce document de travail se situe dans cette dernière optique, et va chercher à éclairer :

- les différentes composantes de la ségrégation spatiale, telles que les ont définies Massey & Denton(2005), dont on pourra trouver une bonne présentation en français dans Apparicio(2008);
- les différences de situation entre les principales unités urbaines de France métropolitaine, par le calcul d'indicateurs, mais aussi par des représentations cartographiques montrant comment s'organise spatialement la ville, comment se situent quartiers riches et quartiers pauvres.
- Le lien entre niveau de richesse et ampleur de la ségrégation.

Les questions posées sont tout à fait classiques. Elles ont été réactivées à l'Insee dans une perspective très opérationnelle, celle de la refonte des territoires de la politique de la ville. Ces travaux ont été l'occasion de réflexions sur les variables à mobiliser pour appréhender les contrastes sociaux, et sur l'articulation entre la perspective globale et la perspective locale.

L'optique retenue, traiter de façon comparative les principales agglomérations de France métropolitaine (118 unités urbaines de plus de 50 000 habitants) a conduit à des choix sur les variables et les méthodes :

- utilisation exclusive des revenus fiscaux
- utilisation d'une large palette d'indicateurs, en accordant une place privilégiée aux indicateurs construits pour étudier les revenus, proposés dans les travaux de Reardon
- utilisation, d'un point de vue technique d'indicateurs limitant les effets de type Maup ou échiquier (Reardon, Wong).

1 - Ségrégation

Faut-il parler de ségrégation ? On trouve le terme dans beaucoup de publications anglo-saxonnes. Il a été de plus en plus employé dans les études urbaines en France. De nombreux auteurs (Brun, Rhein, Grafmeyer, Tovar) n'ont pas manqué d'indiquer le caractère polysémique de ce terme. Selon les auteurs, l'acception du terme pourra être différente. De plus, les travaux ont été mené par des sociologues, puis des géographes et enfin des économistes qui pouvaient avoir des définitions différentes de la ségrégation et des visions différentes de la spatialisation des phénomènes. C'est la généralisation de son emploi dans les sciences sociales qui a conduit à l'adopter.

Dans le champ des sciences sociales, la ségrégation désigne un état de séparation de groupes ethniques ou sociaux, à l'échelle infra-urbaine, urbaine, régionale ou nationale, confirmée ou favorisée éventuellement par la loi (ségrégation d'État), légitimée socialement, et qui conduit à la formation de territoires hétérogènes. Concrètement, la ségrégation résulte de la présence particulièrement marquée dans un quartier des habitants les plus démunis et l'arrivée d'habitants aux caractéristiques proches, qui conforte et amplifie le phénomène.

La ségrégation est par définition un phénomène spatial. Les travaux de l'école de Chicago débouchaient sur la construction de cartes représentant la façon dont les groupes sociaux occupaient l'espace. L'intérêt de la notion de ségrégation selon Brun est de ne pas s'en tenir à une analyse des formes existantes et de mettre l'accent sur des processus. Dans ce document, on en restera à un état des lieux visant à mieux comprendre l'occupation sociale de l'espace dans les principales agglomérations de France métropolitaine. Cette étude devrait permettre par la suite d'apprécier la dynamique des processus en œuvre. Cette division sociale de l'espace est le produit d'une dynamique liée à l'accès au logement, au marché du travail. On sait aussi que les territoires en difficulté restent stables dans l'espace, sans que l'on ait les moyens statistiques de savoir s'il s'agit pour les populations qui y résident d'un espace de relégation durable ou d'un lieu de passage transitoire, les deux aspects pouvant bien entendu coexister.

On emploiera donc le terme de ségrégation spatiale dans le premier sens que lui donne Grafmeyer, à savoir celui d'une différenciation sociale de l'espace. Sachant que dans la suite de ce travail, on recourrait de façon systématique à l'utilisation d'indicateurs de ségrégation spatiale, il a semblé préférable de le retenir, en précisant que cette ségrégation était dans la majorité des cas le résultats de processus sociaux « non intentionnels », contrairement à l'apartheid ou aux ghettos.

La majorité des travaux portant sur la ségrégation et la répartition différenciée des groupes sociaux étudient les populations en difficulté. Il a semblé intéressant de s'intéresser aussi à la localisation des populations aisées. Il est évident que les situations ne sont pas symétriques entre quartiers pauvres et quartiers aisés, quand même on utilise les mêmes indicateurs pour les mesurer. Dans le premier cas, les choix de localisation résidentiels sont plus subis que dans le second, certains auteurs ayant pu parler pour les quartiers les plus riches d'autoexclusion.

Le présent travail reste bien entendu de nature avant tout statistique, le but étant d'objectiver un peu une situation complexe et de fournir des matériaux aux économistes et sociologues.

2 Les revenus fiscaux : pourquoi ?

La majorité des travaux effectués sur la ségrégation socio-spatiale utilisent les catégories socioprofessionnelles. C'est le cas à l'Insee pour les travaux de Tabard(1993), ceux de Mansuy et Marpsat (1991); pour ceux de Rhein, Préteceille, Charlot dans le monde universitaire. Quelques travaux, comme ceux de Bouzouina(2008) privilégient les revenus fiscaux pour comparer la situation de trois grandes agglomérations. Citons également les travaux de Tovar sur l'Ile de France qui se livrent à une comparaison très détaillée des avantages respectifs de l'utilisation des PCS et des classes de revenus. On reprendra quelques-uns uns de ses arguments sans rentrer dans les analyses économiques sur le cadre conceptuel qu'elle développe (caractère normatif du revenu, utilitarisme, théories de la justice).

Tovar rappelle que les travaux effectués sur la ségrégation résidentielle à partir des PCS renvoient à une partition de la population dont les sciences sociales ont tracé les

frontières. La catégorie « ouvriers » est sans doute mieux définie que la catégorie « population ayant des revenus se situant dans le premier décile. Les quartiers « ouvriers » rassemblaient des populations ayant un certain niveau de revenus, mais aussi des formes de sociabilité assez spécifiques.

Pourquoi alors utiliser les revenus? Commençons par les arguments les moins conceptuels, qui ne doivent pas pour autant être négligés. Les données fiscales sont extrêmement riches: au-delà des données sur les revenus, elles fournissent des informations démographiques sur le ménage, des informations sur le logement (surface, statut, date de construction, appartenance au parc social). Elles sont localisées à l'adresse, via la parcelle cadastrale, sur l'ensemble du territoire, et pas seulement sur les communes de plus de 1000 habitants. Elles permettent de ce fait un traitement systématique des unités urbaines, et un degré de résolution spatiale qu'il est plus difficile d'obtenir avec le Recensement général de la population (RGP). La source est exhaustive, contrairement au RGP et elle n'est collectée que sur une année.

Il y a des arguments plus forts. Le niveau des revenus est absolument déterminant pour l'accès au logement, et l'on sait que l'espace urbain est fortement structuré par le parc de logements (quartiers d'habitat social, quartiers résidentiels), avec des coûts d'acquisition ou des loyers très différents selon les villes et les quartiers.

Tous les travaux menés sur la politique de la ville montrent que le revenu constitue la meilleure variable permettant de résumer les situations de précarité. Elle est corrélée avec les autres marqueurs de difficulté (chômage, Couverture Maladie Universelle complémentaire (CMUC) en particulier), mais aucun de ceux-ci n'a un pouvoir explicatif équivalent. Les analyses factorielles introduisant le revenu à côté d'autres indicateurs de difficulté font systématiquement apparaître un premier axe très corrélé au niveau de revenu. Cela a conduit le Secrétariat Général du Comité Interministériel des Villes (SGCIV) à privilégier les revenus pour la refonte des quartiers de la politique de la ville.

Les revenus permettent par nature de définir une hiérarchie. Les PCS reposent sur une partition fondée sur la position dans les relations de travail, qui conduit à une hiérarchie de fait. Il y a bien sur une forte corrélation entre la hiérarchie sociale et le niveau des revenus, mais les Déclarations annuelles de données sociales montrent qu'il y a au sein des professions de très fortes disparités salariales.

Distribution du revenu salarial annuel par sexe ou catégorie socioprofessionnelle sur l'ensemble des salariés en 2010

	en euros coura						curos courants
Décile	Ensemble				Professions		
Decile	Elisellible	Femmes	Hommes	Cadres*	intermédiaires	Employés	Ouvriers
1er décile (D1)	2 360	1 970	2 840	10 840	6 310	1 450	1 910
1er quartile (Q1)	9 370	7 930	11 460	24 420	16 130	6 010	7 410
Médiane (D5)	17 510	15 910	19 060	33 650	22 400	14 060	15 580
3ème quartile (Q3)	24 590	22 270	26 820	46 350	27 870	18 640	20 000
9ème décile (D9)	34 600	30 070	39 110	66 600	33 660	22 980	24 190
D9/D1	14,7	15,3	13,8	6,1	5,3	15,9	12,6
Moyenne	19 490	16 710	22 010	39 310	22 030	13 230	14 380

^{*} y compris chefs d'entreprise salariés

Tableau 1

Champ : France métropolitaine, ensemble des salariés des secteurs public et privé hors salariés agricoles et apprentis-stagiaires.

Source : Insee, DADS 2010 définitif et SIASP, exploitation au 1/12.

Les intervalles interdéciles très élevés chez les ouvriers et les employés qui peuvent laisser penser à des choix de localisation résidentielle très différents au sein d'une même profession. On sait que la catégorie des employés est très hétérogène et en particulier que la

localisation spatiale des employés de service peut différer sensiblement de celle des employés administratifs. L'utilisation des PCS à des fins d'analyse spatialisée nécessite une recomposition des PCS à partir des PCS à deux chiffres.

Les données fiscales permettent de travailler au niveau du ménage. C'est à ce niveau que se font les choix de localisation résidentielle. L'utilisation des données fiscales permet d'éviter le traitement difficile à partir des PCS des retraités.

Les revenus utilisés sont les revenus fiscaux avant redistribution. Ces derniers seront disponibles lorsque le projet FILOSOFI sera opérationnel. Les données de patrimoine ne sont pas non plus disponibles. Dans les deux cas, l'utilisation des PCS n'apporte pas d'élément.

Dans sa thèse et ses articles, Tovar étudie la ségrégation résidentielle en utilisant les capabilités au sens de Sen. Cette perspective est intéressante d'un point de vue conceptuel, mais difficile à mettre en pratique. Les essais de mesure localisées dans les travaux régionaux de l'Insee ont montré qu'il était difficile de calculer véritablement des capabilités. Les résultats obtenus montrent une très forte corrélation entre la pauvreté au sens du revenu et les autres formes de pauvreté au sens des capabilités. Ce résultat est d'ailleurs corroboré par les travaux de Tovar.

On utilisera comme variable d'intérêt le revenu fiscal par unité de consommation. Les unités de consommation sont calculées de façon classique, le premier adulte du ménage comptant pour un, les autres adultes et les enfants de plus de 14 ans pour 0,5, les enfants de moins de 14 ans pour 0,3.

3 - Le champ de l'étude

Les calculs ont été effectués pour les unités urbaines de plus de 50 000 habitants, au nombre de 118. Cet ensemble est très hétérogène puisque l'unité urbaine de Paris compte à elle seule une population fiscale de plus de 10 millions d'habitants, notre champ de référence en comptant près de 35 millions.

On distinguera dans ces unités urbaines la ville-centre de la banlieue, en se référent aux définitions de l'Insee. Si une commune représente plus de 50 % de la population de l'agglomération multicommunale, elle est seule ville-centre. Sinon, toutes les communes qui ont une population supérieure à 50 % de celle de la commune la plus peuplée, ainsi que cette dernière, sont villes-centres. Les communes urbaines qui ne sont pas villes-centres constituent la banlieue de l'agglomération multicommunale.

Là encore, les situations sont très différentes. La ville de Paris forme à peine plus de 20% de l'unité urbaine de Paris, mais elle est plus peuplée à elle seule que l'unité urbaine de Lyon. Les traitements statistiques ont été effectués pour toutes les unités urbaines, y compris Paris, mais il est certain que la taille de l'agglomération justifierait un traitement spécial.

Les écarts ne sont pas de la même ampleur, mais ils sont importants pour ce qui concerne le revenu. L'unité urbaine ayant le revenu par UC le plus élevé est Genève-Annemasse, l'une des trois agglomérations, avec Annecy et Thonon à avoir un revenu médian par UC supérieur à celui de Paris. Dix unités urbaines ont un revenu médian par UC supérieur à 21 000. A l'opposé 5 agglomérations (Douai-Lens, Maubeuge, Valenciennes,

Boulogne sur Mer et Béziers ont un revenu inférieur à 15 000€). A ces différences de niveau s'ajoutent des fortes différences dans la concentration et la variabilité des revenus.

4 -Ségrégation et pauvreté

L'utilisation des revenus permet de mettre en relation le niveau de la pauvreté (que l'on peut apprécier de façon sommaire à partir du revenu médian, ou de la distribution de la population) et la ségrégation, elle-même mesurée à partir de la répartition spatiale des différentes tranches de revenu.

La relation entre les deux grandeurs est complexe. Il est évident qu'une unité urbaine dans laquelle les revenus des ménages seraient égaux (qu'ils soient élevés ou faibles) ne connaîtrait pas de ségrégation. Ségrégation n'est pas synonyme de pauvreté. Dans certaines villes se développe ce qui est souvent qualifié d' « entre-soi » à savoir un habitat spatialement séparé des populations riches.

Les indicateurs mesurant la ségrégation ont été classés en cinq catégories par Massey et Denton(2005), dans un article qui continue à faire référence sur le sujet. Ces indices seront présentés de façon détaillée dans la première partie de ce travail. Seront tout particulièrement détaillés les indicateurs d'égalité utilisés pour la ségrégation par les revenus.

Ces indicateurs seront comparés entre eux, et mis en rapport avec le niveau des revenus, l'idée étant de mieux expliciter les liens qui existent entre pauvreté et ségrégation.

1. La mesure de la ségrégation

1.1 Les indicateurs selon Massey et Denton

Les premiers indicateurs de ségrégation ont été proposés par Duncan & Duncan en 1954. Beaucoup d'autres ont suivi. Massey et Denton ont publié en 1985 un article regroupant les principaux indicateurs en cinq familles, avec les formules permettant leur calcul. Ces formules renvoient à des indicateurs binaires, utilisés dans les travaux américains sur la ségrégation ethnique.

La première famille d'indicateurs, qui comprend l'indicateur de Duncan et Duncan est celle des indicateurs d'égalité. L'égalité est maximale lorsque l'indicateur vaut 0 : la même répartition du groupe minoritaire dans chaque unité spatiale élémentaire est la même que dans le territoire de référence. Les plus utilisés sont :

- l'indice de Duncan et Duncan

$$IS = \frac{1}{2} \sum_{i=1}^{n} \left| \frac{x_i}{X} - \frac{t_i - x_i}{T - X} \right|$$

où x_i désigne la population du groupe minoritaire, t_i celle de la population totale dans l'unité spatiale élémentaire, X et T les populations minoritaires et totales sur le territoire de référence.

- l'indice d'entropie de Theil, redéveloppé par Theil et Finizza, noté H:

On calcule selon les mêmes notations des indicateurs d'entropie pour chacune des zones élémentaires, et pour le territoire de référence

$$\begin{split} E_i &= -(p_i \log_2(p_i)) + (1 - p_i) \log_2(1 - p_i)) \\ E &= -(P \log_2(P)) + (1 - P) \log_2(1 - P)) \\ H &= \sum_{i=1}^n \frac{t_i (E - E_i)}{ET} \end{split}$$

Cet indicateur est très utilisé dans les études sur la ségrégation, soit dans la version dichotomique présentée ci-dessus, soit dans sa version polytomique. Un des intérêts de l'indicateur d'entropie est de pouvoir être décomposé, pour faire apparaître une composante intra-groupe et une composante intergroupes. On trouve une utilisation de cette décomposition dans Charlot et alii(2009).

Ces indicateurs présentent des versions « polytomiques ». On y reviendra lorsqu'on présentera les indicateurs de ségrégation utilisant les revenus. La première limite immédiate de ces indicateurs est celle de l'invariance par permutation. Il n'y a pas de différence pour la valeur de l'indicateur entre les trois configurations (0.25,0.5,0.25), (0.5,0.25,0.25) et (0.25,0.25,0.5) qui peuvent renvoyer à des situations qualitativement différentes.

Les versions polytomiques de ces indicateurs sont les suivantes, i désignant le territoire et k la modalité de la variable:

$$D = \frac{1}{2TI} \sum_{k=1}^{K} \sum_{i=1}^{n} t_{i} | p_{ik} - p_{k} |$$

$$avec \quad I = \sum_{k=1}^{K} p_{k} (1 - p_{k})$$

$$H = \frac{1}{TE} \sum_{k=1}^{K} \sum_{i=1}^{n} t_{i} p_{ik} \ln \left(\frac{p_{ik}}{p_{k}} \right)$$

On trouve aussi dans cette famille d'indicateurs les indicateurs de Gini que l'on n'utilisera pas dans cette étude.

La deuxième famille est celle des indicateurs d'exposition. Ces indicateurs fournissent une mesure de la probabilité pour un individu d'un groupe donné de rencontrer un individu d'un autre groupe. Une des formes privilégiée de cet indicateur est celle de l'isolement, à savoir la probabilité de rencontrer des individus du même groupe. Il est évident qu'il y a forte ségrégation lorsque les individus ne rencontrent dans leur entourage que des individus du même groupe. La formule de l'indicateur d'isolement, qui sera utilisé par la suite, est la suivante :

$$xPx = \sum_{i=1}^{n} \frac{x_i}{X} \frac{x_i}{t_i}$$

Il en existe une versiona justée sous la forme suivante :

$$Eta2 = \frac{xPx - P}{(1 - P)}$$

Cette version est utile pour comparer les indicateurs d'isolement au sein d'une même aire urbaine, mais elle ne s'interprète pas de la même façon que l'indicateur xPx.

La troisième famille est celle des indicateurs de concentration. Dans sa version la plus simple, elle met en rapport la sous-population et l'espace qu'elle occupe. On utilisera ici un indicateur simple, proposé par Duncan ;

$$Del = \frac{1}{2} \sum_{i=1}^{n} \left| \frac{x_i}{X} - \frac{A_i}{A} \right|$$

où Ai et A sont respectivement les aires de la zone 1 et l'aire totale. Dans notre cas, avec l'utlisation de la représentation carroyée, la formule sera simplement

$$Del = \frac{1}{2} \sum_{i=1}^{n} \left| \frac{x_i}{X} - \frac{1}{n} \right|$$

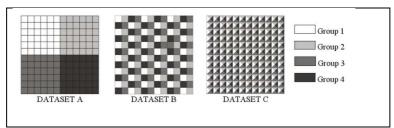
Le dernier ensemble est celui des mesures de regroupement ou d'agrégation spatiale. Massey et Denton ont proposé un indicateur qualifié de regroupement absolu, faisant intervenir les voisinages :

$$ACL = \left\{ \left[\sum_{i=1}^{n} \frac{x_i}{X} \sum_{j=1}^{n} c_{ij} x_j \right] - \left[\frac{X}{n^2} \right] \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} \right\} / \left\{ \left[\sum_{i=1}^{n} \frac{x_i}{X} \sum_{j=1}^{n} c_{ij} t_j \right] - \left[\frac{X}{n^2} \right] \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} \right\}$$

Cette expression fait intervenir une matrice de pondération faisant intervenir les voisinages. Dans l'expression, cij est une matrice de contiguité qui vaut 1 lorsque les unités

sont contigues. On utilisera pour le calcul une expression un peu différente, obtenue en utilisant des noyaux pour pondérer. Le noyau K sera ici le noyau gaussien qui prend en compte toutes les valeurs pour le calcul, et pas seulement les carrés contigus, les pondérations décroissant très vite lorsqu'on s'éloigne du point d'estimation.

$$ACL = \left\{ \left[\sum_{i=1}^{n} \frac{x_i}{X} \sum_{j=1}^{n} K(s_j - s_i) x_j \right] - \left[\frac{X}{n^2} \right] \sum_{i=1}^{n} \sum_{j=1}^{n} K(s_j - s_i) \right\} / \left\{ \left[\sum_{i=1}^{n} \frac{x_i}{X} \sum_{j=1}^{n} K(sj - si) t_j \right] - \left[\frac{X}{n^2} \right] \sum_{i=1}^{n} \sum_{j=1}^{n} K(sj - si) \right\}$$


Cette expression se simplifie du fait des propriétés des noyaux.

$$ACL = \left\{ \left[\sum_{i=1}^{n} \frac{x_i}{X} \sum_{j=1}^{n} K(s_j - s_i) x_j \right] - \left[\frac{X}{n^2} \right] \right\} / \left\{ \left[\sum_{i=1}^{n} \frac{x_i}{X} \sum_{j=1}^{n} K(sj - si) t_j \right] - \left[\frac{X}{n^2} \right] \right\}$$

La dernière famille d'indicateurs est celle des indicateurs qualifiés de centralisation, et mesurant la distance à ce que les économistes urbains appellent le centre des affaires

1.2 Indicateurs spatiaux et aspatiaux

Le problème de l'utilisation de ces indices vient de ce qu'ils sont « aspatiaux », et qu'ils sont sensibles au problème de l'échiquier et à celui du MAUP. Prenons un exemple très simple, exposé dans Feitosa (2004) et qui décrit un territoire formé de 144 carreaux, peuplés de quatre sous-populations de même taille.

Graphique 1

Si l'on calcule le classique indicateur d'entropie de Theil pour chacune des trois configurations, on trouve la même valeur, malgré les évidentes différences morphologiques.

La configuration A montre une forte ségrégation à grande comme à petite échelle. La C, l'absence complète de ségrégation. La B est intermédiaire puisqu'il y a ségrégation à petite échelle, celle-ci ne se manifestant pas à l'échelle de l'ensemble du territoire. Mais les indices d'entropie calculés au niveau du carreau, et qui prennent la valeur 0 ne permettent pas de distinguer les situations A et B.

On rencontre d'autres difficultés liées à l'invariance des résultats par permutation des groupes, traduisant le fait qu'un indice élevé n'informe pas sur la situation qualitative, mais on laissera ce sujet de côté.

Pour pallier à ces difficultés, des solutions ont été proposées, en particulier dans l'article fondateur de Reardon et O'Sullivan (2004). On en trouve une présentation dans Le Toqueux (2004) ou Rathelot et Sillard (2010).

Reardon et O'Sullivan(2004) définissent la densité $\widetilde{\tau}_p$ au voisinage d'un point et la densité $\widetilde{\tau}_{pm}$ de la sous-population m au voisinage de ce point, puis une valeur estimée de la proportion notée : $\widetilde{\pi}_{pm} = \frac{\widetilde{\tau}_{pm}}{\widetilde{\tau}_p}$ (avec les notations de Reardon et 0'Sullivan).

Ces proportions estimées peuvent servir pour tous les indicateurs faisant intervenir des proportions, ou des valeurs et mesurer les différentes dimension de la ségrégation spatiale définies par Massey et Denton. Ainsi, si l'on prend comme exemple l'indicateur de dissimilarité de Theil, on aura les indicateurs suivants :

$$\widehat{E}(s) = -\sum_{i=1}^{K} \widehat{p}_k(s) * \log(\widehat{p}_k(s)),$$

$$H = 1 - \frac{1}{TE} \sum_{j=1}^{T} \tau_j * \widehat{E}(s_j),$$

Pour calculer ces proportions, on utilise l'estimation de la densité, calculée à l'aide de méthodes non paramétriques. On en trouvera une présentation élémentaire dans Floch(2013), une présentation plus élaborée dans Rathelot et Sillard(2011).

La géolocalisation des données fiscales permet d'utiliser toute la richesse de l'information. Si l'on désigne par s le point d'estimation la densité s'écrit :

$$f^{X}(s) = \frac{1}{N^{X}} \sum_{i=1}^{N^{X}} K_{H}(s - s_{i}^{X})$$

Les s_i^X désignent les points auxquels est observée la variable X, K_H le noyau qui sert à pondérer les observations. On utilise dans le cas présent le noyau gaussien. Si H est la matrice symétrique définie positive régissant la largeur de la bande d'estimation, le noyau s'écrit :

$$K_{H}(s) = \frac{1}{2\pi\sqrt{Det(H)}} \exp\left[-\frac{s^{T}H^{-1}s}{2}\right]$$
Comme
$$\int_{R^{2}} K_{H}(s)ds = 1 \quad \int_{R^{2}} f^{X}(s)ds = 1 \quad et \quad f^{X} \text{ est une densit\'e de probabilit\'e.}$$

Pratiquement, les points d'estimation sont les centroïdes d'une grille de carreaux de 200 mètres de côté.. Si X est la sous population de la population T, la proportion de X relativement à T au point s s'écrit :

$$p^{X/T}(s) = \frac{f^X(s)}{f^T(s)} \frac{N^X}{N^T}$$

Dans tous les calculs qui suivent, on utilisera les valeurs estimées des proportions et non les valeurs brutes.

2. Des indicateurs de dissimilarité adaptés aux revenus

Les indices de ségrégation sont issus de l'étude des phénomènes de ségrégation ethnique, et s'appliquent donc à des variables dichotomiques. Lorsqu'ils ont été adaptés aux variables polytomiques, ils se heurtaient au problème de l'invariance par permutation. Ces indicateurs ne prennent alors pas en compte la hiérarchie de fait entre les variables, comme dans le cas des PCS et les indicateurs calculés sont alors moins lisibles que ceux que l'on obtient avec les variables dichotomiques.

C'est pourquoi, dans beaucoup d'études, dont celle de Charlot et alii (2009) est un bon exemple, les auteurs se ramènent à une situation dichotomique, dans laquelle la ségrégation, mesurée par un indicateur d'entropie renvoit aux inégalités de répartition des catégories extrêmes, celles des cadres et des ouvriers. La répartition des autres catégories, employés ou professions intermédiaires n'intervient alors pas dans le calcul.

Une autre alternative est d'opposer une catégorie à l'ensemble des autres, mais cet ensemble peut alors correspondre à des situations spatialement très différentes. Dans le cas des revenus, on a une hiérarchie évidente, mais les partitions, fondées sur le taux de pauvreté ou sur des fractiles de revenus sont assez artificielles.

2.1 Les "rank ordered segregation measure (ROSM)"

Les travaux initiés par Reardon visent à prendre en compte le caractère ordonné des données de revenu. F(.) est la fonction de répartition des revenus, et on note

$$p_k = F(y_k) = \frac{1}{n} \sum_{i=1}^n 1_{yi < yk}$$
. Si on partage l'ensemble des revenus en K classes, on va

construire une suite croissante $(p_1,p_2,...,p_{K-1})$. Pour résumer l'idée de Reardon, avant d'entrer dans le détail technique, on peut en donner les grandes lignes suivantes :

- on calcule K-1 indicateurs de ségrégation de type dichotomique. On retrouvera pour ces indicateurs des formes fonctionnelles classiques, en particulier celles qui sont issues de la théorie de l'information (entropie).
- On combine ces indicateurs en construisant un indicateur pondéré, et l'on verra comment justifier le système de poids que l'on construira.

En suivant l'argumentaire de Reardon (2011), on cherche une mesure de ségrégation ordinale, notée Λ , dont on voit la parenté avec l'indicateur de Theil et Finizza, noté H, et présenté en 1.2.

$$\Lambda = \sum_{i=1}^{N} \frac{t_n}{T \nu} (\nu - \nu_n) = 1 - \sum_{i=1}^{N} \frac{t_n \nu_n}{T \nu}$$

où ν est un indicateur de variation.

Si on note Λ_k la valeur de l'indicateur de ségrégation correspondant au revenu inférieur à yk, Λ_k ayant une forme fonctionnelle analogue à celle de Λ , on peut réécrire ce paramètre de la façon suivante :

$$\Lambda = \sum_{k=1}^{K-1} w_k \Lambda_k$$

La mesure de variation est définie comme une fonction de la suite (p_1,p_2,p_{K-1}) , et l'on notera $\nu=g(p_1,p_2,...,p_{K-1})$. Pour construire des expressions admissibles de ces fonctions, Reardon procède de la façon suivante. La variation de la variable ordonnée est maximale pour la suite des valeurs de p_k suivantes (1/2,1/2,...,1/2), situation dans laquelle la moitié de la population aurait le revenu minimum, l'autre moitié ayant le revenu maximum. C'est ce qui va justifier de chercher des fonctions qui prennent la valeur maximale quand p s'approchera de 1/2, tandis qu'elle tendront vers 0 lorsque p tendra vers 0 ou 1.

Reardon recherche une fonction de la forme :

$$v = g(p_1, p_2, ..., p_{K-1}) = \frac{1}{K-1} \sum_{k=1}^{K-1} f(p_k)$$

avec f(1/2)=1, f(0)=f(1)=0, f étant deux fois continument dérivable, avec une concavité tournée vers le haut. On notera $v_k = f(p_k)$.

Le paramètre de pondération va ainsi pouvoir s'écrire :

$$w_{k} = \frac{v_{k}}{\sum_{j=1}^{K-1} v_{j}} = \frac{f(p_{k})}{\sum_{j=1}^{K-1} f(p_{j})}$$

Le revenu étant une variable continue, on pourra exprimer de façon ramassée notre indicateur, avec un abus de notation.

$$\Lambda^{R} = \int_{0}^{1} \frac{f(p)}{\int_{0}^{1} f(q)dq} \Lambda(p)dp$$

On définit ainsi une famille d'indicateurs que l'on va pouvoir décliner en utilisant des fonctions répondant aux conditions énoncées plus haut. Reardon en propose trois qui peuvent se rattacher aux indicateurs usuels. Ce sont :

$$E(p) = -[p \log_2(p) + (1-p)\log_2(1-p)]$$

$$I(p) = 4 \ p(1-p)$$

$$V(p) = 2\sqrt{p(1-p)}$$

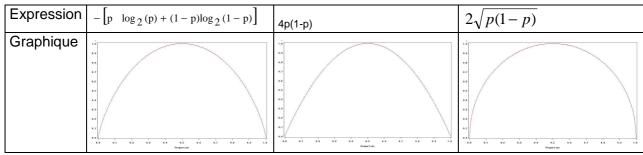


Tableau 2

Dans le premier cas (E), notre indicateur de type dichotomique sera l'indicateur de Theil-Finizza:

$$\Lambda_{k} = \sum_{i=1}^{n} \frac{t_{n}}{TE(p_{k})} [E(p_{k}) - E(p_{nk})] = H(p_{k}) = H_{k}$$

L'indicateur synthétique sera le suivant :

$$H^{R} = \int_{0}^{1} \frac{E(p)}{\int_{0}^{1} E(q)dq} H(p)dp = 2\ln(2)\int_{0}^{1} E(p)H(p)dp$$

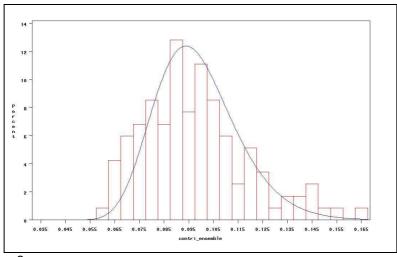
Dans le second cas (I), notre indicateur de type dichotomique sera l'indicateur fondé sur la variance :

$$\Lambda_{k} = \sum_{i=1}^{n} \frac{t_{n}}{TE(p_{k})} [I(p_{k}) - I(p_{nk})] = R(p_{k}) = R_{k}$$

L'indicateur synthétique sera le suivant :

$$R^{R} = \int_{0}^{1} \frac{I(p)}{\int_{0}^{1} I(q)dq} R(p)dp = \frac{3}{2} \int_{0}^{1} I(p)R(p)dp$$

Dans le troisième cas (V), notre indicateur de type dichotomique sera l'indicateur fondé sur la racine carrée de la variance :


$$S_{k} = \sum_{i=1}^{n} \frac{t_{n}}{TE(p_{k})} [V(p_{k}) - V(p_{nk})] = S(p_{k}) = S_{k}$$

L'indicateur synthétique sera le suivant :

$$H^{R} = \int_{0}^{1} \frac{V(p)}{\int_{0}^{1} V(q) dq} S(p) dp = \frac{4}{\pi} \int_{0}^{1} V(p) S(p) dp$$

2.2 Application à l'indice d'entropie

On a calculé l'indice de ségrégation noté HR pour toutes les unités urbaines de plus de 50 000 habitants. La distribution des valeurs de HR est la suivante :

Graphique 2

Les tableaux ci-dessous fournissent la liste des 20 unités urbaines dans lesquelles la ségrégation est la plus forte, puis les 20 dans lesquelles elle est la plus faible.

Les plus ségrégées Les moins ségr			grégées				
Unité urbaine	Tranche	HR		Unité urbaine	Tranche	HR	
Creil	6		0,163	Carcassonne	5		0,075
Évreux	5		0,156	Ajaccio	5		0,075
Nîmes	6		0,149	Vichy	5		0,074
Lille	7		0,146	Saint-Brieuc	5		0,073
Marseille - Aix-en-Provence	7		0,145	Roanne	5		0,073
Blois	5		0,143	Thonon-les-Bains	5		0,073
Meaux	5		0,141	Niort	5		0,071
Mulhouse	7		0,138	Narbonne	5		0,071
Paris	8		0,137	Saint-Omer	5		0,070
Le Havre	7		0,137	Bastia	5		0,070
Amiens	6		0,130	Saint-Quentin	5		0,070
Rouen	7		0,126	Sète	5		0,070
Charleville-Mézières	5		0,125	Haguenau	5		0,068
Montargis	5		0,123	Annecy	6		0,067
Strasbourg	7		0,123	Quimper	5		0,066
Béziers	5		0,121	Tarbes	5		0,064
Besançon	6		0,120	La Teste-de-Buch - Arcachon	5		0,063
Compiègne	5		0,119	Bayonne	7		0,063
Montpellier	7		0,119	La Roche-sur-Yon	5		0,058
Lyon	7		0,119	Menton - Monaco	5		0,041
Tranche 8 Paris							

Tableau 3

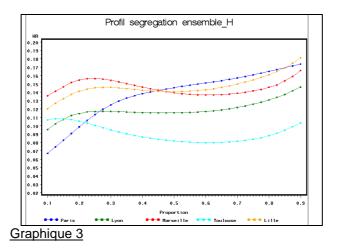
2.3 Convergence des résultats obtenus

7 plus de 500 000 6 plus de 100 000 5 plus de 50 000

Les trois indices de ségrégation proposés par Reardon visent à mesurer la différence dans la spatialisation des populations selon le niveau des revenus.. Plusieurs articles théoriques présentent des considérations sur les bonnes propriétés attendues des indices H^R, S^R, R^R . Il n'y a pas d'accord complet sur une forme fonctionnelle la plus pertinente. Notre choix s'est porté sur l'indice reposant sur l'entropie, car c'est le plus fréquemment utilisé dans la littérature. Ce qui nous a semblé le plus important pour notre propos, c'est de voir la concordance des résultats obtenus à l'aide de ces trois indicateurs.

On a donc calculé pour nos 118 aires urbaines les trois indicateurs, puis une corrélation des rangs entre ces indicateurs.

	Н	R	S
Н	1	0.997	0.992
R	0.997	1	0.988
S	0.992	0.988	1


Tableau 4

Ce tableau montre que les plus ou moins bonnes propriétés théoriques de ces indicateurs ne conduisent pas à des diagnostics différents sur la position relative des différentes unités urbaines.

2.4 Profils de la ségrégation

Les indicateurs Hk correspondant à différents niveaux de revenus permettent de construire pour chacune des unités urbaines un profil qui traduit l'évolution de la ségrégation lorsque le revenu s'accroit.

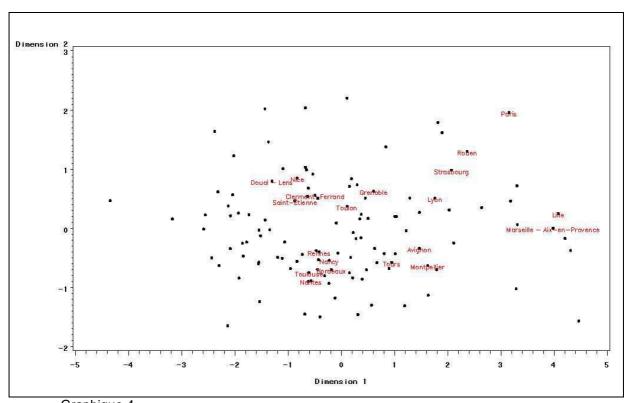
On trouve dans le graphique ci-dessous les profils de la ségrégation dans les principales unités urbaines de rance métropolitaine, Paris, Marseille, Lyon, Toulouse, et Lille.

Le profil de Paris est très particulier puisqu'il est toujours croissant, et qu'on n'y observe pas, comme à Lyon, un palier. Les profils de Lille et de Marseille sont assez proches avec une montée de la valeur de l'indicateur suivie d'une redescente et d'une nouvelle remontée. Le profil de Toulouse est plus plat, avec moins de différences entre les valeurs extrêmes de l'indicateur.

Dans quatre des grandes unités urbaines, on observe une dissymétrie aux deux extrémités, puisqu'il y a croissance au début, mais pas de décroissance. Comment interpréter cette situation? S'agissant des hauts revenus, la courbe traduit une dissimilarité plus forte lorsqu'on va vers les plus hauts revenus, ce qui laisse penser que ces ménages ont une répartition spatiale très particulière, et d'autant plus particulière que le revenu augmente. Dans ce cas, cela laisserait penser que les très hauts revenus ont une localisation qui les distingue des revenus hauts et moyens.

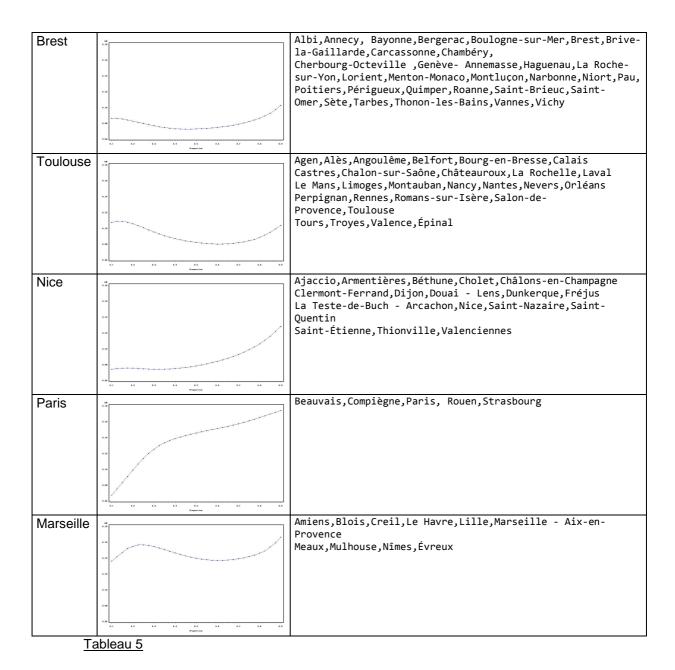
A l'inverse, la croissance observée pour les premières valeurs de la courbe pourrait faire penser que les revenus les plus faibles ont une répartition spatiale moins spécifique et qu'ils se retrouvent associés à des revenus faibles. C'est pour un ensemble de revenus correspondant souvent aux ménages en situation de pauvreté que l'indice va avoir la valeur la plus élevée.

Il faut néanmoins tenir compte des difficultés de mesure plus importantes aux extrémités de l'échelle des revenus (petit nombre de ménages, estimation nonparamétrique plus fragile, et ne pas accorder une 'importance excessive à ces interprétations.


2.4.1 Comparaison des profils

L'examen des courbes montre des proximités et des différences dans le niveau, que l'on appréhende grâce à l'indicateur H^R. Elles montrent que la ségrégation est plus faible à Lyon et Toulouse qu'à Marseille ou Lille, et ce pour tous les niveaux de revenus utilisés.

Les courbes montrent aussi des similitudes entre des formes, quand bien même les unités urbaines ont des niveaux de ségrégation différents. On a analysé ces courbes, pour essayer de faire apparaître des proximités.


On a finalement utilisé les profils bruts plutôt que des profils normés pour faire apparaître des proximités. Ces derniers contribuaient à donner un poids excessifs aux mesures des extrémités, qui sont les plus fragiles.

On a calculé une distance entre les profils, en utilisant une distance de type valeur absolue intégrée sur l'ensemble de définition : $d_{ij} = \int\limits_0^1 \left|f_i(p) - f_j(p)\right| dp \; .. \; \text{On a ensuite}$ analysé la matrice des distances entre profil en utilisant le « multidimensional scaling ». Cette méthode fournit une représentation en deux dimensions. La première dimension mesure le niveau de la ségrégation, la position sur la deuxième dimension traduisant la forme.

Graphique 4
Ne sont représentées sur ce graphique que les vingt plus grandes unités urbaines.

Modèle		Liste
Lyon	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Angers,Arles,Arras, Avignon,Besançon Bourges, Bourgoin- Jallieu Béziers,Caen,Charleville- Mézières,Chartres,Cluses,Colmar,Draguignan,Grenoble,Lyon, Maubeuge,Metz, Montargis,Montbéliard,Montpellier,Montélimar Reims,Saint-Just-Saint-Rambert,Sarrebruck (ALL) - Forbach Toulon,Vienne

2.4.2 Ségrégation des riches et des pauvres

Les résultats sur les profils sont néanmoins difficiles à analyser. En fait, on peut résumer l'essentiel de l'information en s'intéressant à trois paramètres qui sont le paramètre HR, et les paramètres que nous appellerons HPau et Hric, traduisant la ségrégation des ménages situés en dessous du seuil de pauvreté (O,6 fois le revenu médian) et des ménages situés au dessus du seuil de richesse (défini ici comme 1,66 fois le revenu médian).

Pauvres	Riches	Riches/pauvres	HR
Blois	Rouen	Creil	Creil
Évreux	Lille	Le Havre	Évreux
Creil	Creil	Meaux	Nîmes
Nîmes	Le Havre	Lille	Lille
Marseille - Aix-en-Provence	Paris	Rouen	Marseille - Aix-en-Provenc
Mulhouse	Compiègne	Blois	Blois
Meaux	Marseille - Aix-en-Provence	Évreux	Meaux
Lille	Amiens	Bourgoin-Jallieu	Mulhouse
Besançon	Nîmes	Marseille - Aix-en-Provence	Paris
Le Havre	Sarrebruck (ALL) - Forbach	Mulhouse	Le Havre
Montpellier	Dunkerque	Vienne	Amiens
Montargis	Meaux	Compiègne	Rouen
Béziers	Beauvais	Beauvais	Charleville-Mézières
Bourges	Évreux	Nîmes	Montargis
Amiens	Mulhouse	Tours	Strasbourg
Orléans	Arles	Amiens	Béziers
Limoges	Valenciennes	Saint-Just-Saint-Rambert	Besançon
Charleville-Mézières	Vienne	Montargis	Compiègne
Châteauroux	Fréjus	Charleville-Mézières	Montpellier
Avignon	Lyon	Lyon	Lyon

Tableau 6

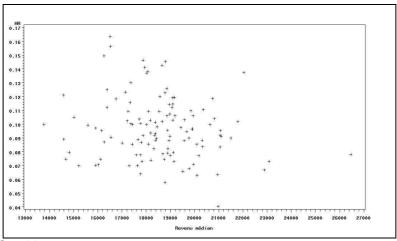
On retrouve quelques tendances fortes dans les classements, puisque ce sont en général les mêmes villes que l'on retrouve. On retrouve des résultats que l'on constatait à partir de la comparaison des profils. Ainsi Paris n'apparaît dans la ségrégation des riches. Des villes comme Besançon ou Orléans n'apparaissent que dans ce type de ségrégation. A l'inverse quelques agglomérations, comme Arles ou Fréjus n'apparaissent que dans la ségrégation des riches.

Les deux dernières colonnes du tableau permettent de voir les convergences mais aussi les différences sensibles entre les résultats permis par les ROSM et l'approche plus habituelle (opposition des extrêmes). Strasbourg n'apparaît pas dans les indicateurs classiques mais est repérée par les ROSM. Des villes comme Rouen et Le Havre reculent dans le classement alors que Marseille remonte.

2.5 Villes-centre et banlieues

Les poids relatifs des villes-centre et des banlieues sont très différents selon les unités urbaines. L'unité urbaine Paris est un cas particulier, puisque la population réside très majoritairement en banlieue. Certaines unités urbaines n'ont qu'une banlieue très restreinte.

Parmi les 20 villes dans lesquelles la ségrégation est la plus forte, on en trouve deux, les plus peuplées au demeurant (Paris et Lyon), dans lesquelles l'indicateur calculé en banlieue est très nettement supérieur à celui qui est calculé dans la ville-centre. Dans trois autres grandes unités urbaines (Lille, Marseille et Rouen), la ségrégation mesurée en banlieue est plus forte, mais avec un écart moindre par rapport à la ville-centre. Les valeurs sont assez proches dans les unités urbaines de Montpellier, Creil et Le Havre. A Mulhouse et Strasbourg, la ségrégation est plus élevée au centre qu'en banlieue, mais avec un écart assez limité. Dans les dix agglomérations restantes, la ségrégation est élevée dans la villecentre et faible en banlieue, mais il s'agit d'unités urbaines ayant une banlieue assez restreinte.


3 Dissimilarité, isolement, agrégation, concentration et niveau des revenus

3.1 Ségrégation, inégalité des revenus et logement

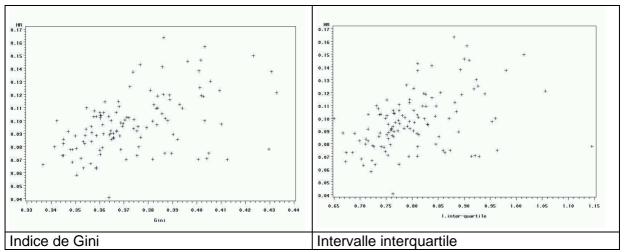
Le lien entre ségrégation (mesurée par le revenu) et inégalité des revenus est trivial. Si dans un périmètre donné il n'y avait aucune inégalité de revenu, la ségrégation serait inexistante. Cette situation hautement théorique pourrait se trouver dans des territoires uniformément pauvres ou uniformément riches.

Pour essayer de préciser ce lien, on a d'abord vérifié qu'il n'y avait pas de lien entre le revenu médian par unité de consommation mesuré au niveau de l'unité urbaine et l'indicateur de dissimilarité. Le coefficient de corrélation des rangs n'est pas significativement différent de 0, même au seuil de 10%.

Le nuage des points ne laisse apparaître aucune structure significative.

Graphique 5

En restant limité à l'analyse des revenus, on peut approfondir l'analyse dans deux directions :


- la relation entre mesure de ségrégation et des mesures de dispersion ou de concentration des revenus
- l'analyse des profils de revenus, à partir de la répartition de la population selon les quintiles de revenus nationaux

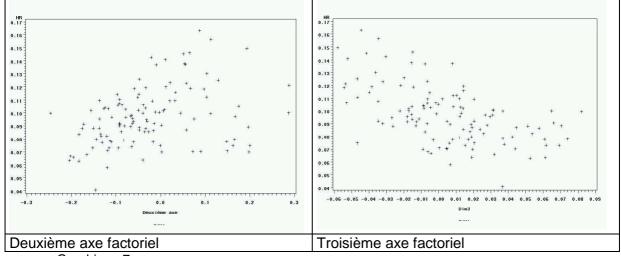
Les indicateurs retenus pour mesurer la dispersion ont été l'intervalle interquartile relatif, l'intervalle interdécile relatif et le coefficient de Gini. Ces trois indicateurs sont tous corrélés de façon significative avec l'indicateur d'entropie, la corrélation avec l'intervalle interdécile étant plus faible.

	Gini	Intervalle interquartile	Intervalle interdécile
Indicateur H	0.473	0.435	0.369

Tableau 7

Les trois indicateurs sont eux-mêmes fortement corrélés, au sens de la corrélation des rangs. On trouvera ci-dessous les nuages de points reliant l'indice de Gini et l'indicateur d'entropie

Graphique 6


L'analyse factorielle des correspondances permet de façon simple d'analyser la distribution des revenus dans les grandes unités urbaines. On part d'un tableau de contingence croisant les unités urbaines et les quintiles de revenus (déterminés sur notre champ d'étude).

L'inertie du nuage de point se répartit de la façon suivante :

axe1:77,7%axe2:20,6%axe 3: 1,6%

Le premier axe est sans surprise un axe de revenu. Sa corrélation au sens des rangs avec le revenu médian par unité urbaine est de 0.95. Elle n'a de ce fait aucune corrélation significative avec l'indicateur d'entropie.

Les deux autres axes mis en évidence par l'analyse ont par contre une corrélation faible mais significative avec l'indicateur d'entropie. Le premier axe étant un axe de niveau, les deuxièmes et troisièmes axes vont résumer l'information concernant la dispersion.

Graphique 7

On a poursuivi l'analyse en s'intéressant aux caractéristiques du logement. Une grande partie des populations à faible revenu réside dans le parc locatif social, et il semble légitime de penser que la ségrégation liée au logement, mesurée par la répartition des différentes composantes du parc de logement permet d'expliquer la ségrégation mesurée par le revenu.

Pour ce faire, on a calculé les indicateurs suivants :

- un indicateur d'entropie comparant la répartition des logements en propriété à celle de l'ensemble des logements
- un indicateur d'entropie comparant la répartition des logements Hlm à celle de l'ensemble des logements

Ces deux indicateurs sont également corrélés de façon significative (au sens des rangs), avec l'indicateur HR.

	Hlm	Logements en propriété
Indicateur H	0.455	0.614

Tableau 8

Le lien entre l'indicateur d'entropie lié aux logements en propriété est plus élevé que celui qui est calculé à partir du logement Hlm.

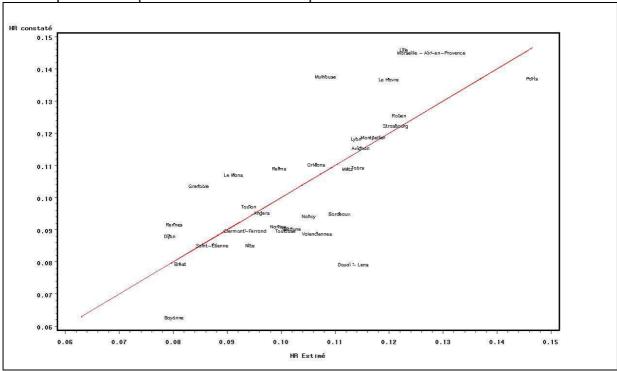
A partir de ces considérations empiriques, on a défini un modèle visant à apprécier si la ségrégation liée au revenu est supérieure, égale ou inférieure à ce que l'on attendrait au vu de quelques-unes des variables liées à la ségrégation. On a introduit dans le modèle :

- l'indice de Gini comme indicateur non localisé de concentration des revenus
- l'indice d'entropie du logement en propriété
- l'indice d'entropie du logement hlm
- la population (en logarithme)

Toutes ces variables sont significatives. Les tests de collinéarité permettent de conserver l'ensemble de ces variables. Toutes ont des coefficients positifs et jouent dans le même sens.

Model: MODEL1	
Dependent Variable:	hr

Number of Observations Read 115 Number of Observations Used 115


Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
30ui Ce	DF	Squares	Square	r value	FI. > F
Model	4	0.03599	0.00900	51.61	<.0001
Error	110	0.01918	0.00017435		
Corrected Total	114	0.05517			
Root A	MSE	0.01320	R-Square	0.6524	
Depend	dent Mean	0.09770	Adj R-Sq	0.6397	
Coeff	Var	13.51481			

Parameter Estimates

Intercept	1	-0.18625	0.02580	-7.22	<.0001
entropie_pro	1	0.30864	0.03633	8.49	<.0001
entropie_hlm	1	0.05754	0.02302	2.50	0.0139
gini	1	0.39211	0.06640	5.91	<.0001
1pop	1	0.00535	0.00138	3.89	0.0002

Ce modèle permet de calculer des valeurs prédites, et donc de les comparer aux valeurs observées. Ces comparaisons sont représentées graphiquement ci-dessous. Seules sont représentées que les unités urbaines de plus de 200 000 habitants.

Graphique8

On peut donc produire une liste d'unités urbaines dans laquelle la ségrégation est plus forte qu'attendue, une autre où elle est plus faible.

Ségrégation	Unités urbaines
Beaucoup plus élevée qu'attendue	Marseille - Aix-en-Provence, Évreux, Nîmes, Grenoble, Blois, Saint-Just-Saint-Rambert, Laval, Armentières, Lille, Creil, Colmar, Mulhouse, Le Mans, Le Havre, Amiens, Castres
Plus élevée qu'attendue	Montélimar,Brive-la-Gaillarde,Charleville-Mézières , Salon-de-Provence, Bourges ,Dijon,Besançon ,Chartres ,Quimper ,Rennes , Saint-Nazaire, Reims , Lorient, Nevers, Beauvais
Plus faible qu'attendue	Arles, Béthune, Paris, Nice, La Rochelle, Toulouse, Nantes, Cherbourg-Octeville, Nancy, Thionville, Pau, Perpignan, Montauban, La Roche-sur-Yon
Beaucoup plus faible qu'attendue	Bayonne ,Douai - Lens,Saint-Quentin ,Vichy , Carcassonne ,Bastia ,Alès , Bordeaux ,Sète ,Châlons- en-Champagne ,Valenciennes ,Saint-Omer ,Boulogne- sur-Mer , Tarbes, Chalon-sur-Saône ,Thonon-les-Bains ,Poitiers

Tableau 9

3.2 Dissimilarité et autres indicateurs

On peut compléter cette analyse par le calcul d'autres indicateurs de ségrégation.

3.2.1 Dissimilarité globale et dissimilarité riches-pauvres

Les indicateurs de Reardon et O'Sullivan permettent de prendre en compte toute l'étendue des revenus. On a aussi calculé un indicateur de type entropie, mais qui ne prend en compte que les riches et les pauvres, tels qu'ils ont été définis dans cette étude. L'indicateur d'entropie ne renvoie alors qu'aux extrêmes de la distribution. Les villes les plus ségréguées en ce sens sont les suivantes. Le tableau montre que les rangs peuvent être sensiblement différents.

Riches/pauvres		HR	Riches/pauvres		HR	Riches/pauvres		HR
1	Le Havre	10	7	Lille	4	13	Compiègne	18
2	Rouen	12	8	Meaux	7	14	Tours	28
3	Creil	1	9	Marseille - Aix-en- Provence	5	15	Saint-Just- Saint- Rambert	51
4	Rouen	12	10	Bourgoin- Jallieu	34	16	Lyon	20
5	Creil	1	11	Mulhouse	8	17	Orléans	27
6	Blois	6	12	Vienne	24	18	Chartres	39

Tableau 10

On retrouve parmi ces villes plusieurs de celles pour lesquelles l'indicateur d'entropie était plus élevé que la valeur attendue.

3.2.2 Dissimilarité, isolement, concentration, agrégation

Des indicateurs de concentration, d'isolement et d'agrégation ont été calculés pour les riches et les pauvres. Le tableau ci-desous indique les corrélations des rangs avec l'indicateur HR.

Corrélation de HR avec	Valeur	Significatif
Isolement des riches	0.54	oui
Isolement des pauvres	0.92	oui
Concentration des riches	-0.01	non
Concentration des pauvres	0.401	oui
Agrégation des riches	0.06	non
Agrégation des pauvres	0.713	oui

Tableau 11

Isolement

Rang	Riches	Pauvres
1	Paris	Creil
2	Rouen	Évreux
3	Lille	Blois
4	Compiègne	Meaux
5	Marseille - Aix-en-Provence	Nîmes
6	Le Havre	Marseille - Aix-en-Provence
7	Lyon	Mulhouse
8	Grenoble	Lille
9	Fréjus	Montargis
10	Amiens	Besançon

Tableau 12

Concentration

Rang	Riches	Pauvres
1	Ajaccio	Marseille - Aix-en-Provence
2	Rennes	Arles
3	Lyon	Nîmes
4	Menton - Monaco	Nice
5	Paris	Meaux
6	Le Mans	Lyon
7	Marseille - Aix-en-Provence	Salon-de-Provence
8	Le Havre	Creil
9	Genève (SUI) - Annemasse	Toulon
10	Grenoble	Tours

Tableau 13

Agrégation

Rang	Riches	Pauvres	
1	Paris	Creil	
2	Genève (SUI) - Annemasse	Évreux	
3	Lyon	Nîmes	
4	Rennes	Béziers	
5	Nantes	Blois	
6	Bordeaux	Maubeuge	
7	Toulouse	Meaux	
8	Tours	Avignon	
9	Compiègne	Montargis	
10	Annecy	Arles	

Tableau 14

La différence des classements montre l'intérêt qu'il y a à diversifier les approches et faire apparaître les différentes facettes de la ségrégation..

4 L'inscription spatiale de la ségrégation

4.1 La méthode

Les modèles présentés montrent que certaines unités urbaines ont des niveaux de ségrégation plus (ou moins) élevés que ceux que l'on pourrait attendre. Cela renvoie à des situations locales, liées à l'histoire de la ville, à sa topographie, aux politiques publiques qui ont pu être menées. Tout cela milite pour compléter les indicateurs synthétiques par une approche plus fine, permettant de voir comment s'organisent les phénomènes de ségrégation des populations.

Dans le rapport 2012 de l'Onzus (Floch 2012), on avait proposé une cartographie présentant les zones mixtes et les zones ségrégées. Les cartes avaient été réalisées pour les dix plus grandes unités urbaines. Elles étaient la traduction graphique d'une typologie réalisée sur les carreaux de 200 m, à partir d'une répartition de la population selon les quintiles de revenus.

La typologie comprenait 10 classes, certaines d'entre elles étant fort peu présentes. Elle séparait le territoire en zones qualifiées de mixtes et de non mixtes, mais ce partage reposait sur une étude a priori des profils.

D'où une reprise de ces travaux dans une même logique (analyse des profil fondée sur les quintiles de revenu) mais en simplifiant la typologie, et en essayant de mieux fonder le partage des carreaux en mixtes et ségrégés.

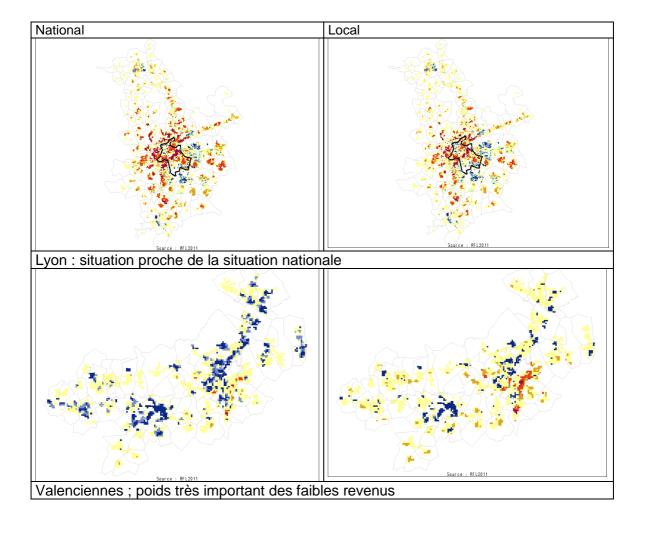
On a commencé par repérer les carreaux qui s'écartaient de la distribution moyenne, en calculant une distance au profil moyen et en testant la significativité de cet écart par un indicateur du khi-2.

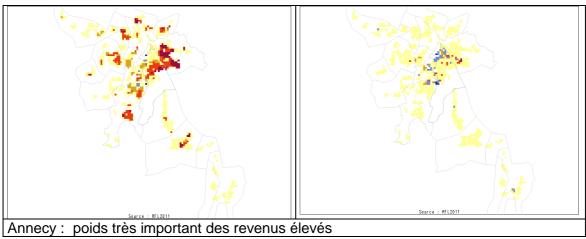
On a séparé les carreaux pour lesquels l'écart était important en cinq classes :

- deux classes où l'écart était du à la forte prédominance des hauts revenus
- deux classes où il était du à la forte prédominance des bas revenus
- une classe où il était du à celle des revenus moyens

Les carreaux où le l'écart entre le profil mesuré et le profil constaté et le profil moyen sont qualifiés d'équilibrés, ou de mixtes.

La typologie est représentée de la façon suivante, l'intensité des couleurs pour les zones à dominante riche ou pauvre traduisant l'intensité de la domination :

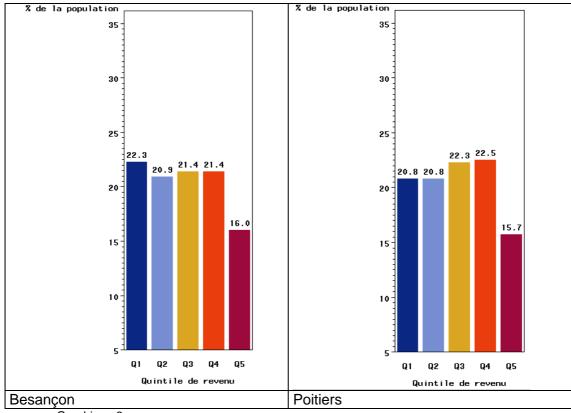

4.2 Global et local


Comme l'ont montré de nombreux travaux nationaux et régionaux, il est important de prendre en considération les approches nationales (globales) et les approches locales. Elles ont chacune leur intérêt, l'approche globale permettant de comparer les unités urbaines dans

un référentiel commun, l'approche locale permettant de voir où se situent les territoires les plus fragiles de l'unité urbaine.

C'est pourquoi on a produit deux cartographies. Dans la cartographie globale, la situation de référence à laquelle on compare les profils des carreaux est une situation équilibrée (0.2,0.2,0.2,0.2,0.2) puisque les quintiles sont calculés sur l'ensemble de notre champ de référence.

Dans la cartographie locale, la détermination des zones de mixité se fait en référence au profil de l'agglomération. Lorsque l'unité urbaine est proche de la situation de l'ensemble des unités urbaines, les deux représentations sont proches. Les représentations sont très différentes dans les unités urbaines où les forts (ou faibles) revenus sont largement sureprésentés.

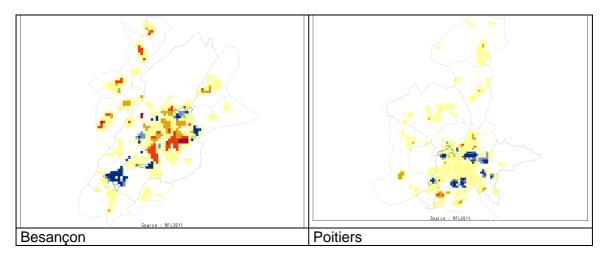


Carte 1

4.3 Besançon et Poitiers

Besançon et Poitiers sont deux capitales de régions assez proches par la taille, avec des banlieues assez réduites. La répartition globale des revenus, ventilés par quintiles est assez proche.

Graphique 9


Les situations de ces deux villes pour ce qui est de la ségrégation sont par contre très différentes. Besançon est une ville où la ségrégation est forte, plus que ce qu'on attendrait au vu des facteurs explicatifs retenus en 3.2. S'agissant des autres indicateurs, Besançon est assez systématiquement dans une situation de plus forte ségrégation. Il est cependant

notable de constater qu'en matière de répartition spatiale des logements (propriété ou Hlm), la situation n'est pas très différente.

	Besançon (rang)	Poitiers (rang)
Hr	17	78
Agrégation des pauves	16	68
Agrégation des riches	47	36
Concentration des pauvres	21	75
Concentration des riches	37	62
Isolement des pauvres	10	72
Isolement des riches	51	74
Entropie propriété	45	39
Entropie Hlm	19	14
Gini	31	61

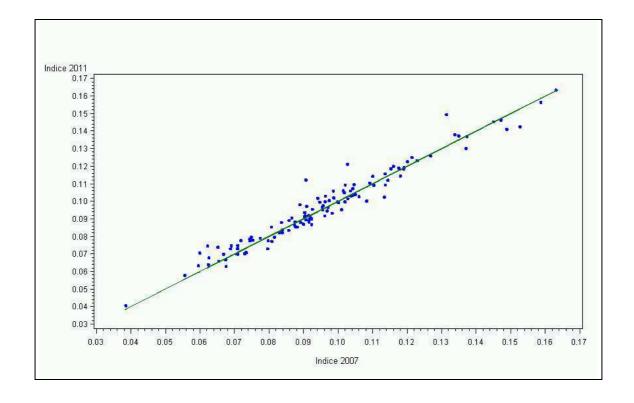
Tableau 15

Les cartes montrent des situations dissemblables, avec des zones mixtes plus étendues à Poitiers qu'à Besançon. Les cartes utilisées ont été les cartes locales, compte tenu de la proximité des situations des unités urbaines.

Carte 2

5- Conclusions et perspectives

Ce document a pour objectif de mettre en œuvre une méthode novatrice, qui n'a pas encore fait l'objet de beaucoup de travaux. Elle offre manifestement des possibilités intéressantes, liées à la prise en compte de toute l'échelle des revenus. Le présent document est d'abord une mise en œuvre de la méthode sur les unités urbaines.


Il reste encore des points à explorer. Les pondérations qui servent au calcul de l'indice global sont justifiées par des considérations théoriques, mais leur forme vient aussi de ce que l'on cherche à retrouver des formes fonctionnelles connues, comme celle de l'entropie. Il serait utile de rechercher dans quelle mesure ce système de poids influe sur les résultats obtenus.

L'intérêt de ce type d'indicateurs est aussi d'effectuer des comparaisons temporelles, pour essayer de déterminer si la situation de ségrégation évolue, et dans quel sens. D'apprécier aussi la sensibilité des indicateurs de type Reardon.

Lorsque le document de travail a été rédigé, nous n'avions accès qu'aux données de 2011 des revenus fiscaux localisés. Depuis, on a pu faire une exploitation légère des données de 2007.

5-1 Comparaison rapide entre 2007 et 2011

La comparaison n'a été effectuée que sur les indicateurs globaux, et non sur les profils. On trouve ci-dessous le graphique des comparaisons, qui montre, comme on pouvait s'y attendre une très forte corralation entre les résultats des deux indicateurs.

Les unité urbaines pour lesquelles la variation de l'indicateur est supérieure à 0.05 sont les suivantes :

Unité urbaine	2007	2011	Différence(v.absolue)
Arles	0,091	0,112	0,022
Béziers	0,103	0,121	0,018
Nîmes	0,131	0,149	0,018
Ajaccio	0,062	0,075	0,012
Montbéliard	0,113	0,102	0,011
Narbonne	0,060	0,071	0,011
Blois	0,153	0,143	0,010
Draguignan	0,089	0,098	0,009
Vichy	0,065	0,074	0,009
Romans-sur-Isère	0,108	0,100	0,008
Meaux	0,149	0,141	0,008
Cluses	0,094	0,102	0,008
Salon-de-Provence	0,099	0,106	0,007
Reims	0,102	0,109	0,007
Amiens	0,137	0,130	0,007
Saint-Brieuc	0,080	0,073	0,007
Laval	0,096	0,103	0,007
Perpignan	0,091	0,097	0,006
Thionville	0,072	0,078	0,006
Alès	0,101	0,095	0,006
Carcassonne	0,069	0,075	0,006
Châlons-en-Champagne	0,092	0,087	0,006
Haguenau	0,063	0,068	0,005
Angoulême	0,098	0,093	0,005

Ces variations importantes sont enregistrées le plus souvent sur des unités urbaines de taille moyenne. On n'y trouve que deux capitales régionales. Les variations sont dans quelques cas assez importantes (variations de l'ordre de 20%) et concernent des unités urbaines où la ségrégation était déjà assez forte.

Pour pouvoir se livrer à des comparaisons, il faudrait étudier plus précisément la façon dont la modification locale des revenus affecte les indicateurs.

5.2 Sensibilité des indicateurs

Ce travail est assez lourd et nécessiterait une réflexion méthodologique spécifique ; on s'est juste livré ici à un petit exercice. Pour une unité urbaine - Rennes en l'occurrence-on remplace des ménages riches des quartiers pauvres par des ménages pauvres, et inversement. Cela conduit de façon mécanique à une augmentation de la valeur de l'indice de ségrégation.

Le tableau ci-dessous montre comment évolue l'indice de Reardon en fonction du nombre de ménages que l'on fait bouger :

Nombre de ménages	Valeur de l'indice
0	0.0919
50	0.0923
100	0.0931
200	0.0939

500	0.0963
1000	0.1000
2000	0.1138
5000	0.1081

Cette simulation laisse penser qu'une variation de 0.002, comme celle que l'on enregistrait peut correspondre à des variations de population assez sensible, ou de façon plus crédible à des processus d'appauvrissement dans les quartiers les plus pauvres.

Ces considérations rapides montrent qu'il y a des travaux méthodologiques à mener sur des périmètres limités pour mieux analyser le comportement des indicateurs. Ceci permettrait

une meilleure utilisation de ces indicateurs pour les comparaisons temporelles. Les travaux comparatifs abordent peu en général ces questions et tirent parfois des conclusions fortes d'évolutions des indicateurs.

5.3 Prolongements

Les indicateurs fondés sur les rangs pourraient être utilisés pour étudier la ségrégation des catégories sociales. L'ordre n'est pas de même nature que pour les revenus, et il n'est pas toujours facile à construire pour les catégories ouvriers et employés.

La comparaison avec les résultats calculés à partir des revenus enrichirait sans doute la compréhension.

Le lien avec le logement, que l'on a abordé rapidement serait à prolonger. Des études récentes (Goffette-Nagot, Schaeffer 2013) offrent des perspectives intéressantes en ce sens.

Bibliographie

Apparicio, P., Charron, M., Petkévitch, V(2005), *Une application pour le calcul des indicateurs de ségrégation résidentielle*, Document de recherche INRS, Urbanisation, culture, société Bishoff, K., Reardon(2013), S., *Residential segregation by income*, Russelle Sage foundation Bouzouina, L, (2008), *Polycentrisme et ségrégation intra-urbaine : résultats exploratoires à partir d'une comparaison entre Lyon, Lille et Marseille*, ° colloque de l'ASRDLF

Brun, Jacques (1994) Essai critique sur la notion de ségrégation et son usage en géographie urbaine. Dans Jacques Brun et Catherine Rhein (dir.) La ségrégation dans la ville, Paris, L'Harmattan, pp. 21-57.

Charlot, S, Hilal, M., Schmitt, B (2009) La périurbanisation renforce-t-elle la ségrégation résidentielle urbaine en France?, Espace, populations, sociétés, N°2009/1

Feitosa F.F., G. Câmara, A.M.V. Monteiro, T. Koschitzki and M.P.S Silva. (2004). *Spatial Measurement of Residential Segregation*. In: Proceedings of VI Brazilian Symposium on Geoinformatics - GeoInfo 2004. Geneva: IFIP. p. 59-73.

Floch, J-M(2012) Détection des disparités socio-économiques, L'apport de la statistique spatiale Document de travail H 2012/04

Floch, J-M (2012) Contribution rapport de l'ONZUS 2012

Gaschet,F.,Le Gallo,J.,(2005) The spatial dimension of segreagation : a case study in four french areas, 1990-1999, Cahiers du GRES N°2005-12

Goffette-Nagot,F, Schaeffer,Y.,.(2011) Income segregation and suburbanization in France: a discrete choice approach, Working paper 1112 du GATE Lyon - Saint-Etienne

Grafmeyer, Y(1994), Sociologie urbaine, Nathan université

Hutchens, R. M. (2004), One Measure of Segregation, International Economic Review. 45: 555-578.

Marpsat,M, Mansuy,M, (1991) Les quartiers des grandes villes, contrastes sociaux en milieu urbain, Economie et statistique,N°245,1991-10,p33-47

Massey, D.S, Denton, N, (1988), The dimensions of residential segragation, Social forces, 67(2):281-315

Oberti,M., Préteceille,E.(2004). Les classes moyennes et la ségrégation urbaine, Education et société,N°14/2004/2

R. Rathelot, P. Sillard, L'apport des méthodes à noyaux pour mesurer la concentration résidentielle des immigrés en France de 1968 à 1999, Document de travail Insee G2010/11, 2010.

Reardon, S.F., O'Sullivan, D. (2004) *Measures of spatial segregation* Sociological Methodology 34:121-162.

Reardon, S.F. (2009). *Measures of Ordinal Segregation* Research on Economic Inequality, 17: 129-155.

Reardon, S.F., Bischoff, K. (2011). "Income Inequality and Income Segregation." American Journal of Sociology. 116/4: 1092-1153.,

Tabard,N(1993), Des quartiers pauvres aux banlieues aisées, une représentation sociale du territoire, Economie et statistique,N°270,1993-10,p5-22

Theil, H. and Finezza, A.J. (1971), A Note on the Measurement of Racial Integration of Schools by Means of Information Concepts, Journal of Mathematical Sociology 1: 187-194.

Tovar,E(2009), Mesurer la pauvreté et la ségrégation en Ilde de France, une approche capabiliste, DT du centre d'études pour l'emploi,N°116

Annexe

Annexe 1- Les indicateurs d'entropie

On trouve dans ce tableau deux indicateurs de contexte :

- le revenu
- l'indicateur de Gini de concentration des revenus
- les indicateurs d'entropie définis dans le chapitre 2

Rangs pour les 118 unités urbaines (par ordre décroissant)

	Indicate de con		Indicateurs de type Reardon HR					Entropie Riche/pauvres
Unité urbaine	Revenu	Gini	Unité urbaine	Banlieue \	Ville-centre F	Pauvres F	Riches I	Riches:pauvres
Agen	62	79	72	66	100	50	81	85
Ajaccio	55	24	100	116	74	116	56	104
Albi	48	81	91	62	77	73	108	100
Alès	106	46	59	68	38	61	66	86
Amiens	91	8	11	78	10	15	8	17
Angers	49	58	58	44	59	69	44	42
Angoulême	64	99	63	34	76	32	104	76
Annecy	3	97	112	61	115	115	110	114
Arles	103	3 21	25	77	22	27	16	41
Armentières	67	113	87	54	93	94	33	46
Arras	65	28	45	37	48	53	53	59
Avignon	92	25	22	17	19	20	22	37
Bastia	86	18	108	103	111	114	73	105
Bayonne	20	91	116	92	91	111	106	116
Beauvais	98	13	21	115	21	30	13	14
Belfort	75	27	49	19	73	39	80	60
Bergerac	97	67	81	18	106	68	59	90
Besançon	59	31	17	85	15	9	54	22
Béthune	99	94	69	33	95	87	31	49
Béziers	117	1	16	108	18	13	40	66
Blois	58	3 44	6	111	4	1	37	7
Bordeaux	8	96	60	31	57	52	76	64
Boulogne-sur-Mer	115	29	98	86	90	98	75	102
Bourg-en-Bresse	43	65	67	81	68	55	82	55
Bourges	39	63	23	55	12	14	69	29
Bourgoin-Jallieu	50	86	34	67	70	65	21	9
Brest	37	117	89	89	101	91	86	72
Brive-la-Gaillarde	47	101	88	63	87	78	95	91
Caen	57	53	43	35	23	66	26	34
Calais	113	33	36	104	63	49	41	70
Carcassonne	107	9	99	13	83	90	103	108
Castres	88	3 71	50	42	36	38	64	68
Châlons-en-Champagne	80	69	80	46	62	96	46	44

Chalon-sur-Saône	85	74	74	102	49	35	112	84
Chambéry	9	103	86	71	86	79	94	69
Charleville-Mézières	102	16	13	94	17	18	24	20
Chartres	30	76	39	15	37	42	58	23
Châteauroux	70	93	41	65	47	19	100	54
Cherbourg-Octeville	71	112	82	95	29	77	90	73
Cholet	63	100	75	83	56	67	36	40
Clermont-Ferrand	28	72	71	58	80	85	52	77
Cluses	5 41	83	44	29	52	64	43	32
Colmar		38	26 18	113 84	16 5	33 48	32 6	25 13
Compiègne Creil	35 101	26 30	10	7	20	3	3	2
Dijon	18	88	76	10	85	84	68	71
Douai - Lens	114	45	90	51	79	100	35	71
Draguignan	61	60	53	23	79 42	76	28	33
Dunkerque	104	43	79	32	66	102	11	45
Épinal	77	48	66	73	45	54	87	81
Évreux	100	11	2	99	2	2	14	8
Fréjus	25	36	57	49	44	109	19	74
Genève (SUI) - Annemasse	1	3	93	70	117	105	111	118
Grenoble	13	84	37	11	94	63	38	48
Haguenau	27	108	111	39	109	93	116	103
La Rochelle	24	80	56	114	24	62	74	53
La Roche-sur-Yon	54	105	117	118	107	113	115	115
La Teste-de-Buch - Arcachon	12	102	115	91	92	117	93	117
Laval	38	90	40	25	55	24	63	27
Le Havre	74	51	10	9	13	10	4	3
Le Mans	44	92	32	6	53	28	39	28
Lille	78	15	4	1	27	8	2	5
Limoges	34	66	33	74	34	17	77	43
Lorient	56	106	92	41	112	99	88	79
Lyon	14	35	20	3	98	34	20	21
Marseille - Aix-en-Provence	52	19	5	12	3	5	7	10
Maubeuge	118	12	48	47	14	36	23	67
Meaux	76	32	7	112	7	7	12	4
Menton - Monaco	11	75	118	107	118	118	117	119
Metz	60	37	31	30	11	45	34	47
Montargis	96	41	14	106	9	12	30	19
Montauban	69	50	62	40	50	43	71	82
Montbéliard	95	54	42	28	46	51	50	30
Montélimar	81	49	46	16	41	44	61	52
Montluçon	87	109	95	75	103	86	105	92
Montpellier	40	14	19	50	51	11	51	50
Mulhouse	73	17	8	64	30	6	15	11
Nancy	29	42	61	14	96	58	79	80
Nantes	7	111	68	72	33	37	89	56
Narbonne	108	10	106	117	82	107	97	107
Nevers	84	82	38	56	25	41	45	51
Nice	21	22	83	57	61	101	70	98
Nîmes	105	4	3	110	1	4	9	15
Niort	22	104	105	105	88	70	118	106

Orléans	16	62	27	24	26	16	67	24
Paris	4	2	9	2	71	46	5	26
Pau	17	95	85	69	89	75	91	94
Périgueux	42	110	96	27	116	83	101	96
Perpignan	110	6	55	96	58	57	85	99
Poitiers	46	61	78	48	75	71	84	78
Quimper	32	118	113	53	105	95	114	110
Reims	72	20	30	100	28	47	27	39
Rennes	10	73	64	59	67	60	72	65
Roanne	79	114	103	88	113	89	102	88
Romans-sur-Isère	90	56	47	45	54	31	60	62
Rouen	51	52	12	5	31	40	1	6
Saint-Brieuc	36	115	102	97	78	81	107	95
Saint-Étienne	89	70	84	26	104	88	57	58
Saint-Just-Saint-Rambert	15	116	51	20	43	29	55	18
Saint-Nazaire	31	107	77	52	69	92	29	57
Saint-Omer	109	40	107	101	97	104	83	109
Saint-Quentin	112	5	109	79	102	106	47	97
Salon-de-Provence	23	78	35	87	32	23	62	35
Sarrebruck (ALL) - Forbach	111	39	52	4	99	74	10	38
Sète	93	55	110	109	84	103	99	111
Strasbourg	53	7	15	43	6	22	25	31
Tarbes	83	89	114	90	114	108	113	112
Thionville	82	59	94	80	72	110	48	87
Thonon-les-Bains	2	47	104	93	110	112	109	113
Toulon	33	57	54	36	39	72	49	63
Toulouse	6	68	70	60	64	56	96	89
Tours	26	98	28	21	35	26	42	16
Troyes	94	34	29	8	81	21	65	36
Valence	66	64	65	82	40	59	78	83
Valenciennes	116	23	73	38	60	82	17	61
Vannes	19	87	97	98	65	80	92	93
Vichy	68	85	101	76	108	97	98	101
Vienne	45	77	24	22	8	25	18	12

Annexe 2- Les autres indicateurs

Rangs pour les 118 unités urbaines (par ordre décroissant)

	Agrégation		Con	centration	Isolement		
Unité urbaine	Pauvres	Riches	Pauvres	Riches	Pauvres	Riches	
Agen	36	5 4	.9	47	58	62	84
Ajaccio	113	3 3	3	44	1	115	30
Albi	59	9 4	5	77	53	83	95
Alès	17	7 10	6	91	116	55	102
Amiens	22	2 2	3	85	26	13	10
Angers	72	2 1	7	67	25	63	33
Angoulême	26	5 5	7	83	94	34	101
Annecy	116	5 1	0	32	12	116	43
Arles	10) 7	3	2	21	24	20
Armentières	84	1 8	6	52	30	91	42
Arras	58	3 7	2	102	98	46	46
Avignon	8	3 5	4	13	40	22	37
Bastia	8	1 2	1	14	15	112	65
Bayonne	114	1 2	5	88	33	114	87
Beauvais	12	2 10	7	24	92	14	75
Belfort	47	7 5	8	45	41	32	82
Bergerac	40) 9	3	103	115	73	73
Besançon	16	5 4	7	21	37	10	51
Béthune	76	5 10	1	110	111	76	60
Béziers	4	1 10	4	11	54	11	67
Blois		5 7	7	19	105	3	54
Bordeaux	92	2	6	28	19	70	41
Boulogne-sur-Mer	43	3 11	7	109	63	95	116
Bourg-en-Bresse	50) 6	6	56	36	51	96
Bourges	44	1 4	4	63	64	12	62
Bourgoin-Jallieu	63	3 8	9	37	73	54	23
Brest	99	9 6	3	38	51	99	66
Brive-la-Gaillarde	93	3	5	72	28	93	80
Caen	62	2 4	8	93	45	56	34
Calais	2			94	81	40	100
Carcassonne	45	5 10	9	89	93	77	107
Castres	30		3	59	95	48	79
Châlons-en-Champagne	82		5	90	87	80	86
Chalon-sur-Saône	6′		2	69	27	36	117
Chambéry	103		2	12	31	87	63
Charleville-Mézières	10		8	84	88	16	55
Chartres	67		4	54	97	30	71
Châteauroux	25		5	73	67	19	110
Cherbourg-Octeville	64		6	66	42	68	103
Cholet	7:		5	98	57	60	28
Clermont-Ferrand	104		8	71	61	82	27
Cluses	87		.0	34	78	71	12
Colmar	49		5	48	84	28	17
Compiègne	56	6	9	22	18	35	4

Creil	1	116	8	112	1	35
Dijon	110	39	101	72	86	40
Douai - Lens	73	111	118	99	84	104
Draguignan	38	102	16	103	69	36
Dunkerque	97	60	115	38	90	26
Épinal	31	78	92	86	49	91
Évreux	2	87	57	79	2	69
Fréjus	85	74	42	90	107	9
Genève (SUI) - Annemasse	105	2	26	9	110	29
Grenoble	100	11	15	10	79	8
Haguenau	112	105	113	113	85	118
La Rochelle	66	20	87	82	64	53
La Roche-sur-Yon	106	69	111	65	111	112
La Teste-de-Buch - Arcachon	118	91	117	118	117	38
Laval	48	46	74	43	27	57
Le Havre	42	18	23	8	15	6
Le Mans	54	15	27	6	33	39
Lille	34	16	79	44	8	3
Limoges	28	24	20	20	21	83
Lorient	107	84	76	80	105	61
Lyon	86	3	6	3	43	7
Marseille - Aix-en-Provence	11	12	1	7	6	5
Maubeuge	6	118	107	117	42	106
Meaux	7	110	5	109	4	47
Menton - Monaco	117	43	46	4	118	111
Metz	65	50	96	74	39	18
Montargis	9	98	64	107	9	81
Montauban	37	52	40	76	58	64
Montbéliard	29	114	97	114	29	98
Montélimar	24	82	61	56	45	68
Montluçon	77	97	95	100	89	113
Montpellier	15	53	17	75	18	22
Mulhouse	18	81	31	104	7	11
Nancy	83	26	80	49	57	59
Nantes	71	5	35	16	61	49
Narbonne	52	92	36	48	106	90
Nevers	33	70	82	60	31	77
Nice	91	27	4	11	101	32
Nîmes	3	79	3	68	5	14
Niort	101	59	106	102	75	114
Orléans	46	29	25	66	17	58
Paris	79	1	33	5	38	1
Pau	98	19	43	32	97	52
Périgueux	102	38	65	46	98	89
Perpignan	23	90	53	52	52	92
Poitiers	68	36	75	62	72	74
Quimper	111	41	86	24	109	94
Reims	70	22	104	34	50	24
Rennes	95	4	51	2	74	25
Roanne	94	100	68	89	94	105
Romans-sur-Isère	20	99	39	59	37	70

74	13	60	22	44	2
88	34	100	55	88	97
78	68	18	23	81	76
60	65	108	110	53	21
108	61	78	77	104	13
35	108	99	96	92	108
69	94	114	47	100	85
27	42	7	14	25	56
14	113	105	108	59	48
53	112	41	106	96	109
41	30	58	70	20	15
96	103	81	101	108	115
109	76	112	83	102	44
115	14	49	69	113	45
51	71	9	39	67	31
90	7	29	29	66	50
39	8	10	13	41	19
19	96	55	91	23	99
55	51	62	17	47	88
57	80	116	71	65	78
80	31	70	50	78	72
89	37	30	35	103	93
32	67	50	85	26	16
	88 78 60 108 35 69 27 14 53 41 96 109 115 51 90 39 19 55 57 80 89	88 34 78 68 60 65 108 61 35 108 69 94 27 42 14 113 53 112 41 30 96 103 109 76 115 14 51 71 90 7 39 8 19 96 55 51 57 80 80 31 89 37	88 34 100 78 68 18 60 65 108 108 61 78 35 108 99 69 94 114 27 42 7 14 113 105 53 112 41 41 30 58 96 103 81 109 76 112 115 14 49 51 71 9 90 7 29 39 8 10 19 96 55 55 51 62 57 80 116 80 31 70 89 37 30	88 34 100 55 78 68 18 23 60 65 108 110 108 61 78 77 35 108 99 96 69 94 114 47 27 42 7 14 14 113 105 108 53 112 41 106 41 30 58 70 96 103 81 101 109 76 112 83 115 14 49 69 51 71 9 39 90 7 29 29 39 8 10 13 19 96 55 91 55 51 62 17 57 80 116 71 80 31 70 50 89 37 30 35	88 34 100 55 88 78 68 18 23 81 60 65 108 110 53 108 61 78 77 104 35 108 99 96 92 69 94 114 47 100 27 42 7 14 25 14 113 105 108 59 53 112 41 106 96 41 30 58 70 20 96 103 81 101 108 109 76 112 83 102 115 14 49 69 113 51 71 9 39 67 90 7 29 29 66 39 8 10 13 41 19 96 55 91 23 55 51 62 17 47 57 80