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Non-technical summary

Research Question

Official statistics has paid more and more attention to infra-monthly time series in recent

years, mainly due to its ongoing digital transformation and especially as a reaction to the

soaring demand for timely economic data in the wake of the COVID-19 pandemic outbreak

in 2020. Infra-monthly time series, however, often display complex seasonal dynamics and

other peculiarities not commonly seen in data sampled at a monthly or quarterly rate. As

a consequence, traditional methods for modeling and seasonally adjusting economic time

series in official statistics cannot be applied without appropriate modifications.

Contribution

We give a thorough methodological description of the modifications to the three tradi-

tional methods implemented in the official time series and seasonal adjustment software

used to produce harmonized statistics within the European Statistical System and the

European System of Central Banks. We also discuss key statistical properties of those

modifications from a theoretical perspective and consider three examples to highlight their

main capabilities.

Results

Our illustrations suggest that the implemented modifications to the traditional model-

ing and seasonal adjustment approaches provide solid results for various types of infra-

monthly economic time series and hence sound alternatives to those stand-alone solutions

that are currently not integrated into official statistics’ workhorse software. However,

more research is needed to achieve permanent acceptance of those modifications among

practitioners, and we finally share some thoughts on potential areas for future develop-

ments.
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Abstract

Infra-monthly economic time series have become increasingly popular in official
statistics in recent years. This evolution has been largely fostered by official statis-
tics’ digital transformation during the last decade. The COVID-19 pandemic out-
break in 2020 has added fuel to the fire as many data users immediately asked for
timely weekly and even daily data on economic developments. Such infra-monthly
data often display seasonal behavior that calls for adjustment. For that reason,
JDemetra+, the official software for harmonized seasonal adjustment of monthly
and quarterly data in the European Statistical System and the European System of
Central Banks, has been augmented recently with a regARIMA-esque pretreatment
model and extended versions of the ARIMA model-based, STL and X-11 seasonal
adjustment approaches that are tailored to the specifics of infra-monthly data and
accessible through an ecosystem of R packages. This ecosystem also provides easy
access to structural time series modeling. We give a comprehensive overview of
the packages’ current developmental stage and illustrate selected capabilities, in-
cluding code snippets, using daily births in France, hourly electricity consumption
in Germany, and weekly initial claims for unemployment insurance in the United
States.

Keywords: extended Airline model, high-frequency data, official statistics, signal
extraction, unobserved-components decomposition

JEL classification: C01, C02, C14, C18, C22, C40, C50.

∗Contact: Anna Smyk, Insee, Departement of Statistical Methods anna.smyk@insee.fr

2

mailto:anna.smyk@insee.fr


1 Motivation

JDemetra+ (JD+) is the software recommended for the harmonized production of official
seasonally adjusted data in the European Statistical System and the European System
of Central Banks. It implements the popular X-11 and ARIMA model-based seasonal
adjustment approaches for monthly and quarterly data, as well as respective time series
regression models for data pretreatment. Version 3.0 of JD+ is currently under devel-
opment mainly due to the addition of seasonal adjustment methods for infra-monthly
economic data. Such time series have become increasingly popular in official statistics
over the past decade. A key driver has been the emergence of new digital data sources
that provide easy and sometimes almost real-time access to such data. In 2020, the
demand sharply accelerated immediately after the outbreak of the COVID-19 pandemic
when many institutional data users asked for more timely indicators in order to track eco-
nomic developments on a daily or at least weekly basis. Although being strongly seasonal
in many cases, infra-monthly economic data do not lend themselves to being modeled with
classic Box-Jenkins approaches and seasonally adjusted with traditional methods due to
a variety of peculiarities not seen in monthly and quarterly data. Prime examples include
the superimposition of multiple seasonal patterns with potentially fractional periodicities
that result in a dense set of seasonal frequencies, direct measurability of granular calendar
variation and a high susceptibility to irregular spacing, outliers and missing values (see
the discussions in Ollech, 2023; Proietti and Pedregal, 2022; Webel, 2022). Thus, possible
strategies for modeling and seasonally adjusting infra-monthly time series are (1) proper
data regularization so that traditional approaches become applicable to the regularized
data, (2) proper modifications to traditional approaches so that they become applicable to
infra-monthly data, and (3) the design and application of new approaches not considered
in official statistics so far.

The current solutions offered by JD+ 3.0 follow the second branch of strategies as
they are founded on modified established methods, such as TRAMO for data pretreat-
ment and extended versions of the ARIMA model-based (AMB), X-11 and STL methods
for seasonal adjustment. The corresponding routines have been implemented in Java and
can be accessed easily through an ecosystem of R packages (see the Appendix for further
details). Although the Java code is still experimental, some methodological overviews
and applications are already available (Ladiray, Palate, Mazzi, and Proietti, 2018; Webel,
2022). We now elaborate on the packages’ main modifications and give additional theoret-
ical details, derive and discuss selected properties of the key models and filtering methods
and provide code snippets plus examples for illustration.

We start with a discussion about data pretreatment through a time series regression
model in which the residuals follow an Airline-type ARIMA model that allows for frac-
tional powers of the backshift operator (Section 2). The latter model is then used to
introduce proper modifications to the traditional AMB approach (Section 3). Key exten-
sions to the traditional X-11 and STL approaches are presented in Section 4 and Section 5,
respectively, followed by a brief description of structural time series models (Section 6).
We illustrate selected capabilities of the discussed methods using daily births in France,
hourly realized electricity consumption in Germany, and weekly initial claims for unem-
ployment insurance in the United States (Section 7) before we conclude with some final
remarks and suggestions for future developments (Section 8).
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2 Pretreatment

2.1 Model and properties

Let {yt} denote an observed infra-monthly time series and assume that it can be decom-
posed additively, maybe after taking logs, into a trend-cyclical component {tt}, a seasonal
component {st}, a calendar component {ct} and an irregular component {it}, resulting
in the standard unobserved components (UC) decomposition

yt = tt + st + ct + it. (1)

As for monthly and quarterly data, calendar variation and outliers should be removed
from {yt} prior to the extraction of seasonal movements. This linearization is achieved
through the time series regression

yt = x⊤
t β + ηt, (2)

where xt is a vector of regression variables associated with calendar events and outliers,
β is a vector of unknown calendar and outlier effects and {ηt} is a residual process.

Infra-monthly time series often contain multiple seasonal patterns, so that the seasonal
variation in (1) can be represented as

st =
∑
τ∈S

s
(τ)
t , (3)

where S = {τ1, . . . , τ|S|} ⊂ R is a set of seasonal periodicities and {s(τ)t } is the seasonal
pattern with potentially fractional periodicity τ . The residuals in (2) naturally carry the
same superimposed seasonal patterns and, therefore, cannot be modeled as a standard
ARIMA process. An alternative distributional assumption is provided by the extended
Airline model, which is essentially an Airline-type model that allows for multiple first-
order seasonal integration including fractional powers of the backshift operator. It is given
by

δ1(B)
∏
τ∈S

δτ (B) ηt = θ1(B)
∏
τ∈S

θτ (B) εt, (4)

where B is the backshift operator, δ1(B) = 1−B is the non-seasonal differencing operator,
δτ (B) = 1− Bτ is the seasonal differencing operator at lag τ , θ1(B) = 1− θ1B is a non-
seasonal moving average (MA) operator, θτ (B) = 1 − θτB

τ is a seasonal MA operator
at lag τ and {εt} is white noise with finite variance σ2

ε > 0. Fractional powers of B
are defined through the first-order Taylor approximation at unity, using the fact that
Bk = B⌊k⌋Bαk holds for any k ∈ R, where ⌊k⌋ ∈ Z is the largest integer not exceeding k
and αk = k − ⌊k⌋ ∈ [0, 1) is the fractional remainder of k. Now, Bαk ≈ (1 − αk) + αkB
and, hence, Bk is essentially approximated with a weighted average of B⌊k⌋ and B⌊k⌋+1:

Bk ≈ (1− αk)B
⌊k⌋ + αkB

⌊k⌋+1. (5)

The approximation (5) can be plugged into the seasonal differencing and MA operators
in (4). For weekly data, for instance, we have |S| = 1 with τ1 = 52.18 and seasonal

2



differencing becomes

δ52.18(B) yt =
(
1−B52.18

)
yt = yt − (0.82 yt−52 + 0.18 yt−53). (6)

In general, the squared gain of any seasonal differencing operator δτ (B) is given by∣∣δτ (e−iω
)∣∣2 = 1− 2cτ (ω) +

[
c2τ (ω) + s2τ (ω)

]
, (7)

where
cτ (ω) = (1− ατ ) cos (⌊τ⌋ω) + ατ cos [(⌊τ⌋+ 1)ω]

and sτ (ω) is defined analogously based on the sine instead of cosine function. Note that
cτ (ω) = cos (τω) and sτ (ω) = sin (τω) if τ ∈ N, so that (7) simplifies to a well-known
standard case. Figure 1 shows the squared gain (7) for the seasonal differencing operator
applied in (6), revealing that this operator does not completely annihilate week-of-the-year
(WOY) dynamics. Although the squared gain dips at the WOY harmonics, it does not
reach zero (in fact, those dips remain even larger than 0.1 at higher WOY harmonics). This
flaw is common to all operators δτ (B) with a fractional τ and essentially a consequence of
the (first-order) truncation in the Taylor series expansion of Bατ , which results in δτ (B)
having only a single unit root at unity. To see this, note that this operator factorizes as
δτ (B) = δ1(B)Sτ (B), where

Sτ (B) = 1 +B + · · ·+B⌊τ⌋−1 + ατB
⌊τ⌋ (8)

is the fractional aggregation operator associated with τ . When τ ∈ N and hence
ατ = 0, then Sτ (B) carries ⌊(τ − 1)/2⌋ pairs of complex conjugate unit roots that are
equally spaced around the unit circle at the seasonal frequencies and accompanied by
an additional single real unit root at −1 if τ is even. However, when τ /∈ N and hence
ατ > 0, then Sτ (B) must contain one additional root since the polynomial order of (8)
has been increased by one (compared to the case of τ ∈ N). Although the roots of Sτ (B)
still reflect seasonal dynamics, they are no longer exactly associated with the respective
seasonal frequencies and also lie outside the unit circle.1

The weighted averaging principle (5) also facilitates the derivation of the pseudo-
spectral density of the regression residuals {ηt} in (2). It follows directly from (4) and (5)

1In fact, the real root at −1 that is present in (8) when τ ∈ N is even turns into a complex root with
an associated frequency close to π when τ /∈ N and ⌊τ⌋ is even. Similarly, an additional negative
real root is introduced when τ /∈ N and ⌊τ⌋ is odd (compared to the case in which τ ∈ N is odd).
Numerical solutions for fractional periodicities based upon the Jenkins-Traub algorithm (Jenkins and
Traub, 1972) suggest that the roots of Sτ (B) are associated with frequencies slightly larger than the
seasonal ones and have moduli slightly larger than 1. For example, when τ = 52.18, the differences in
radians between the frequencies of the complex roots in (8) and the respective WOY frequencies are
found to increase from 5.2×10−7 for the chief WOY frequency to 9.8×10−3 for the 25-th WOY harmonic,
while the corresponding moduli gradually increase from 1.000021 to 1.008634. Conceptually, when τ /∈ N,
principle (5) sacrifices the seasonal unit root properties of the fractional aggregation operator Sτ (B) that
appears in the top-down factorization of δτ (B). An alternative seasonal differencing operator that retains
those seasonal unit root properties can be constructed via an a priori selection of the relevant seasonal
frequencies and an atomic bottom-up multiplication of the respective minimal degree polynomials (see
the discussion in McElroy and Livsey, 2022, Appendix B).
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Figure 1: Squared gain (7) for τ = 52.18. The gray vertical marks the chief week-of-the-year
frequency. The dashed horizontal marks 0.1.

that

fη(ω) =
σ2
ε

2π
×

|θ1 (e−iω)|2
∏
τ∈S

|θτ (e−iω)|2

|δ1 (e−iω)|2
∏
τ∈S

|δτ (e−iω)|2
, ω ∈ (0, π], (9)

where the squared gains of the seasonal differencing filters are given by (7) and those of
the other involved filters read∣∣θ1 (e−iω

)∣∣2 = 1− 2θ1 cos (ω) + θ21,∣∣θτ (e−iω
)∣∣2 = 1− 2θτcτ (ω) + θ2τ

[
c2τ (ω) + s2τ (ω)

]
,∣∣δ1 (e−iω

)∣∣2 = 2 [1− cos (ω)] .

Figure 2 shows the pseudo-spectral density (9) for the weekly extended Airline model
and four combinations of its MA parameters. It is seen that, as for the classic Airline
model, the non-seasonal MA parameter governs the shape of (9) as ω → 0 (higher/lower
values of θ1 correspond to steeper/flatter increases), whereas the seasonal MA parameter
governs the shape of (9) in the vicinity of the WOY frequencies ωk = 2πk/52.18 with k ∈
{1, . . . , 26} (higher/lower values of θ52.18 correspond to narrower/wider peaks). However,
in contrast to the classic Airline model, the magnitude of the seasonal peaks decreases
dramatically at the higher WOY harmonics due to the aforementioned fact that δ52.18(B)
does not entirely annihilate WOY dynamics (recall that its squared gain appears in the
denominator of (9)).

2.2 Model estimation

The unknown parameters of pretreatment model (2) and (4) are estimated through the it-
erative procedure schematized in Algorithm 1. In essence, in each iteration, the regression
parameters in (2) are estimated via ordinary least squares (OLS), whereas the ARMA pa-
rameters in (4) are estimated via maximum likelihood (ML) techniques. Running through
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Figure 2: Pseudo-spectral density (9) with S = {52.18}, (θ1, θ52.18) ∈ {0.35, 0.75}×{0.45, 0.85}
and σ2

ε = 1 (in decibel). The gray vertical marks the chief week-of-the-year frequency.

the iterations, optimal regression and ARMA parameter estimates are obtained through
the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963). The following
list contains additional details, with item numbers referring to lines in Algorithm 1:

3: To avoid time-consuming matrix inversions, the OLS solution utilizes the QR fac-
torization of the design matrix, which is computed via Householder reflections.

4–7: The automatic forward-addition-backward-deletion search for outliers is optional.

Algorithm 1 Iterative estimation of pretreatment model (2) and (4)

Let ψ = (θ1, θτ1 , . . . , θτ|S| , σ
2
ε)

⊤ be the vector of the ARMA parameters from (4), including
the white-noise variance.

1: Set ψ(0) = (0.2, . . . , 0.2, 1)⊤.
2: repeat

3: Given ψ̂
(i−1)

in (4), estimate β̂
(i)

in (2) via OLS after applying the Kalman filter
and smoother (KFS) to {yt} and {xt}.

4: repeat
5: Run a sequence of OLS regressions of the KFS residuals on each potential outlier

type and date and add the most significant outlier to (2).
6: Remove insignificant outliers sequentially from (2) without model re-estimation.
7: until a stable tentative version of model (2) is found, or a maximum of 100 search

rounds is reached.
8: Given β̂

(i)
in (2), establish the state space representation of model (4), run the KFS

and estimate ψ̂
(i)

via ML, utilizing the KFS output.
9: until convergence, or a maximum of 200 iterations is reached.
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Valid types are additive outliers, level shifts and lag-1 switch interventions, which are
a special case of reallocation outliers (Wu, Hosking, and Ravishanker, 1993). Given
a prespecified critical value, outlier significance is determined through a diagnostic
statistic akin to the one derived in de Jong and Penzer (1998).

8: Model (4) is put into Akaike’s Markovian (minimal state space) representation
(Gómez and Maravall, 1994). The KFS implementation utilizes fast Chandrasekhar
recursions (Morf, Sidhu, and Kailath, 1974; Morf and Kailath, 1975) and a proper
calculation of the initial state covariance matrix (Jones, 1980). ML estimates are
found through maximizing the concentrated profile log-likelihood function (Francke,
Koopman, and de Vos, 2010).

9: Convergence is measured by the incremental changes of (1) the estimated regression
parameters in (2), (2) the gradient of the likelihood function used to obtain the ML
estimates of the ARMA parameters in (4) and (3) the residual sum of squares of
the entire pretreatment model.

3 Extended ARIMA model-based approach

The extension of classic AMB seasonal adjustment for monthly and quarterly time series
also rests on the extended Airline model (4). In the first step, this model is estimated (from
the linearized observations) in the same way as described in Section 2. In a second step,
the canonical decomposition of the estimated extended Airline model into the requested
UC models is found according to the classic approach (Burman (1980); see also Gómez
and Maravall (2001) and Maravall (1995) for extensive overviews). To this end, the non-
seasonal and seasonal differencing operators in (4) are factorized by means of polynomial
division, which after substituting (8) into (4) results in

δ
1+|S|
1 (B)

∏
τ∈S

Sτ (B),

so that the unit roots at unity are assigned to the trend-cycle and the non-stationary
(ατ = 0) or stationary (ατ > 0) roots of the fractional aggregation operators are assigned
to the corresponding seasonal patterns. Given such a factorization, the decomposition of
the model’s MA part is achieved through a partial fraction expansion. Combining the UC
models’ differencing and MA polynomials according to classic Wiener-Kolmogorov (WK)
theory then gives the minimum mean squared error (MMSE) estimators for the requested
UC, including the seasonally adjusted time series. In some cases, this decomposition can
be inadmissible in the sense that the spectrum of the estimated irregular component is
negative for at least one frequency. Variance inflation is used to solve this issue, that is
artificial white noise is added to the model until the spectrum of the irregular component
becomes non-negative. Afterwards, the WK filters and MMSE estimators are recomputed
from the admissible decomposition of the noise-inflated extended Airline model. Note,
however, that the MMSE estimator for any seasonal pattern with a fractional periodicity
will technically be stationary since it inherits the stationarity-inducing transformation
from the corresponding UC model.
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Although the WK filters provide MSE-optimal UC estimators in theory, preliminary
empirical studies conducted at the National Bank of Belgium suggest that the classic
decomposition can become numerically unstable quite quickly for infra-monthly data and
hence those optimal estimates may be unreliable. Therefore, refined UC estimates are
calculated in a third step via an application of the KFS to the state space representation
of the decomposed extended Airline model. The diffuse square-root KFS is applied if
standard deviations of the UC estimates are opted for; otherwise, the fast disturbance
smoother (Koopman, 1993) is applied (also with a diffuse initialization). Either way, the
AMB decomposition can produce back- and forecasts for the UC estimates along the way.
Those can then be used to construct model-based back- and forecasts for the observed
time series through simple aggregation.

4 Extended X-11 approach

The classic X-11 seasonal adjustment method derived in Shiskin, Young, and Musgrave
(1967) and reviewed in great detail in Ladiray and Quenneville (2001) suits monthly and
quarterly time series. It is based upon an iterative application of the following 4-step
principle. First, the trend-cycle is extracted from the input series through the application
of 2 × τ moving averages or Henderson filters, depending on the position in the entire
filtering process. Second, the estimated trend-cycle is removed from the input series.
Third, the detrended input series is separated into normalized seasonal and irregular
components through the application of 3×k seasonal moving averages. At some positions,
this steps also includes an automatic detection and down-weighting of extreme values in
the irregular component based upon the famous σ-limits. Fourth, the estimated seasonal
component is removed from the input series. This key principle is applied twice in each of
the X-11 iterations B through D. Afterwards, the final trend-cycle and irregular estimates
are obtained from splitting the final seasonally adjusted series with the Henderson filter,
completing a sequence of preliminary, refined and final UC estimates.

The extended X-11 approach essentially adopts this iterative smoothing process but
incorporates some generalizations and modifications tailored to the peculiarities of infra-
monthly data. This section describes the key changes to the classic X-11 method. The
current implementation facilitates a sequential extraction of the seasonal patterns in (3)
without automatic selection of trend-cycle and seasonal filters based on I/C and I/S
ratios and without any forecasts, even naive ones, of the seasonal patterns.

4.1 Trend-cycle filters

4.1.1 Preliminary trend-cycle estimation

Preliminary trend-cycle extraction in the classic X-11 method is carried out with centered
symmetric 2 × τ moving averages for τ ∈ {4, 12}. The extended X-11 approach utilizes
a generalized version of those crude filters that allows for any seasonal periodicity τ . Let
Nodd be the set of odd integers and ⌈k⌉odd denote the smallest odd integer not smaller
than k, i.e. ⌈k⌉odd = min {l ≥ k | l ∈ Nodd}. Then, the generalized 2× τ moving average
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has length lτ = ⌈τ⌉odd and its weights are given by

wi =


1/τ, i ∈ {1, lτ} with τ ∈ Nodd

(I{⌊τ⌋ even}+ ατ )/(2τ), i ∈ {1, lτ} with τ /∈ Nodd

1/τ, i ∈ {2, . . . , lτ − 1}
, (10)

where I{·} is the indicator function. It is easily seen that
∑lτ

i=1 wi = 1 holds for any choice
of τ . Asymmetric variants are not used during preliminary trend-cycle extraction so that
(lτ − 1)/2 observations are temporarily lost at the beginning and end of the filter output.

4.1.2 Refined and final trend-cycle estimation

The refined and final trend-cycle extraction filters of the classic X-11 method are essen-
tially a set of prespecified weights for symmetric m-term Henderson filters with m ∈
{3, . . . , 101} ∩ Nodd and their asymmetric Musgrave surrogates. The extended X-11 ap-
proach implements the generalized approach to trend-cycle estimation derived in Proietti
and Luati (2008), which is akin to the approach of Gray and Thomson (2002), alongside
three very different ways of calculating asymmetric variants.

Trend-cycle estimation according to Proietti and Luati (2008) is founded on applying
local polynomial regressions to the input series. Let h denote the local bandwidth, or
half-length, of the trend-cycle filter and d the polynomial degree which the filter should
be able to preserve. Also, let q ∈ {0, . . . , h} be the number of future observations available
after the current time point t. The local polynomial regression model is then given by

zt = Xqζ + εt, (11)

where zt = (zt−h, . . . , zt+q)
⊤ is the local span of the input series,

Xq =


1 −h h2 · · · (−h)d

1 −(h− 1) (h− 1)2 · · · [−(h− 1)]d

...
...

...
. . .

...
1 q q2 · · · qd


is the time-constant design matrix, ζ = (ζ0, . . . , ζd)

⊤ is a (d + 1)-dimensional vector
of unknown regression coefficients, and εt = (εt−h, . . . , εt+q)

⊤ is a local vector of zero-
mean Gaussian white noise processes that are both mutually and serially uncorrelated.
A weighted least squares (WLS) estimator of ζ is obtained through minimization of the
objective function

q∑
j=−h

κj

(
zt+j − ζ0 − ζ1j − · · · − ζdj

d
)2

, (12)

where {κj} is a set of non-negative weights defined through a prespecified kernel.2 Using

2The R package currently implements the biweight, Epanechnikov, Gaussian, Henderson, trapezoidal,
triangular, tricube, triweight and uniform kernels.
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Figure 3: Symmetric kernel-based Henderson (solid), Epanechnikov (dashed) and unit-variance
Gaussian (dotted) trend-cycle extraction filters (13) with q = h = 4 (black) and q = h = 6 (gray)
and d = 3. The gray vertical in Panel (b) marks the chief day-of-the-week frequency.

standard least-squares theory, the WLS minimizer of (12) is found as

ζ̂ = (X⊤
q KqXq)

−1X⊤
q Kqzt

with Kq = diag(κ−h, . . . , κq). Since the local trend-cycle estimator is given by ζ̂0 = e⊤1 ζ̂,

where e1 is the first (d+ 1)-dimensional unit vector, we finally have ζ̂0 = w⊤
q zt with

wq = KqXq(X
⊤
q KqXq)

−1e1. (13)

Assuming 2h ≥ d, the weights of the symmetric kernel-based trend-cycle extraction
filters result from setting q = h in (13). Figure 3 shows the squared gains of the cubic
filters derived through the Henderson, Epanechnikov and unit-variance Gaussian kernels
for bandwidths h ∈ {4, 6} (which correspond to the lengths of classic 9-term and 13-term
trend-cycle extraction filters). Any of these filters qualifies for trend-cycle extraction
during the seasonal adjustment of daily data with pronounced day-of-the-week dynamics.
For either bandwidth, the squared gains of the three filters are shaped very similarly,
although the pass-band becomes slightly narrower when the Epanechnikov and Gaussian
kernels are utilized in place of the Henderson kernel.

The weights of the corresponding asymmetric variants can be obtained for any choice
of q ∈ {0, . . . , h−1} in (13). For example, the concurrent kernel-based trend-cycle extrac-
tion filters are given byw0. Those variants are conceptually consistent with the symmetric
filterswh—and therefore called “direct” asymmetric filters—but often yield strongly local-
ized and hence volatile trend-cycle estimates. The “cut-and-normalize” approach (Gasser
and Müller, 1979) is a rather simple alternative according to which the asymmetric vari-
ants are found through dropping the unneeded weights from the symmetric filter wh and
dividing the remaining weights by their sum, that is

wq = w
(q)
h ×

[
1⊤w

(q)
h

]−1

,

where w
(q)
h contains only the first h+q+1 elements of wh and 1 is a (h+q+1)-dimensional

vector of ones. A more sophisticated alternative is the “minimum mean squared revision
error” (MMSRE) approach also discussed in Proietti and Luati (2008). Aiming at a
bias-variance trade-off, its key idea is to purposely introduce a slight bias into the trend-
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cycle estimators by assuming that the polynomial degree is of lower order d < d at the
boundary and by seeking asymmetric trend-cycle filters that preserve polynomials of even
lower degree d < d subject to the reproduction constraints dictated by the symmetric
filter wh. The Musgrave surrogates, for example, can be replicated in the linear-constant
case (d, d) = (1, 0) if the Henderson kernel is used to calculate wh according to (13).
The corresponding objective function, that is the analog to the matrix representation of
(12), is then composed of the variance and squared bias of the trend-cycle revision error
plus a vector of Lagrange multipliers linked to the reproduction constraints. The current
implementation of the MMSRE approach even utilizes a generalized minimization criterion
derived in Grun-Rehomme, Guggemos, and Ladiray (2018), which essentially translates
the aforementioned objective function to the frequency domain where it is decomposable
into effects related to the gain and phase shift properties of the involved trend-cycle filters
and hence capable of balancing certain fidelity, smoothness and timeliness criteria.

Note that the framework of Proietti and Luati (2008) also enables the identification of
the optimal bandwidth h through cross-validation for a given time series and a prespecified
polynomial degree d and set of kernel weights {κj}. However, this procedure has not been
implemented in the R package so far.

4.2 Seasonal filters

The classic X-11 method implements a set of symmetric 3× k seasonal moving averages,
where k ∈ {1, 3, 5, 9, 15}, as well as asymmetric variants in order to extract estimates of
the seasonal component from the detrended data (alias the seasonal-irregular component).
The extended X-11 approach adopts the exact same seasonal filters but allows for more
combinations of different filters when extracting the initial and final seasonal factors in
iterations B through D. Seasonal estimates are normalized with the generalized symmetric
2 × τ moving average with weights given in (10) and its asymmetric variants defined
implicitly through padding the beginning (end) of a seasonal estimate with (lτ − 1)/2
copies of its first (last) element. Principle (5) is used additionally in the case of fractional
periodicities, that is weighted averages of the two corresponding adjacent integer-valued
lagged values of the seasonal-irregular component constitute the input to the seasonal
filter. Considering the symmetric 3 × 3 seasonal filter, for example, the estimate of the
seasonal pattern is obtained from the detrended infra-monthly data according to

ŝt =
1

9

[
α2τ (ŝi)t−⌊2τ⌋−1 + (1− α2τ )(ŝi)t−⌊2τ⌋

]
+

2

9

[
ατ (ŝi)t−⌊τ⌋−1 + (1− ατ )(ŝi)t−⌊τ⌋

]
+

3

9
(ŝi)t (14)

+
2

9

[
(1− ατ )(ŝi)t+⌊τ⌋ + ατ (ŝi)t+⌊τ⌋+1

]
+

1

9

[
(1− α2τ )(ŝi)t+⌊2τ⌋ + α2τ (ŝi)t+⌊2τ⌋+1

]
.

Figure 4 shows the squared gain of the (effective) seasonal extraction filter (14) for
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τ = 30.44, that is of the filter that extracts the day-of-the-month (DOM) pattern from
detrended daily data (other examples are shown in Figure 14 in the Appendix).3 Its
squared gain is almost one at the chief DOM frequency but from the first harmonic
onward the DOM peaks start to decline visibly in almost linear fashion towards 0.25.
At the same time, the average level of the squared gain at the infra-DOM frequencies
visibly separates from zero between the higher DOM harmonics (with initially small infra-
DOM peaks reaching almost 0.25 between the thirteenth and fourteenth harmonic). This
divergence effect has already been seen for squared gains of seasonal differencing operators
with fractional periodicities (see e.g. Figure 1). Asymmetric seasonal filters are derived
accordingly. For example, the concurrent variant of (14) reads

ŝt =
5

27

[
α2τ (ŝi)t−⌊2τ⌋−1 + (1− α2τ )(ŝi)t−⌊2τ⌋

]
+

11

27

[
ατ (ŝi)t−⌊τ⌋−1 + (1− ατ )(ŝi)t−⌊τ⌋

]
(15)

+
11

27
(ŝi)t,

the squared gain of which is shown in Figure 5 (a) for τ = 30.44. Compared with the
symmetric filter, the latter is similar in shape but has slightly higher and broader peaks
at the DOM and “in-between-DOM” frequencies. Panel (b) reveals that the concurrent
3 × 3 seasonal extraction filter (15) introduces a phase delay of up to 24 days into the
low-frequency variation of the filtered series, which may be neglected since the filter is
applied to detrended data. Apart from that, no serious phase delays or advances are
introduced beyond the chief DOM frequency.

Seasonal filters based on principle (5) operate at the exact non-integer seasonal peri-
odicities but inevitably need to compromise some extraction power at the higher seasonal
harmonics. Other seasonal adjustment approaches for infra-monthly time series possess
a high extraction power at all seasonal harmonics at the expense of operating at slightly
inaccurate integer periodicities, which is often achieved through temporary data regular-
ization. For example, the STL-based approach for daily data implemented in the {dsa}
R package (Ollech, 2021) utilizes spline interpolation in order to temporarily stretch each
month to 31 days. Setting τ = 31 instead of τ = 30.44 in (14) mimics the corresponding
5-term seasonal LOESS smoother, and the aforementioned trade-off effect is visualized by
the dotted squared gain in Figure 4.

5 STL approach

The classic STL method developed in Cleveland, Cleveland, McRae, and Terpenning
(1990) essentially adopts the sequential linear filtering concept of X-11 in its inner loop

3In general, the squared gain of any symmetric 3 × k seasonal extraction filter is calculated as∣∣S3×k

(
e−iω

)∣∣2 with S3×k(B) being the filter’s polynomial representation given by

S3×k(B) =
1

3k

(
Bτ + 1 +B−τ

) (
B(k−1)/2×τ + · · ·+B−(k−1)/2×τ

)
,

where fractional powers of B are defined in (5).
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Figure 4: Squared gains of the symmetric 3 × 3 seasonal extraction filter (14) for τ = 30.44
(solid) and τ = 31 (dotted). The gray vertical marks the chief day-of-the-month frequency.

(a) Squared gain

0

0.25

0.5

0.75

1

0 3 6 9 12 15
Cycles per month (in days)

(b) Phase shift (in days)

−8

0

8

16

24

0 1 2 3 4
Cycles per month (in days)

Figure 5: Spectral characterization of the concurrent 3 × 3 seasonal extraction filter (15) for
τ = 30.44. Gray verticals mark the chief day-of-the-month frequency.

but incorporates a few modifications. The probably most notable of those is the utilization
of trend-cycle and seasonal filters, the weights of which are no longer predefined but
derived through locally weighted non-parametric univariate regressions (LOESS). The
LOESS objective function is similar to (12) with the kernel weights being replaced by
the so-called neighborhood weights obtained through the tricube kernel and usually with
d ∈ {1, 2}. Another modification is the application of an additional low-pass filter during
seasonal extraction. As in X-11, period-wise smoothing of the detrended data produces
an estimate of the seasonal component but in STL this estimate is temporary as its low-
frequency variation is further removed with a convoluted MA and LOESS filter in order
to restrain the final trend-cycle and seasonal smoothers from competing for the same
variation in the data.4 It is also worth noting that asymmetric trend-cycle and seasonal
filter variants are not needed in STL as smoothing near the end-points is handled through
appropriately modified neighborhood weights in the LOESS regression. The window, or
filter, length of the latter remains fixed at 2h + 1 in the terminology of (12), whereas in

4The convolution consists of a 3 × τ × τ MA filter (in X-11 terminology) trailed by a LOESS smoother
with a recommended window length given by ⌈τ⌉odd. This additional low-pass filtering results in a
squared gain of the final seasonal LOESS smoother that remains close to zero in the vicinity of ω = 0,
as opposed to X-11 (see Figure 4).
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X-11 the filter length shrinks gradually from 2h+1 in the symmetric case to h+1 in the
concurrent case. Finally, an optional outer loop provides robustness weights based on the
biweight kernel for the irregular component, which is conceptually akin to X-11’s extreme-
value detection. The neighborhood weights are then multiplied by the robustness weights
in the next run through the inner loop, that is the principle of iterated WLS estimation
is applied in (12).

The current implementation is mostly in line with the recommendations given in Cleve-
land et al. (1990) that target “near certainty of convergence” of the trend-cycle and sea-
sonal STL estimates. Therefore, we just mention the key deviations at this point. Two
runs through the inner loop are carried out when no robustness weights are needed and
15 runs through the outer loop, each time with one run through the inner loop, are car-
ried out otherwise. The polynomials in the LOESS objective function have orders d = 1
for trend-cycle and d = 0 for seasonal LOESS smoothers, respectively. If unspecified,
the length of the trend-cycle LOESS smoother for extracting the seasonal pattern with
periodicity τ is automatically set to ⌈lt(τ)⌉odd with

lt(τ) =

⌊
1.5 ⌊τ⌋

1− 1.5 ⌊ls(τ)⌋−1

⌋
, (16)

where ls(τ) is the length of the corresponding seasonal LOESS smoother. The latter also
affects the length of the LOESS smoother in the convoluted low-pass filter, which is given
by ⌈ls(τ)⌉odd. Also note that (16) already alludes to the way fractional periodicities are
dealt with in STL as those are rounded down to the nearest integer, i.e. ⌊τ⌋ is always
used, in sharp contrast to the weighted averaging principle (5) utilized in the extended
AMB and X-11 approaches.

6 Structural time series models

The pretreatment and filtering methods discussed so far target data linearization and
signal extraction in sequential top-down fashion. Structural time series (STS) models
enable simultaneous estimation of all UCs in (1) through a bottom-up specification of the
relevant dynamics, the aggregate of which then naturally constitutes the model for the
observations in (1) (see Harvey, 1989, as a standard reference).

The most general trend-cycle specification within the STS framework is the local linear
model given by

tt = tt−1 + νt−1 + ξt, (17)

νt = νt−1 + χt, (18)

where {ξt} and {χt} are mutually uncorrelated Gaussian white-noise processes with zero
means and finite variances σ2

ξ and σ2
χ, respectively. Other popular trend-cycle models can

be derived directly from this general form. For example, the local level model with drift,
which is characterized by a constant slope ν in (17), is obtained from setting σ2

χ = 0 in
(18). Similarly, the so-called smooth trend is obtained from setting σ2

ξ = 0 in (17).
The specification of the seasonal component in (1) is according to the West-Harrison

representation (West and Harrison, 1997). Assuming |S| = 1 and τ ∈ N in (3) for the
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ease of exposition (subsequent notations naturally extent to the case of multiple seasonal
patterns with potentially fractional periodicities, see Proietti and Pedregal (2022) for more
details), the general form reads

st = e⊤1,τ−1s̃t,

where ek,n is the k-th unit vector of length n and {s̃t} is the (τ − 1)-dimensional reduced
form of the τ seasonal effects given by

s̃t = D−Pt−1st,

where s⊤t = (s1,t, . . . , sτ,t) is the vector of the τ seasonal effects at time t, P and D are
permutation and dimension reduction matrices given by

P =

(
0τ−1 Iτ−1

1 0⊤
τ−1

)
and D =

(
Iτ−1

−1⊤
τ−1

)
with 0n and 1n being n-dimensional column vectors of zeros and ones, respectively, and In
being the n-dimensional identity matrix, and D− =

(
D⊤D

)−1
D⊤ is the Moore-Penrose

inverse of D. The reduced form is then assumed to follow the first-order vector autore-
gressive model

s̃t = T s̃t−1 + ωt, T = D−PD =

(
0τ−2 Iτ−2

−1⊤
τ−1

)
, (19)

where {ωt} is a vector Gaussian white-noise process with zero mean and non-singular
covariance matrix Σω. The latter can be reparametrized as Σω = σ2

ω ΩΩ⊤ for some sea-
sonal models, where Ω is a model-specific matrix that explicitly incorporates a stochastic
zero-sum restriction in the τ seasonal effects. Its exact form is given in Proietti (2000)
for the crude, dummy, Harrison-Stevens and trigonometric seasonal models.

The entire STS model is finally put into a univariate linear Gaussian state space
form, which also enables the inclusion of calendar variation from (1) in straightforward
fashion by adding the requisite regression variables from (2) to the system matrix of the
observation equation and the associated effects contained in β to the state vector. Outliers
can be dealt with similarly, and an automatic detection procedure (Grassi, Mazzi, and
Proietti, 2018) is available, which is quite similar to the routine utilized in pretreatment
model (2) and (4), being essentially a “forward-addition-backward-deletion” algorithm
based upon the point-wise maximum τ ⋆

2

t -statistics derived in de Jong and Penzer (1998).
The full state space model, including hyper-parameters, is finally estimated with the KFS
and from maximizing its derived profile likelihood function, the implementation of which
closely follows the algorithms described in Durbin and Koopman (2012).

7 Applications

We consider three real-world examples to highlight key capabilities of the methods dis-
cussed in the previous sections: daily births in France, hourly electricity consumption
in Germany, and weekly initial claims for unemployment insurance in the United States.
The first series is used to exemplify data pretreatment with model (2) and (4) and the
extended AMB seasonal adjustment approach (Section 7.1). The second series is used to
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Figure 6: Seasonal profile of daily BIRTHS series.

illustrate the extended X-11 and STL approaches (Section 7.2), whereas the third series
is used to demonstrate simultaneous estimation of regression effects and seasonal com-
ponents with STS models (Section 7.3). Throughout these examples, code snippets are
provided consecutively for the sake of brevity.

7.1 Daily births in France

Daily counts of births in France (BIRTHS) are considered from 1 January 1968 to 31
December 2020, resulting in 19,359 observations5 (Figure 6 (a)).

7.1.1 Identification of seasonal patterns

The seasonal profile of the BIRTHS series is visualized in Figure 6 (b)–(d). For each
integer periodicity τ ∈ {2, . . . , 367}, we calculate the point-wise test statistics of the
generalized Canova-Hansen (CH) test (Canova and Hansen, 1995; Busetti and Harvey,
2003) of the null hypothesis of no seasonality against the alternative of either deterministic
or non-stationary stochastic (trigonometric) seasonality, using the following command:

R> rjd3sa::seasonality.canovahansen(births,

+ p0 = 2, p1 = 367, np = 366, original = TRUE)

Under the null hypothesis, the distribution of the generalized CH test statistic belongs to
the Cramér-von Mises family, and critical values have been tabulated in Harvey (2001).
Panel (b) shows that the CH statistics peak at 7 days and around 365 days, suggesting the
presence of day-of-the-week (DOW) and day-of-the-year (DOY) patterns in the BIRTHS
series.

5The data are freely available from INSEE under URL https://www.insee.fr/fr/statistiques/54147

59?sommaire=5414771 (Table T79JNAIS).
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Panels (c) and (d) elaborate the appearance of the two patterns by utilizing grouped
boxplots. Overall, birth counts are relatively stable from Monday through Friday but
visibly lower on the weekends, especially on Sundays. It also seems that births happen
more frequently during spring and summer compared to fall and winter. Based on this
evidence, we set S = {7, 365.2425} in (4) during subsequent analyses.

7.1.2 Pretreatment

To correct the BIRTHS series for calendar variation, dummy regression variables are
created with the companion {rjd3toolkit} package for the following fixed and moving
public holidays in France: New Year’s Day (1 Jan), Easter Monday, Labor Day (1 May),
Victory Day (8 May, celebrated as of 1982), Ascension Day, Whit Monday, Bastille Day
(14 July), Assumption Day (15 Aug), All Saints’ Day (1 Nov), Armistice Day (11 Nov)
and Christmas Day (25 Dec). Storing those variables in a matrix object named hol.FR

and assuming a multiplicative UC decomposition in (1), estimation of pretreatment model
(2) and (4)—including automatic detection of temporary outliers with data-driven critical
values—can be achieved with the fractionalAirlineEstimation() function (see Table 4
in the Appendix), using the following command:

R> pre.mdl <- rjd3highfreq::fractionalAirlineEstimation(

+ log(births),

+ x = hol.FR,

+ periods = c(7, 365.2425),

+ outliers = c("ao", "wo"),

+ criticalValue = 0)

Table 1 reports the estimated calendar effects along with standard errors and t-statistics.
Overall, each public holidays has a strong dampening effect on the birth counts, which
amounts, for example, to roughly −20% on Christmas Day. The estimated calendar
component can be retrieved from the output object via

R> births.cal <- exp(pre.mdl$model$X[, 1:n] %*% pre.mdl$model$b[1:n])

where n = ncol(hol.FR) is the number of user-defined calendar regression variables. In
addition, a total of 52 outliers has been detected automatically but the estimated effects
are not reported here for the sake of brevity. The estimated extended Airline model is
given by

δ(B)wt =

(
1 + 0.257

(0.007)
B

)(
1− 0.865

(0.006)
B7

)(
1− 0.818

(0.005)
B365.2425

)
εt, (20)

where δ(B) = δ1(B) δ7(B) δ365.2425(B), {wt} denotes the linearized logged BIRTHS series,
and standard errors are given in parentheses underneath the MA parameter estimates.

7.1.3 Seasonal adjustment

The DOW and DOY patterns are extracted from the linearized logged BIRTHS series with
the extended AMB approach in ascending order of their periodicities to minimize risks
associated with confounding. This can be achieved through a two-step application of the
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Table 1: Estimated calendar effects for BIRTHS series

Event Estimate Standard error t-value

New Year’s Day −0.129 0.0063 −20.3479
Easter Monday −0.123 0.0056 −22.0609
Labor Day −0.162 0.0043 −37.3471
Victory Day −0.163 0.0058 −28.1360
Ascension Day −0.179 0.0043 −41.8757
Whit Monday −0.113 0.0056 −20.2993
Bastille Day −0.175 0.0043 −40.7100
Assumption Day −0.111 0.0056 −19.8978
All Saints’ Day −0.136 0.0056 −24.2569
Armistice Day −0.140 0.0056 −24.9068
Christmas Day −0.201 0.0057 −35.0796

fractionalAirlineDecomposition() function (see Table 5 in the Appendix). Starting
with the DOW pattern in the first step, the following command initiates a “full” UC
decomposition without standard errors and back- and forecasts for the UC estimates:

R> amb.dow <- rjd3highfreq::fractionalAirlineDecomposition(

+ pre.mdl$model$linearized, period = 7,

+ sn = FALSE, stde = FALSE,

+ nbcasts = 0, nfcasts = 0)

The object amb.dow stores the UC estimates and the specified arguments of the AMB
run. For example, the estimated DOW pattern can be obtained via

R> births.dow <- exp(amb.dow$decomposition$s)

In a second step, the DOY pattern can be extracted from the DOW-adjusted linearized
logged BIRTHS series using essentially the same options as before except for the seasonal
periodicity:

R> amb.doy <- rjd3highfreq::fractionalAirlineDecomposition(

+ amb.dow$decomposition$sa,

+ period = 365.2425, ...)

R> births.doy <- exp(amb.doy$decomposition$s)

Figure 7 (a) shows the births.dow and births.doy series. The former has a distinct time-
varying amplitude that is largest during the mid-1990’s. The latter, on the other hand,
has a relatively constant amplitude but apparently undergoes some gradual structural
infra-year changes after 1990. Both effects could be a reaction to the changing volatility
in the BIRTHS series during the 1980–2010 period. This possible explanation is supported
by the fact that the volatility of the seasonally adjusted BIRTHS series calculated as

R> births / (births.cal * births.dow * births.doy)

remains relatively constant throughout the entire data span (Panel (b)).
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Figure 7: AMB seasonal adjustment of the BIRTHS series.

7.2 Hourly electricity consumption in Germany

Realized electricity consumption (ELCON) in Germany is considered in units of gigawatt
hours (GWh) as of 1 January 2015 (00:00 AM) up to 30 June 2022 (11:00 PM), result-
ing in 65,712 hourly observations. The series covers electricity supplied to the network
for the general supply, excluding electricity supplied to the railroad network and to in-
ternal industrial and closed distribution networks as well as electricity consumed by the
producers.6

7.2.1 Data regularization and seasonal profile

Daylight saving time (DST) is in effect in Germany and makes the hourly ELCON series
irregularly spaced, albeit slightly. More specifically, 24 observations are available for each
day except for the last Sunday in March, when the 02:00 AM record is skipped and hence
only 23 observations are available, and for the last Sunday in October, when the 02:00
AM value is recorded twice and hence 25 observations are available. Data regularization
is thus required and we use the following rather simple technique: an artificial 02:00 AM
value is calculated for each DST starting day as the average of the 01:00 and 03:00 AM
values from this day and the two 02:00 AM values for each DST ending day are also
averaged.

Figure 8 shows the seasonal profile of the regularized hourly ELCON series. As electric-
ity consumption tends to be higher in winter than in summer, the U -shaped infra-yearly
pattern seen in Panel (a) may not come as a surprise. In addition, V -shaped dips can
be spotted easily around the turn of the years. Panel (b) reveals that, roughly speaking,
during a given Monday through Friday the median hourly consumption settles between
45 and 50 GWh before 05:00 AM, then raises up to 70 GWh until lunchtime, and eventu-
ally decreases gradually over the afternoon and less gradually after 08:00 PM. The same
tendency can be seen on Saturdays and Sundays, although its overall curvature is lower
in level and noticeably flatter. Panel (c) confirms the existence of such infra-daily and
infra-weekly patterns as the periodogram of the differenced logged ELCON series displays
visible peaks at the corresponding fundamental frequencies (highlighted as gray verticals)
and their harmonics.

6The data are freely available from the Federal Network Agency (“Bundesnetzagentur | SMARD.de”)
under URL https://www.smard.de/en and has been downloaded on 4 July 2022.
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Figure 8: Seasonal profile of hourly ELCON series. Gray verticals in Panel (c) mark the chief
hour-of-the-day (solid) and hour-of-the-week (dashed) frequencies.

7.2.2 Pretreatment

Preliminary empirical studies not discussed here failed to provide sufficient evidence in
favor of the assumption of constant hourly calendar effects within each day in the logged
regularized hourly ELCON series. To allow for varying hourly calendar effects, we could
employ model (2) and (4) with an appropriate set of hourly dummy regression variables
and S = {24, 168, 8765.82}. However, the former set would be almost prohibitively large
since nearly 400 dummy variables would be required to account for calendar variation
alone. Consequently, such an approach would be computationally inefficient and most
likely lead to rather unstable estimates. For that reason, we adopt a periodic regression
approach instead, in line with several other studies of hourly time series (e.g. Cancelo,
Espasa, and Grafe, 2008; Ramanathan, Engle, Granger, Vahid-Araghi, and Brace, 1997).

To this end, we create 24 daily sub-series {y(h)t }, where the h-th sub-series contains logged
regularized electricity consumption during hour h ∈ {0, . . . , 23} at day t, and use for each
of those in (2) the same daily calendar regression variables and automatic outlier detection
routines that have been applied in an earlier study of the companion daily ELCON series
(Webel, 2022), except for the DST variables.7 The residuals of each daily sub-series are

7As in Webel (2022), long-term means have been removed from regression variables for moving holidays
to avoid confounding with annual seasonality.
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modeled according to (4) with S = {7, 365.2425}, so that the entire periodic pretreatment
model is given by

δ(B)w
(h)
t =

(
1− θ

(h)
1 B

)(
1− θ

(h)
7 B7

)(
1− θ

(h)
365.2425B

365.2425
)
ε
(h)
t , (21)

where δ(B) was defined in (20) and {w(h)
t } is the linearized h-th sub-series given by

w
(h)
t = y

(h)
t − x⊤

t β
(h). (22)

Note that in (21)–(22) infra-daily seasonality is implicitly accounted for by the varying
seasonal parameters across the 24 daily sub-models. The estimated time-varying calen-
dar effects and MA parameters are shown in Figure 9 along with point-wise standard
errors (detailed results are available from the authors upon request). The estimated cal-
endar effects display similar infra-daily curvatures that in most cases deviate visibly from
the constant benchmark effects estimated for the companion daily ELCON series. The
strongest estimates can usually be observed between 06:00 and 09:00 AM and—to a lesser
extent—in the afternoon roughly around 03:00 PM, whereas unsurprisingly the weakest
estimates tend to be recorded in the evening and during nighttime. The estimated MA
parameters remain relatively constant throughout the day. In particular, the estimates for
the seasonal parameters are larger than 0.8 for each hour of the day, indicating presence
of strong DOW and DOY patterns in the 24 daily sub-series. The linearized versions of
the latter are finally transformed back to the original ELCON scale and then combined to
form the precleaned hourly ELCON series, which will be denoted by elcon in subsequent
code snippets.
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Figure 9: Estimated calendar effects and MA parameters from periodic pretreatment model
(21)–(22). Shaded areas mark point-wise ±1 SE intervals. Dashed horizontals mark parameter
estimates obtained for the companion daily ELCON series (see Webel, 2022).
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7.2.3 Seasonal adjustment

Based on visual evidence (Figure 8), we set S = {24, 168, 8765.82} for the precleaned
hourly ELCON series and show how those patterns can be extracted sequentially with
the extended X-11 and STL approaches, assuming a multiplicative UC decomposition.

X-11 estimates can be obtained with the x11() function, an overview of which is given
in Table 6 in the Appendix. Starting again with the smallest periodicity, i.e. τ1 = 24
in this case, the following command runs the extended X-11 approach with a 25-term
cubic Henderson trend-cycle filter, 3×9 seasonal filters and default σ-limits on the logged
precleaned ELCON series:

R> elcon.x11.idp <- rjd3x11plus::x11(

+ log(elcon), mul = FALSE,

+ period = 24,

+ trend.horizon = 12, trend.degree = 3,

+ trend.kernel = "Henderson",

+ trend.asymmetric = "CutAndNormalize",

+ seas.s0 = "S3X9", seas.s1 = "S3X9",

+ extreme.lsig = 1.5, extreme.usig = 2.5)

The infra-weekly and infra-yearly patterns can be estimated in similar fashion. Targeting
τ2 = 168, for example, the following command runs the extended X-11 approach on the
logged precleaned ELCON series after removal of the estimated infra-daily pattern (with
unchanged specification of the omitted arguments):

R> elcon.x11.iwp <- rjd3x11plus::x11(

+ elcon.x11.idp$decomposition$sa,

+ period = 168, trend.horizon = 84, ...)

The three estimated seasonal patterns—again rescaled to be centered around one—are
shown as black lines in Figure 10 (a)–(c).

STL estimates can be obtained with the stl() function, see Table 7 in the Appendix.
Targeting again τ1 = 24 first, the following command runs STL on the logged precleaned
ELCON series without robust filter weights, a 25-term LOESS smoother for trend-cycle
extraction and an 11-term LOESS smoother for seasonal extraction so that the former
two match the lengths of the corresponding X-11 filters:

R> elcon.stl.idp <- rjd3stl::stl(

+ log(elcon), multiplicative = FALSE,

+ period = 24,

+ swindow = 11, twindow = 25,

+ robust = FALSE)

Note that the stl() function has fewer arguments than the x11() function, although
both methods follow essentially the same iterative steps. The reason is that the weights
of both symmetric and asymmetric trend-cycle and seasonal LOESS smoothers as well as
the optional robust weights for the irregular are derived directly through prespecified ker-
nels, whereas in X-11 the kernels for trend-cycle extraction, the derivation of asymmetric
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Figure 10: Estimated seasonal patterns for the hourly ELCON series obtained through the
extended X-11 (black) and STL (gray) approaches.

Table 2: Average computation time for the extraction of seasonal patterns (25 replications on
a 64-bit Windows OS with an Intel Core i3-8100 CPU @ 3.60 GHz and 8.00 GB RAM)

Infra-daily Infra-weekly Infra-yearly
Seasonal adjustment approach pattern pattern pattern

Extended X-11 with default σ-limits 0.19 sec 0.75 sec 34.42 sec
Extended STL without robustness weights 0.24 sec 1.30 sec 87.37 sec

with robustness weights 1.72 sec 9.41 sec 681.57 sec

variants, the seasonal filters and the σ-limits for extreme-value detection can be selected
by the user from a multitude of options.

The STL estimates of the infra-weekly and infra-yearly patterns can be obtained in
the same way with appropriate changes to the relevant arguments. For example, the
period argument is again dictated by τ ∈ S and we could set twindow to ⌈τ⌉odd and
swindow to the length of the corresponding 3 × k seasonal filter selected in X-11, which
were the 3×9 and 3×3 filters for the infra-weekly and infra-yearly patterns, respectively.
The corresponding STL seasonal factors, which are shown as gray lines in Figure 10 (a)–
(c), are quite similar to the X-11 counterparts, although the combined adjustment factors
occasionally differ by up to 10 % in absolute size. Those large yet rare differences may also
be spotted in two versions of the seasonally adjusted hourly ELCON series (Figure 11).

Finally, it should be noted that a repeated application of LOESS smoothers in place of
linear filters with predefined weights usually needs to compromise some computation time,
especially for longer regression windows. We replicated the X-11 and STL extractions of
the three seasonal patterns with the above specifications a total of 25 times—with versus
without robust weights in STL—and report the average computation times in Table 2.
Being faster in general, X-11’s margin over STL is rather slight when extracting the infra-
daily and infra-weekly patterns without robustness weights but becomes substantial in
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Figure 11: Seasonally adjusted hourly ELCON series obtained through the extended X-11
(black) and STL (gray) approaches. The light gray line indicates the unadjusted data.

any other case, keeping in mind that the total number of runs through the inner and
outer loops increases by a factor of 7.5 when robustness weights are utilized.

7.3 Weekly initial claims for unemployment insurance in the
United States

We now illustrate how regression effects and seasonal dynamics can be estimated jointly
within the STS framework. To this end, we consider weekly initial claims for unemploy-
ment insurance (CLAIMS) in the United States as of 1967 W01 up to 2022 W48, resulting
in 2,918 weekly observations.8 Shorter versions of this series have also been analyzed in
earlier studies on weekly data (see e.g. Cleveland and Scott, 2007; Cleveland, Evans, and
Scott, 2018; Proietti and Pedregal, 2022).

7.3.1 Seasonal profile

The CLAIMS series meanders roughly between 200,000 and 900,000 cases, exhibiting
periodic phases of higher counts during the colder months (November through February).
It also displays some sharp increases associated with tumultuous economic times, such
as the global financial crisis (2008 Q3 through 2009 Q2), and unprecedented high counts
immediately after the COVID-19 pandemic outbreak in March 2020. The latter peak
slightly above 6.1 million claims in 2020 W14, temporarily plateau around 1 million claims
as of 2020 W31, and eventually reach pre-pandemic standards after a gradual decline over
the course of the year 2021 (Figure 12 (a)–(b)).

The point-wise generalized CH test statistics clearly peak at 13 and around 53 weeks,
signalling presence of strong WOY fluctuations (Figure 12 (c)). Weekly boxplots, which
have been calculated from the pre-pandemic data span, confirm this impression (Figure 12

8The data are freely available from the U.S. Department of Labor’s Employment and Training Adminis-
tration under URL https://oui.doleta.gov/unemploy/claims.asp and has been downloaded on 29
December 2022. Note that the weekly figures reflect economic activity from Sunday through Saturday.

24

https://oui.doleta.gov/unemploy/claims.asp


(a) Unadjusted data

0

2000

4000

6000

1970 1980 1990 2000 2010 2020

(b) Pre-pandemic span

300

600

900

1970 1980 1990 2000 2010 2020

(c) Point-wise Canova-Hansen test statistics

0

1

2

3

4

5

0 10 20 30 40 50 60
Periodicity (in weeks)

(d) Infra-yearly pattern

300

600

900

W01 W10 W20 W30 W40 W50

Figure 12: Seasonal profile of weekly CLAIMS series (thousands).

(d)). Their W -shaped nature also reveals mild mid-year increases in the CLAIMS series
that have been partly explained with annual model change-over practices in the automo-
tive industry (Cleveland and Scott, 2007). Overall, the seasonal profile of the CLAIMS
series is characterized by a strong WOY pattern with dominant week-of-the-quarter dy-
namics, so that we could set either S = {13, 52.18} or S = {52.18} in (4) and, for the sake
of sparsity, opt for the latter in subsequent analyses.

7.3.2 Basic structural model and seasonal adjustment

We specify an additive basic structural model (BSM) for the untransformed CLAIMS
series.9 The trend-cycle is modeled as a local linear trend according to (17)–(18), the
WOY pattern is made up of trigonometric terms, and calendar-related dynamics are
captured by a set of 11 weekly dummy regression variables, one for each of the following
fixed and moving holidays: New Year’s Day (1 Jan)—the effect of which is generally
assigned to W02 as in Cleveland et al. (2018)—, Martin Luther King Day (celebrated as
of 1986), President’s Day, Easter, Memorial Day, Independence Day (4 July), Labor Day,
Columbus Day, Veterans Day (11 Nov), Thanksgiving, and Christmas Day (25 Dec).10 In
addition, two level shift sequences are included to capture the atypical pandemic phase
in 2020 (W12 through W24 and W28 through W32).

Having stored the weekly regression variables in a matrix object named claims.reg,
estimation of the specified BSM—including an automatic search for additive outliers and

9An additive model for the CLAIMS series is in line with current official seasonal adjustment practices
at the U.S. Bureau of Labor Statistics. In fact, the decomposition scheme has been changed from
multiplicative to additive as a reaction to the COVID-19 pandemic outbreak.

10Except for Easter, the holiday dates have been obtained from the {tis} package, which lists the dates
when the federal holidays are actually celebrated (i.e. in some cases the Friday before or the Monday
after the holiday if the holiday happens to fall on a Saturday or Sunday, respectively). This, however,
does not affect the subsequent creation of weekly holiday dummies.
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Table 3: Estimated calendar effects for CLAIMS series

Event Estimate Standard error t-value

New Year’s Day 80.490 4.6750 17.2171
Martin Luther King Day −47.853 5.4522 −8.7769
President’s Day −24.584 4.0977 −5.9995
Easter 8.610 2.1978 3.9174
Memorial Day −36.027 4.4594 −8.0789
Independence Day −9.689 4.4329 −2.1856
Labor Day −34.003 4.3651 −7.7899
Columbus Day −23.167 4.3656 −5.3067
Veterans Day −36.521 4.0480 −9.0221
Thanksgiving −82.784 4.4758 −18.4958
Christmas Day −6.221 4.6013 −1.3520

additional level shifts with length-adjusted critical values yet again—is carried out with
the following command (see Table 8 in the Appendix and note that fractional periodicities
are automatically rounded down to the nearest integer):

R> claims.bsm <- rjd3sts::sts.outliers(claims, period = 52.18,

+ X = claims.reg, X.td = NULL,

+ level = 1, slope = 1,

+ seasonal = "Trigonometric", noise = 1,

+ ao = TRUE, ls = TRUE, so = FALSE, cv = 5, tcv = 5,

+ estimation.forward = "Full",

+ estimation.backward = "Full")

The object claims.bsm stores various details about the estimation process and the final
results. For example, the smoothed estimates of the stochastic level, slope, trigonometric
WOY and white-noise irregular components can be retrieved jointly through

R> claims.bsm$model$components

whereas the deterministic calendar and outlier components can be calculated from the
claims.bsm object using essentially the same commands illustrated for the daily BIRTHS
series.

Table 3 reports the estimated calendar effects for the weekly CLAIMS series. Thanks-
giving and New Year’s Day have the strongest effects, whereas the effect of Independence
Day is barely significant at the 5% level of significance, and that of Christmas Day is even
insignificant. The estimated calendar component is shown in Figure 13 (a), along with
the smoothed trigonometric WOY pattern.

Automatic outlier detection identified 11 additive outliers and 4 additional level shifts.
Seven of those outliers lie in the colder months of the pre-1990 era and might be related
to exceptionally cold, or warm, winters. One level shift coincides with the maximum
CLAIMS counts during the global financial crisis (2009 W02), and four outliers can be
associated with the post-pandemic recovery phase. The estimated outlier component,
including the two pre-specified level shift sequences, is shown in Figure 13 (b).
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Figure 13: Smoothed estimates for various unobserved components in the weekly CLAIMS
series (thousands).

The q-ratios, that is the estimated UC innovation variances expressed as a fraction of
their largest value, can be retrieved from the claims.bsm object through

R> claims.bsm$bsm$final$seasonal

for the trigonometric WOY pattern, and similarly for any other stochastic component.
The level innovations {ξt} in (17) turned out to have largest estimated variance, and the
other q-ratios are 6.69 × 10−5 for the slope innovations {χt} in (18), 1.75 × 10−3 for the
WOY innovations {ωt} in (19) and 0.206 for the white-noise irregular component in (1).

Removal of the calendar and trigonometric WOY components visibly reduces the
volatility of the weekly CLAIMS series (Figure 13 (c)–(d)). Thus, the seasonally adjusted
data paints a much clearer picture of the underlying ups and downs in the CLAIMS se-
ries. Moreover, it reveals some movements that were completely buried in the unadjusted
data. A prime example is the short-lived increase to about 370,000 seasonally adjusted
claims on average during 2005 W35–W40, i.e. an approximate 10% increase compared to
2005 W34, that results from Hurricane Katrina having struck the U.S. Gulf Coast on 29
August 2005 (see also the discussion in Cleveland et al., 2018).

8 Summary

We gave an elaborate description of the R package ecosystem for modeling and seasonally
adjusting infra-monthly time series that accompanies JDemetra+ 3.0. In particular, we
highlighted key modifications to official statistics’ established pretreatment and seasonal
adjustment approaches that are needed to take the peculiarities of such data into ac-
count. Pretreatment for outliers and calendar variation can be handled through a time
series regression in which the disturbances are assumed to follow an extension of the classic
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Airline model that allows for multiple seasonal patterns as well as fractional powers of the
backshift operator. The latter are approximated by a first-order Taylor expansion, which
is essentially a weighted average of the two adjacent integer-valued powers. The same
model provides the foundation for an extended ARIMA model-based seasonal adjust-
ment approach based on classic Wiener-Kolmogorov theory, and the weighted-averaging
principle is also adopted in an extended X-11 seasonal adjustment approach to maintain
applicability of classic 3 × k seasonal filters to time series with fractional periodicities.
The latter method also contains a rich set of kernel-based trend-cycle extraction filters
derived from local polynomial regressions that encompasses X-11’s pioneering Hender-
son filters and Musgrave surrogates. Alternative empirical-based seasonal adjustments
that utilize trend-cycle and seasonal LOESS smoothers can also be conducted, the imple-
mentation of which essentially emulates the classic STL method except for some minor
modifications. Sequential two-step estimation of prior adjustment and seasonal factors
is therefore a common strategy for these extended seasonal adjustment methods. How-
ever, simultaneous model-based signal extraction, including modeling of covariates and
automatic outlier detection, can also be performed within the package ecosystem with the
aid of basic structural models. Finally, we illustrated selected capabilities of the afore-
mentioned methods using almost 20,000 observations for daily birth counts in France,
more than 65,000 observations for hourly realized electricity consumption in Germany,
and almost 3,000 observations for weekly initial claims for unemployment insurance in
the United States.

The ecosystem’s methodological toolbox is already quite rich but still leaves room for
enhancements. Currently, model-based forecasts for the observed time series can be ob-
tained only indirectly through aggregation of the predicted UC estimates provided by the
extended model-based seasonal adjustment approach but not directly from pretreatment
model (2) and (4). However, we have no doubt that many users would appreciate the
latter solution. Automatic tools for model calibration, such as log/level and seasonality
tests as well as tailored quality diagnostics, would be another useful addition. Future
research could also pay some attention to adequate data-driven selections of trend-cycle
and seasonal extraction filters in extended X-11 and STL seasonal adjustments. However,
the period-wise smoothing operations inherent in these two methods implicitly assume
different seasonal effects for each point in time along the seasonal periodicity, which could
be questioned especially for adjacent, or otherwise close, points in time. Also, saturated
models, such as (19), could be over-parametrized and computationally infeasible for large
seasonal periodicities. For those reasons, sparse models based on functional base compo-
nents seem to be interesting alternatives but most likely bring along additional research
questions. For example, an automatic state space modeling with seasonality captured
through periodic cubic splines (Harvey and Koopman, 1993; Harvey, Koopman, and Ri-
ani, 1997) would require a data-driven determination of both the number and positions of
the spline’s knots for each seasonal pattern (a LOESS-based selection strategy is discussed
in Proietti and Pedregal, 2022).
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Gómez, V. and A. Maravall (2001). Seasonal Adjustment and Signal Extraction in Eco-
nomic Time Series. In D. Peña, G. C. Tiao, and R. S. Tsay (Eds.), A Course in Time
Series Analysis, pp. 202–247. New York: Wiley.

29



Grassi, S., G. L. Mazzi, and T. Proietti (2018). Automatic Outlier Detection for the Basic
Structural Time Series Model. In G. L. Mazzi, D. Ladiray, and D. A. Riester (Eds.),
Handbook on Seasonal Adjustment, Chapter 8, pp. 169–194. Luxembourg: Publications
Office of the European Union.

Gray, A. G. and P. J. Thomson (2002, March). On a Family of Finite Moving-Average
Trend Filters for the Ends of Series. Journal of Forecasting 21 (2), 125–149.

Grun-Rehomme, M., F. Guggemos, and D. Ladiray (2018). Asymmetric Moving Averages
Minimizing Phase Shift. In G. L. Mazzi, D. Ladiray, and D. A. Riester (Eds.), Handbook
on Seasonal Adjustment, Chapter 15, pp. 391–413. Luxembourg: Publications Office of
the European Union.

Harvey, A. C. (1989). Forecasting, Structural Time Series Models, and the Kalman Filter.
Cambridge: Cambridge University Press.

Harvey, A. C. (2001, January). Testing in Unobserved Components Models. Journal of
Forecasting 20 (1), 1–19.

Harvey, A. C. and S. J. Koopman (1993, December). Forecasting Hourly Electricity
Demand Using Time-Varying Splines. Journal of the American Statistical Associa-
tion 88 (424), 1228–1236.

Harvey, A. C., S. J. Koopman, and M. Riani (1997, July). The Modeling and Seasonal
Adjustment of Weekly Observations. Journal of Business & Economic Statistics 15 (3),
354–368.

Jenkins, M. A. and J. F. Traub (1972, February). Algorithm 419: zeros of a complex
polynomial. Communications of the ACM 15 (2), 97–99.

Jones, R. H. (1980, August). Maximum Likelihood Fitting of ARMA Models to Time
Series With Missing Observations. Technometrics 22 (3), 389–395.

Koopman, S. J. (1993, March). Disturbance Smoother for State Space Models.
Biometrika 80 (1), 117–126.

Ladiray, D., J. Palate, G. L. Mazzi, and T. Proietti (2018). Seasonal Adjustment of Daily
and Weekly Data. In G. L. Mazzi, D. Ladiray, and D. A. Riester (Eds.), Handbook on
Seasonal Adjustment, Chapter 29, pp. 757–783. Luxembourg: Publications Office of the
European Union.

Ladiray, D. and B. Quenneville (2001). Seasonal Adjustment with the X-11 Method,
Volume 158 of Lecture Notes in Statistics. New York: Springer.

Levenberg, K. (1944). A Method for the Solution of Certain Non-Linear Problems in
Least Squares. Quarterly of Applied Mathematics 2 (2), 164–168.

Ljung, G. M. (1993). On Outlier Detection in Time Series. Journal of the Royal Statistical
Society: Series B (Methodological) 55 (2), 559–567.

30



Maravall, A. (1995). Unobserved Components in Economic Time Series. In M. H. Pesaran
and M. R. Wickens (Eds.), The Handbook of Applied Econometrics, Volume 1, pp. 12–
72. Oxford: Blackwell Publishing.

Marquardt, D. W. (1963, June). An Algorithm for Least-Squares Estimation of Nonlinear
Parameters. SIAM Journal on Applied Mathematics 11 (2), 431–441.

McElroy, T. S. and J. A. Livsey (2022, January). Ecce Signum: An R Package for
Multivariate Signal Extraction and Time Series Analysis. https://arxiv.org/abs/

2201.02148.

Morf, M. and T. Kailath (1975, August). Square-Root Algorithms for Least-Squares
Estimation. IEEE Transactions on Automatic Control 20 (4), 487–497.

Morf, M., G. S. Sidhu, and T. Kailath (1974, August). Some New Algorithms for Recur-
sive Estimation in Constant, Linear, Discrete-Time Systems. IEEE Transactions on
Automatic Control 19 (4), 315–323.

Ollech, D. (2021, July). Seasonal Adjustment of Daily Time Series. Journal of Time
Series Econometrics 13 (2), 235–264.

Ollech, D. (2023, March). Economic analysis using higher-frequency time series: chal-
lenges for seasonal adjustment. Empirical Economics 64 (3), 1375–1398.

Proietti, T. (2000, April). Comparing Seasonal Components for Structural Time Series
Models. International Journal of Forecasting 16 (2), 247–260.

Proietti, T. and A. Luati (2008, December). Real Time Estimation in Local Polyno-
mial Regression, with Application to Trend-Cycle Analysis. Annals of Applied Statis-
tics 2 (4), 1523–1553.

Proietti, T. and D. J. Pedregal (2022). Seasonality in High Frequency Time Series. Econo-
metrics & Statistics . https://doi.org/10.1016/j.ecosta.2022.02.001.

Ramanathan, R., R. Engle, C. W. J. Granger, F. Vahid-Araghi, and C. Brace (1997,
June). Short-run forecasts of electricity loads and peaks. International Journal of
Forecasting 13 (2), 161–174.

Shiskin, J., A. H. Young, and J. C. Musgrave (1967). The X-11 Variant of the Census
Method II Seasonal Adjustment Program. Technical Paper No 15, U.S. Department of
Commerce, Bureau of the Census, Washington, D.C.

Webel, K. (2022). A review of some recent developments in the modelling and seasonal
adjustment of infra-monthly time series. Discussion Paper No 31/2022, Deutsche Bun-
desbank.

West, M. and J. Harrison (1997). Bayesian Forecasting and Dynamic Models (Second
ed.). New York: Springer.

Wu, L. S.-Y., J. R. M. Hosking, and N. Ravishanker (1993). Reallocation Outliers in Time
Series. Journal of the Royal Statistical Society: Series C (Applied Statistics) 42 (2),
301–313.

31

https://arxiv.org/abs/2201.02148
https://arxiv.org/abs/2201.02148
https://doi.org/10.1016/j.ecosta.2022.02.001


Appendix

The methods described and illustrated in this paper are accessible through an ecosystem
of R packages available from https://github.com/rjdverse.

A The {rjd3highfreq} package

This package provides functions for estimation of pretreatment model (2) and (4) and sig-
nal extraction with the extended AMB approach. Model estimation is specified through
the fractionalAirlineEstimation() function (Table 4) and signal extraction is speci-
fied through the fractionalAirlineDecomposition().

Table 4: The fractionalAirlineEstimation() function

Argument Explanation

y Observed time series {yt} in (1)

criticalValue Critical value for automatic outlier detection in (2)1)

mean (Boolean) Add constant mean (after differencing) to xt in (2)
outliers Types for automatic outlier detection in xt in (2)
x User-defined regression variables in xt in (2)

ar (Boolean) Replace δ1(B) and θ1(B) with a stationary non-seasonal

AR(1) operator in (4)2)

ndiff Total order of non-seasonal differencing in (4)3)

periods Set S of seasonal periodicities in (4)

approximateHessian Use fast computation of the Hessian in Algorithm 14)

(Boolean)
precision Convergence threshold in Algorithm 1 (rescaled by log-

likelihood during Levenberg-Marquardt algorithm)

1 Setting criticalValue = 0 calls the U.S. Census Bureau’s modified formula for calculating
length-adjusted critical t-values derived in Ljung (1993). 2 This option can be used to remedy
numerical problems that may originate from the use of differencing operators. However, note that
models with stationary AR polynomials are likely to lack an admissible decomposition, so that vari-
ance inflation will be used in such a case (see Section 3). 3 ndiff should not be greater than 1+ |S|
if ar = FALSE and |S| if ar = TRUE to facilitate model identification. Specification of any negative
value automatically sets ndiff to the respective maximum. 4 Currently, approximateHessian =

TRUE is always used, irrespective of the user’s specification.
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Table 5: The fractionalAirlineDecomposition() function

Argument Explanation

y Input time series

period Seasonal periodicity τ ∈ S

sn (Boolean) Decompose data into seasonally adjusted data (signal) and seasonal
component (noise)

stde (Boolean) Calculate standard deviations of component estimates
nbcasts Backcast horizon
nfcasts Forecast horizon

B The {rjd3x11plus} package

This package provides a decomposition with the extended X-11 approach through the
x11()(Table 6) function.

Table 6: The x11() function

Argument Explanation

y Input time series

period Seasonal periodicity τ ∈ S

mul (Boolean) Use multiplicative UC decomposition

trend.horizon Bandwidth h in local trend-cycle model (11)
trend.degree Polynomial order d in local trend-cycle model (11)
trend.kernel Kernel weights {κj} in objective function (12)
trend.asymmetric Calculation of asymmetric trend-cycle filters wq (q < h) in (13)

seas.s0 Initial 3× k seasonal filter for Tables B5, C5, D5
seas.s1 Final 3× k seasonal filter for Tables B10, C10, D10
extreme.lsig Lower σ-limit
extreme.usig Upper σ-limit
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C The {rjd3stl} package

This package provides a decomposition with the extended STL approach through the
stl()(Table 7) function.

Table 7: The stl() function

Argument Explanation

y Input time series

period Seasonal periodicity τ ∈ S

multiplicative (Boolean) Use multiplicative UC decomposition

swindow Length of LOESS filter for seasonal extraction

twindow Length of LOESS filter for trend-cycle extraction1)

robust (Boolean) Use robustness weights for irregular in outer loop

1 Setting twindow = 0 calls the automatic specification (16) (see Section 5).
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D The {rjd3sts} package

This package provides functions for the specification and estimation of structural time
series models. Basic structural models with automatic outlier detection are specified
through the sts.outliers() function (Table 8).

Table 8: The sts.outliers() function

Argument Explanation

y Input time series {yt} in (1)

period Seasonal periodicity τ ∈ S

X User-defined regression variables in xt in (2)

X.td Groups for pre-defined trading-day contrasts in xt in (2)1)

level Type of level in (17)2)

slope Type of slope in (18)2)

noise Type of white-noise irregular in (1)2)

seasonal Type of seasonal pattern in (19)

ao (Boolean) Search for additive outliers
ls (Boolean) Search for level shifts
so (Boolean) Search for seasonal outliers

cv Critical value for point-wise maximum τ ⋆
2

t -statistics in
forward-addition step

tcv Critical value for point-wise minimum τ ⋆
2

t -statistics in
backward-deletion step

estimation.forward Search direction for initial numerical likelihood
maximization in forward-addition step3)

estimation.backward Search direction for initial numerical likelihood
maximization in backward-deletion step3)

1 The trading-day contrasts are internally calculated with the rjd3toolkit::td forTs() function.
If X.td is used, then y must be provided as a time series object. 2 The component can be specified
as being stochastic (1), fixed (0) or absent (-1). 3 Valid choices are "Full", "Point" and "Score".

E Squared gains of X-11 seasonal filters for selected fractional
periodicities

Figure 14 shows the squared gains of all (effective) symmetric 3 × k seasonal filters for
extracting the most common periodic patterns with a fractional periodicity from infra-
monthly time series. Those patterns are the day-of-the-month and day-of-the-year pat-
terns typically seen in daily time series and the week-of-the-year pattern often observable
in weekly time series. The underlying calculations are explained in Footnote 3, and the
weights of the symmetric 3× 3 seasonal extraction filter are stated explicitly in (14).
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