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The Treatment of Endogenous Selection Bias in Household Surveys by
Heckman Model

Laura Castell and Patrick Sillard, 1er septembre 2021

Abstract — The objective of this working paper is to describe the
conditions under which selection bias related to non-response
in household surveys can be corrected. Generally, the correc-
tion methods implemented assume an ignorable non-response
(i.e. missing at random) mechanism. However, when there is
an endogenous non-response problem, then the non-response
mechanism is no longer ignorable, and the estimators derived
from conventional correction methods are biased.
To correct this bias, we propose a weighting based on a Heckman
model. This model consists of simultaneously modelling the
participation and the variable of interest that we are trying to
estimate. However, the identification of the model is conditional
on a certain number of hypotheses, such as the existence of
an instrument that explains participation but not the variable
of interest. In order to have such an instrument, an adapted
protocol with independent sub-samples can be set up. This paper
details the conditions under which this type of protocol allows
an estimate corrected for endogenous selection.

Keywords : non-response, Heckman model, survey, sampling
Classification JEL : C18, C83, C34, C36

In several household surveys, one can suspect an endogenous
selection phenomenon leading to a non-ignorable selection
bias. In fact, participation is often linked to the respondents’
interest in the subject matter of the survey, particularly in the
case of self-administered surveys. If this interest in the topic
influences participation and output variables in the survey,
conditionally to the observables, a problem of endogenous
selection is encountered. In this case, classical correction
methods lead to biased estimators. This bias is all the more
important when the response rate is low and the omitted
variable is correlated with the variables of interest.
To begin with, we recall the analytical framework of the
estimation of a variable of interest in the case of a household
survey carried out by sampling (part I). We then give the
conditions under which the selection linked to ignorable non-
response on the one hand (part II) and non-ignorable on the
other hand (part III) can lead to a biased estimate. In part
IV, we present the method for correcting the endogenous
selection proposed from the Heckman model and develop its
conditions of application and, more generally, of identifica-
tion. Finally, part V specifies the relatively rare conditions
under which it is possible to separate measurement errors,
for example linked to a mode of data collection, and an
endogenous selection bias, in the framework of the Heckman
model.

I. NOTATIONS AND GENERAL PRINCIPLES

We note y the variable of interest, conceptually collectable
on the individuals of a population P . Each individual of the
population is identified by its index i. We are interested in

the average of this variable in the population :

µ =
1

N

N

∑
i=1

yi (1)

In a survey, µ cannot be observed, because only some
individuals i are actually observed. Let us note si the indicator
random variable equals 1 if the individual i is sampled, and
0 otherwise.
This variable is therefore a binary variable. The sample design
is a vector of random variables

s = (s1, . . . , sN )′

We note Z a set of variables zi known ex-ante on the whole
population P (because appearing in the sampling frame). Its
distribution fZ is thus known on P . This variable Z is used,
for example, to stratify the s sampling design or to balance
the first degree in the case of a sampling design with several
degrees.
The survey collects the variable of interest yi (whose vector
form on P is noted y), as well as the characteristic variables
of the surveyed individuals xi (whose matrix form on P
is noted X). These variables are collected only for the
respondents but exist for the whole population P .

The sampling design is set upon the variables Z. Conse-
quently, the sampling design is characterised by a fs dis-
tribution. As the law of Z is known for the population P ,
we can deduce E(si), from (27) :

E(si) = E [E(si∣Z)] (2)

We note E(si) = πi the probability of inclusion of i in the
sample (or probability that i is selected).
The Horvitz-Thompson estimator of µ, based on the design
s is classically :

µ̂ =
1

N

N

∑
i=1

yi
πi
si (3)

This is observable since yi is observed as soon as si = 1.

We will show that µ̂ estimates µ without bias 1. To justify that
the Horvitz-Thompson estimator is convergent, it is advisable
to examine E(µ̂∣y) (and not E(µ̂) in the absolute), and to

1. To do this, it is necessary to specify the framework of thought of the
theory of surveys. In this framework, the variable y is not a random variable.
It is a set of observable parameters on the people surveyed. Nevertheless, this
quantity can be linked, formally, to the random variables characteristic of the
survey, in particular of the survey design (i.e. the variable s). To be precise,
it can condition these variables. Consequently, to establish the conditions of
convergence of the estimators, it is theoretically appropriate to treat y as a
random variable, even if it is an assumption which is not necessary in the
framework of the sampling theory. One way out of this debate of principle
is to consider that y is indeed a random variable (e.g. drawn from a “super-
population”) but that all estimators based on the survey are conditioned by
y. This is what we do in this text.
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show that this conditional expectation is equal to µ such as
defined in (1).

Let’s calculate :

E(µ̂∣y) =
1

N

N

∑
i=1

E( yiπi si∣y)

=
1

N

N

∑
i=1

yi
πi

E(si∣yi)

We have seen that s only depends on Z, so

H1 : s ⫫ y∣Z

This is the hypothesis H1 of this text. It is interesting to
stop for a moment on this hypothesis, to specify the under-
lying mechanism. Little and Rubin (1987) explain that the
distribution of sample (s) is set before any observation y is
made, then the distribution fs∣y,Z cannot depend on y which
is unknown to the sampler in the ex-ante framework in which
he fixes s and its realisation. Then, fs∣y,Z ≡ fs∣Z, according
to relations (25) and (29).This can also be written: s ⫫ y∣Z.
Dawid (1979), who introduced this notation, indicates that
intuitively, this means that given Z, any information received
about y does not alter uncertainty about s.

It follows, according to (2), the formula of iterated expecta-
tions (28) and the consequence, on the conditional expecta-
tions, of the relations of orthogonality between variables (31),
that :

E(si∣yi) = E [E(si∣yi,Z)∣yi]
= E [E(si∣Z)]
= πi

Finally,

E(µ̂∣y) = 1

N

N

∑
i=1

yi = µ (4)

We note that the condition under which this result is obtained
is the knowledge of the law of Z (i.e. on P) and of that of
s (relation (2)).

II. MISSING-AT-RANDOM: THE STANDARD MODEL

Non-response in surveys is a complementary process to in-
sample selection but operates in a similar way. As a comple-
ment to selection characterised by the sampling design s, non-
response is a binary variable ri which is 1 if the individual i,
selected in the survey, responds to the survey, and 0 otherwise.
The response to the survey is therefore characterised by
the product of the variables siri. The variables (y,X) are
observed on the sole set (sry, srX). The uncorrected Horvitz-
Thompson estimator

µ̂
0
=

1

N

N

∑
i=1

yi
πi
siri

is biased because E(siri) ≠ πi. Nevertheless, it is possible to
derive the assumptions under which it is possible to construct
a corrected unbiased Horvitz-thompson estimator.

Quite naturally, we look for an estimator of the following
type:

µ̂
1
=

1

N

N

∑
i=1

yi
πiρ̂i

siri

where ρ̂i would model of ri, with a form under conditions to
be precised later on, in such a way that E(µ̂1∣y) = µ. We are
going to study these conditions.

As before, the calculation of E(µ̂1∣y) will involve a conditio-
ning by the variable Z, i.e. by the variables available on the
whole sample s. In fact, to identify a model of r, we cannot
be satisfied with working only on the observables, because in
this case, all ri are equal to 1. There would therefore be no
way of identifying such a model.

By construction,

E(yisiri∣y,Z) = yiE(siri∣y,Z)
For the same reasons as those used to justify the hypothesis
H1 , si is determined ex-ante by the knowledge of Z. In this

context, the knowledge of ri does not bring anything to that
of si (and vice versa by virtue of the symmetry of the ⫫ –
see Appendix A). This results in the following hypothesis :

H2 : si ⫫ ri∣(y,Z)
Under this assumption and applying the relation (30), it
is possible to separate the contributions in the previous
expression:

E(yisiri∣y,Z) = yiE(si∣y,Z)E(ri∣y,Z)
Using, in addition, the hypothesis H1 , it comes:

E(yisiri∣y,Z) = yiE(si∣Z)E(ri∣y,Z)

Let us assume that we are able to model ri by an unbiased
and convergent ρ̂i estimator.

To fix the ideas, ρ̂i, in this scheme, is obtained by regression
(linear probability model for example) of ri on yi and zi.
This regression is problematic for the following two reasons.
First, this regression uses yi as an explanatory variable. This
is reasonable because it is possible that the propensity ri to
answer is explained by yi, or by a variable correlated with it.
This is, at least in the general case, a hypothesis that cannot
be excluded. However, the observed sample, which would be
used here to identify the ri model, would be such that for
all i, ri = 1, since yi is only observed when ri = 1. Such a
model would not be identifiable.
Once this observation has been made, we can imagine, in a
second step, predicting ri by a truncated model, conditional
on Z. But if yi really appears as an explanatory factor of ri,
then yi appears as a variable omitted in the model, and whose
absence leads to a biased ρ̂i estimator. In short, the ρ̂ model
is identifiable and unbiased only when the following double
hypothesis is made :

H3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

• ri ⫫ yi∣Z
• ρ̂i ≡ ρ(zi; γ̂) where

»»»»»»»»»»»»»»»»»»»»»»»»

− ρ is a known function, continuous in
zi and γ̂

− γ̂ is a convergent estimator of unknown
parameters γ

∗( i.e. plim γ̂ = γ
∗);

γ̂ depends on y and Z
− ρ(zi;γ∗) = E(ri∣Z)

©Insee 3



Under the previous assumptions H1 , H2 and H3 , the

corrected Horvitz-Tompson estimator µ̂1 estimates µ asymp-
totically unbiased (in γ̂). Indeed,

E(µ̂1∣y) =
1

N

N

∑
i=1

E [(πiρ̂i)−1yisiri∣y]

=
1

N

N

∑
i=1

E {E [(πiρ̂i)−1yisiri∣y,Z]»»»»»y}

=
1

N

N

∑
i=1

yi
πi

E {E [ρ̂−1i siri∣y,Z]»»»»»y}

By hypothesis, ρ̂−1i depends only on Z and y, through γ̂.
Therefore,

E(µ̂1∣y) =
1

N

N

∑
i=1

yi
πi

E { ρ̂−1i E(siri∣Z,y)»»»»»y}

=
1

N

N

∑
i=1

yi
πi

E { ρ̂−1i E(si∣Z)E(ri∣Z)»»»»»y}

Then, given H3 , plim(ρ̂−1i ) = [E(ri∣Z)]−1. It follows that,

asymptotically, E(µ̂1∣y) = µ.

The previous development deals with the Missing completely
at random (MCAR) and Missing at random (MAR) cases in
the sense of Little and Rubin (1987). The first corresponds to
the case where ρ̂i ≡ ρ, with ρ a constant. The probability of
responding is independent of Z and y. Therefore, the Hajek
estimator (Tillé 2019), defined by:

µ̂
0
H =

N

∑
i=1

yi
πi
siri/

N

∑
i=1

1
πi
siri (5)

estimates µ asymptotically unbiased.
The second corresponds to the case where it is possible to
construct an unbiased estimator of ri from the observables
zi, as assumed in H3 . The probability of responding is
independent of y, but not of Z.

Let us now return to the ρ̂i non-response model. Like all mo-
dels, it is based on the identification of unknown parameters
γ
∗. As indicated by the hypothesis H3 , we can write :

{ ri = ρ(zi; γ̂) + νi
with E(νi∣zi) = 0

(6)

In practice, however, H3 , like (6) which is analogous, can
be complicated to justify. We have so far assumed that it
is verified. We will now study some deviations from this
assumption.

III. NON-MISSING-AT-RANDOM

In this paragraph we propose to examine what happens when
a variable, although explanatory of the participation in the
survey ri, is omitted in the expression of ρ̂i. Suppose that
the variable ξi explains ri but that this dependence is omitted
in the modelling :

ri = c + ziβ + ξi + ui (7)

with E(ui∣Z) = 0, while the applied model is:

ρ̃i = c̃ + ziβ̃ + ũi (8)

Throughout this paragraph III, for the sake of simplicity
and readability, we adopt the linear dependency framework
corresponding to the two previous relations (7-8).

First of all, let us note that it is possible that ρ̃i follows the
assumption H3 , despite the omission of ξi. Indeed, from the
two preceding relations, we derive :

{ E(ri∣Z) = c + ziβ + E(ξi∣zi) + E(ui∣zi)
E(ρ̃i∣Z) = c̃ + ziβ̃ + E(ũi∣zi)

Now, by hypothesis, E(ui∣zi) = 0. Consequently, as soon
as E(ξi∣zi) = 0, it is possible to obtain, for example by
linear regression of ri on zi, an estimator ρ̃i verifying the
second condition of H3 , while omitting ξi in the model.

The first condition of the hypothesis H3 can also be verified
by projecting this condition onto ξi, using the relation (7).
Thus, any ξi variable verifying :

{ ξi ⫫ yi∣Z
E(ξi∣Z) = 0

does not cause an omission problem, i.e. it can be omitted in
the nonresponse model without generating any (asymptotic)
bias in the Hajek estimator.

b

Let us now look at the case of an omitted variable that does
not meet either of the two previous conditions. For example,
let’s say: »»»»»»»»

ξi = κ + ϑyi + ziθ + υi
E(υi∣yi, zi) = 0

(9)

One can imagine two types of problem:
— a problem of endogeneity of ξi in the modelling of ρ̃i

which biases the estimation of the model coefficients
(8). This corresponds to the case where θ ≠ 0 and
ϑ = 0 in the expression of ξi above.

— an endogenous self-selection problem in which yi is at
the same time a variable of interest and an explanatory
variable of the non-response. This corresponds to the
case where θ = 0 and ϑ ≠ 0.

Of course, the two types of problem are likely to overlap, but
their consequences are very different. And for presentation
purposes, it is easier to separate them.

Let us first consider the case where ξi is endogenous in the
non-response model (i.e. θ ≠ 0 and ϑ = 0). This is the case
if we estimate β̃, in the framework of a linear probability
model, by linear regression of ri on zi. Classically,

plim ( c̃
β̃
) = (E [( 1

z
′
i
) (1 zi)])

−1

.E [( 1
z
′
i
) ri] (10)

Using (7) and (9), we note that ri can also be written as:

ri = (1 zi) . [(
c
β
) + (κ

θ
)] + ui + υi
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Substituting this last expression for ri in (10), and noting that
by hypotheses, E(ui∣zi) = 0 and E(υi∣zi) = 0, we conclude
that:

plim ( c̃
β̃
) = (c

β
) + (κ

θ
)

And then:

E(ρ̃i∣Z) = (1 zi) (
c + κ
β + θ

)
= c + ziβ + κ + ziθÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

E(ξi∣Z)
= E(ri∣Z)

In the end, the endogeneity of ξi in the modelling of ri is not
critical since, if it biases the regression coefficients, it does
not however bias the ρ̃i predictors which result from this
estimation, as estimators of ri. In this case, the non-response
mechanism remains ignorable, despite the omission of ξi.

Let us now consider the case of an endogenous selection,
where ξi depends on yi (i.e. θ = 0 and ϑ ≠ 0). The ρ̃i,
obtained by regression of ri on zi estimates without bias ri,
conditional to Z. But we cannot identify the dependence of
ri on yi by regressing ri on (zi, yi) since yi is only observed
for the respondents, i.e. the i for which ri = 1. Thus the
identifying regression for ρ̃i is based on the zi alone. If the
second part of the hypothesis H3 is valid, the first part, on
the other hand, is no longer verified since ri depends on yi
via ξi. In this case, the non-response mechanism is then non-
ignorable.
In the development of E(µ̂1∣y), the first part remains true
under the assumptions H1 and H2 which are, themselves,
verified. Therefore, under these assumptions,

E(µ̂1∣y) =
1

N

N

∑
i=1

yi
πi

E(si∣y)E {E [ρ̃−1i ri∣yi, zi]
»»»»» yi}

=
1

N

N

∑
i=1

yiE {E [ρ̃−1i ri∣yi, zi]
»»»»» yi}

(11)
Using (7 – 9), we then have :

E [ ρ̃−1i ri
»»»»» yi, zi] = E [ c + ziβ + ui + κ + ϑyi + υi

c̃ + ziβ̃

»»»»»»»»»
yi, zi]

For the same reasons that lead to the relation (10), in a linear
probability model,

plim(c̃ + ziβ̃) = c + κ + ziβ

Here we can make the reasonable complementary assumption
that ui ⫫ yi∣zi, which is equivalent to consider that all
the dependence of ri on yi passes through ξi. All this
is essentially formal since these are assumptions about the
structure of ri and the additive separation of its different
components. It follows from this additional assumption and
the above that, asymptotically:

E [ ρ̃−1i ri
»»»»» yi, zi] = 1 + ϑE [ yi

c + κ + ziβ

»»»»»»»
yi, zi] = 1 + ϑ

yi

ρ̃i(zi)
Finally (asymptotically),

E(µ̂1∣y) = µ + ϑ 1

N

N

∑
i=1

y
2
i E [ 1/ρ̃i(zi) ∣ yi] (12)

The bias linked to the existence of an endogenous selection
is therefore of the sign of the dependence of participation on
the variable of interest (i.e. of ϑ) : if participation increases
with the variable of interest, µ̂1∣y is positively biased ; the
latter is negatively biased if participation decreases with the
variable of interest. And all other things being equal, the bias
increases with the variance of the variable of interest on P .

IV. CORRECTION OF ENDOGENOUS NON-RESPONSE

The correction of endogenous non-response is a known
problem in the exploitation of missing data (Little and
Rubin 1987). It has been the subject of numerous econometric
developments aimed at fitting a suitable model of the variable
of interest (see for example Boutchenik, Coudin, and Maillard
(2019)). In doing so, these developments are also interesting
for survey analysis since they allow in particular to estimate
E(y) without bias (see for example Ardilly (2006)). Two
main classes of methods can be distinguished in this context.
The latent participation variable methods, as in Heckman’s
models. More recently, these methods have been extended
and developed further (Vella 1998, Galimard, Chevret, Curis,
and Resche-Rigon 2018, Wing 2019), including towards non-
parametric modelling, for example in the field of treatment
evaluation with endogenous selection (see for example the
article by Lee (2009)). Generalized calibration methods have
also been developed, based on different identification condi-
tions (see for example the article by Lesage, Haziza, and
D’Haultfœuille (2019)).
The remainder of this text is devoted to the presentation of
the use of the classical Heckman model for the treatment of
endogenous non-response in surveys.

A. The framework of the Heckman model
The Heckman model was popularised by the econometer of
the same name (Heckman 1979). It is also known as the
Tobit II model (Wooldridge 2010, Cameron and Trivedi 2005).
It consists in modelling simultaneously yi and ri in the
following way:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(i) yi = c
1 + ziχ + ε

1
i

(ii) r
∗
i = c

0 + ziβ +wiψ + ε
0
i

(iii) ri = 1(r∗i ⩾ 0)
(13)

r
∗
i is a latent variable that is not observed. We observe ri and
yi when ri = 1. (zi,wi) is observed for all i.
(ε0i , ε1i ) are unknown parameters. In this model, the participa-
tion equation (13-(iii)) is based on a latent variable r∗i (rela-
tion (13-(ii)) which involves the explanatory variables of yi
(here on the whole sample, respondents and non-respondents).
This latent variable also involves wi instruments, i.e. variables
that explain participation but are not explanatory of yi.
These are referred to as exclusion conditions. Formally, the
identification conditions of the previous model are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E ((ε
0
i

ε
1
i

)
»»»»»»»»»
zi,wi) = 0

(ε
0
i

ε
1
i

) ↪ N ((0
0
) ,Σ)

Σ = ( 1 %σ

%σ σ
2)

(14)
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Σ is a variance matrix. It is therefore through this matrix that
the simultaneous formation of the explained variable yi and
the participation ri is modelled. In practice and in the model
(13), not all the parameters of Σ can be identified. As in a
probit model, it is appropriate to adopt a unit variance for ε0i
since the coefficients of (13-(ii)) are identifiable down to a
multiplicative factor. Hence, the form proposed for Σ above
is the most general possible in the context of the Heckman
model 2.

Let us note that this model concerns the whole population
P . Apart from the selection linked to the sampling (si = 1)
which we have shown to have no effect on the expectation
of the estimators, we only observe the respondents, i.e. the i
such that ri = 1. It may be interesting to study, in this model,
how (ry) behaves. Let us thus calculate E(yi∣zi,wi, ri = 1).
Under the previous assumptions, we have (see Appendix A):

E(yi∣zi, ε0i ) = c
1
+ ziχ + E(ε1i ∣ε0i )

= c
1
+ ziχ + %σε

0
i

It follows that:

E(yi∣zi,wi, ri = 1) = c1+ziχ+%σE(ε0i ∣ε0i ⩾ −c0−ziβ−wiψ)

ε
0
i is a Gaussian variable, so the expression of E(ε0i ∣ε0i ⩾ −a)

is a known function λ(a), corresponding to the inverse of the
Mills ratio 3. Finally,

E(yi∣zi,wi, ri = 1) = c1 + ziχ + %σλ(c0 + ziβ +wiψ) (15)

We show in the same way that 4 :

E(yi∣zi,wi, ri = 0) = c1 + ziχ − %σλ(−(c0 + ziβ +wiψ))

We note that:

E(yi∣zi,wi, ri = 1)−E(yi∣zi,wi, ri = 0) = %σ [λ(r̆∗i ) + λ(−r̆∗i )]
(16)

where r̆∗i = c
0 + ziβ +wiψ. Thus defined, r̆∗i is comparable,

in the reasoning, to a predictor of r∗i .

We first observe, from the previous expression, that if % = 0,
then E(yi∣zi,wi, ri = 1) = E(yi∣zi,wi, ri = 0). Thus, the
endogeneity of the selection occurs in the Heckman model
when the correlation of the residuals (ε0i , ε1i ) is non-zero. And
conversely, there is no endogeneity of selection when % = 0.
In the expression (16), the term between square brackets is
positive since the function λ is. It follows that if % > 0, then
the observed yi are, all other things being equal, larger on
average than the unobserved yi. Conversely, if % < 0, then
the observed yi are, all other things being equal, smaller, on
average, than the unobserved yi.

The resolution of the Heckman model allows us to construct
two estimators : one by imputation of yi for non-respondents,
the other by reweighting.

2. and for independent residuals between individuals, i.e.: ∀i ≠

j , (ε0i , ε
1
i ) ⫫ (ε0j , ε

1
j ).

3. as long as var(ε0i ) = 1. Let us recall that the inverse of the Mills’ ratio
is defined by: λ(a) = ϕ(a)/Φ(a) where ϕ is the density of the zero-mean
and unit-variance normal law and Φ is its cumulative distribution. It is a
strictly decreasing function, positive, and has asymptotes y = −x in −∞ and
y = 0 in +∞.

4. E(ε0i ∣ε
0
i ⩽ a) = −λ(a) (Cameron and Trivedi 2005, p. 540).

First of all, the knowledge of E(yi∣zi, ri = 0) allows us to
build a new estimator of µ free of the endogenous selection
step ri, by imputing the yi of the non-respondents, in the
following way:
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

µ̂
0H
H =

N

∑
i=1

ŷ
H
i

πi
si/

N

∑
i=1

1
πi
si

where
»»»»»»»»»
ŷ
H
i (ri = 0) = ĉ1 + ziχ̂ − %̂σ̂λ(−(ĉ0 + ziβ̂ +wiψ̂))
ŷ
H
i (ri = 1) = yi

(17)
The parameters (ĉ1, β̂, ψ̂, ĉ0, χ̂, %̂, σ̂) are estimated on the
basis of the model (13). The methods for estimating them
are discussed in the following paragraph.

We can also derive another µ estimator by basing it on the
conditional inclusion probability from the Heckman model.
Let us start again from the expression (11) :

E(µ̂1∣y) = 1

N

N

∑
i=1

yiE {E [ρ̃−1i ri∣yi, zi]
»»»»» yi}

One can here make use of wi as an additional conditioning
variable. In this way, if it is possible to construct a convergent
estimator ρ̃i of E [ri∣yi, zi,wi]. Then, as before (cf. II), we
will be able to construct an asymptotically unbiased estimator
of E(µ̂1∣y).
In order to construct ρ̃i, let us calculate E(ri∣yi, zi,wi)
from the model (13). (ri∣yi, zi,wi) is a binary variable, so
E(ri∣yi, zi,wi) = Pr(r∗i ⩾ 0∣yi, zi,wi). Under the previous
hypotheses, the law of (r∗i ∣yi, zi,wi) is known. Indeed 5,

L (ε0i ∣yi, zi,wi) = L (ε0i ∣ε1i = yi − c1 − ziχ)

And (ε0i , ε1i ) ↪ N (0,Σ = ( 1 %σ

%σ σ
2)), then the conditional

law (ε0i ∣ε1i ) is a normal law. This leads to 6 :

L (r∗i ∣yi, zi,wi)
= L (ε0i + c0 + ziβ +wiψ∣ε1i = yi − c1 − ziχ)
= N (c0 + ziβ +wiψ +

%
σ (yi − c1 − ziχ); (1 − %2))

It follows that:

Pr(r∗i ⩾ 0∣yi, zi,wi)

= Φ (
c
0 + ziβ +wiψ +

%

σ
(yi − c1 − ziχ)

√
1 − %2

) (18)

We deduce the expression of ρ̃i :

ρ̃i = Φ
⎛
⎜
⎝
ĉ
0 + ziβ̂ +wiψ̂ +

%̂

σ̂
(yi − ĉ1 − ziχ̂)

√
1 − %̂2

⎞
⎟
⎠

(19)

where, as for the estimator (17), the parameters
(ĉ1, β̂, ψ̂, ĉ0, χ̂, %̂, σ̂) are estimated under the model (13). The
methods for estimating them are discussed in the following
paragraph.

(19) gives the expression of ρ̃i. We observe that it depends
only on the variables yi, zi and wi and on parameters for

5. L denotes the law of the random variable in argument.

6. If (X
Y

) ↪ N ((µX
µY

) , ( σ
2
X σXσY %

σXσY % σ
2
Y

)) is a bivariate

vector of normal random variables, then L (X∣Y = y) =

N (µX + %σX (y − µY )/σY ;σ
2
X (1 − %2)).
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which we can construct convergent estimators. Under the
hypotheses of the Heckman model (13 – 14), thus defined, ρ̃i
estimates asymptotically unbiased E(ri∣yi, zi,wi). It follows,
and for the same reasons as those given in paragraph II, that

µ̂
1H
H =

N

∑
i=1

yi
ρ̃iπi

siri/
N

∑
i=1

1

ρ̃iπi
siri (20)

with ρ̃i defined in the relation (19), is an asymptotically
unbiased estimator of µ.

b

It is also possible to treat the case of binary variables with
a Heckman model using a latent variable for the variable of
interest. The modified model is the following:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(0) yi = 1(y∗i ⩾ 0)
(i) y

∗
i = c

1 + ziχ + ε
1
i

(ii) r
∗
i = c

0 + ziβ +wiψ + ε
0
i

(iii) ri = 1(r∗i ⩾ 0)

(21)

The conditions of identification (i.e. exclusion) remain identi-
cal to the continuous case (14), except that we can henceforth
pose σ = 1, because the coefficients of (21-(i)) are henceforth
identified down to a multiplicative factor. We observe that:

L (y∗i , r∗i ∣zi,wi) = N [( c
1 + ziχ

c
0 + ziβ +wiψ

) , (1 %
% 1

)]

Then,

P(yi = 1∣zi,wi, ri = 0) = P(y∗i ⩾ 0∣zi,wi, r
∗
i ⩽ 0)

=
P(y∗i ⩾ 0, r

∗
i ⩽ 0∣zi,wi)

P(r∗i ⩽ 0∣zi,wi)

Finally, it can be deduced that 7 :

P(yi = 1∣zi,wi, ri = 0)

=
Φ2(c1 + ziχ,−(c0 + ziβ +wiψ);−%)

Φ(−(c0 + ziβ +wiψ))
(22)

where Φ2 denotes the distribution of the bivariate normal
distribution (see footnote n.7). This relation is the one re-
commended by Galimard, Chevret, Curis, and Resche-Rigon
(2018) to impute the predicted values for the non-respondents,
in accordance with the approach proposed for the estimator
(17). Concretely, the previous authors propose to impute the
response of the non-respondents by drawing this response in
a Bernouilli distribution of parameter P(yi = 1∣zi,wi, ri = 0),
as given in the expression (22).

As in the continuous case, it is possible to construct a cor-
rected Hajek estimator analogous to (20) using the response

7. If (X
Y

) ↪ N ((µX
µY

) , (1 %
% 1

)) is a bivariate vector of normal variables,

then P(X ⩾ 0, Y ⩾ 0) = Φ2(µX , µY ; %), P(X ⩾ 0, Y ⩽ 0) =

Φ2(µX ,−µY ;−%), P(X ⩽ 0, Y ⩾ 0) = Φ2(−µX , µY ;−%) et P(X ⩽ 0, Y ⩽

0) = Φ2(−µX ,−µY ; %), where Φ2(x, y; %) denotes the distribution function
of the zero-mean and unit-variance bivariate normal law, with correlation %.

probabilities, conditional on yi. These conditional probabili-
ties are:

P(ri = 1∣zi,wi, yi = 1)

=
P(r∗i ⩾ 0, y

∗
i ⩾ 0∣zi,wi)

P(y∗i ⩾ 0∣zi,wi)

=
Φ2(c0 + ziβ +wiψ, c

1 + ziχ; %)
Φ(c1 + ziχ)

and

P(ri = 1∣zi,wi, yi = 0)

=
P(r∗i ⩾ 0, y

∗
i ⩽ 0∣zi,wi)

P(y∗i ⩽ 0∣zi,wi)

=
Φ2(c0 + ziβ +wiψ,−(c1 + ziχ);−%)

Φ(−(c1 + ziχ))
These probabilities are used to calculate the weights to be
assigned to each observation in a Hajek estimator, depending
on whether the variable of interest yi is 0 or 1.

B. Estimation and discussion of the Heckman model

The continuous Heckman model (13) can be estimated in two
different ways (Cameron and Trivedi 2005) :

— in two steps by first determining the Probit model as-
sociated with the relation (iii) which leads to unbiased
estimators of the coefficients (ĉ0, β̂, ψ̂); then by re-
gressing yi on the variables [1, zi, λ(ĉ0 + ziβ̂ +wiψ̂)]
which leads to the unbiased estimators of the coeffi-
cients (ĉ1, χ̂, %̂).

— by maximum likelihood, the likelihood associated
with (13) being expressible analytically (Cameron and
Trivedi 2005).

This second solution is more efficient statistically. On the
other hand, the first one is faster in computation time (see
Appendix C). And it is not necessary to assume that ε1i is
normal for the estimate to be unbiased. The two-step method
is therefore less parametric than the one-step maximum
likelihood method. In the case of a binary variable of interest
(21), only the maximum likelihood estimation is feasible
(see for example Galimard, Chevret, Curis, and Resche-Rigon
(2018)). The analytical expression, in the binary case, is given
by Cameron and Trivedi (2005).

The package R sampleSelection allows to estimate in a
very convenient way a Heckman model and the various
estimators developed in the preceding part. Simulation results
are presented in appendix C. They show, for an example
of simulated income variable, with endogenous selection for
high incomes, that the Hajek estimator can be strongly biased
and that a Heckman estimator allows, in this case, to correct
this bias.

The model (13) is theoretically identifiable without instru-
ments wi in the relation (ii). The same is true for the
model (21). However, the presence of the wi instruments is
a condition sine qua non for the good convergence of the
estimation methods. In the absence of instruments explaining
participation without affecting the variable of interest, in the
continuous case, there is quasi-linearity in the relationship (i)
between the inverse of the Mills ratio λ(ĉ0 + ziβ̂) and zi, so
that the estimation of the Heckman model is likely to fail

©Insee 7



to converge, especially in the case of maximum likelihood
estimation. Similar phenomena occur in the discrete case. A
suitable survey protocol can provide such an instrument.

It is useful to note that the instrument w of the selection equa-
tion (13-ii) or (21-ii) implies that the monotonicity principle
of the instrument (Imbens and Angrist 1994, Vytlacil 2002)
is verified by the survey protocol chosen. Let us take a closer
look at this point when the instrument is a binary variable.
Considering these two selection equations, r∗i (wi = 1) −
r
∗
i (wi = 0) = ψ, for all i. Now ψ is a constant, either positive

or negative. Let us suppose for example that ψ is positive.
Then, any individual participating in the survey in the absence
of an instrument (i.e. such that wi = 0 and r

∗
i ⩾ 0) would

necessarily have participated in the survey in the presence
of the instrument (i.e. if, instead of wi = 0, the value of
the instrument concerning him had been wi = 1). Since ψ
is either positive or negative, participation in the survey is,
for any i, either increasing with the instrument or decreasing:
it is therefore monotonous. The important point is that this
property is to be understood ”all other things being equal”: it
is not only on average that individuals must participate more
according to whether they are in one of the groups defined
by the instrument, but for each individual.

The necessary monotonicity of the instrument therefore has
consequences for the protocol conditions under which a
Heckman model can be applied. In practice, it is therefore
necessary that the selected protocol makes it possible to
justify that individuals in the group with the lowest response
rate who actually participate in the survey would also have
participated if they had benefited from the alternative proto-
col, as characterised by the instrument.

Such instruments can be used in random surveys when, for
example, two sub-samples, administered according to two
different collection protocols, have been selected, one of
which results in a higher participation than the other. In
these circumstances, the two samples are combined to form
a single random sample and the subsample indicator is an
instrument. Indeed, insofar as participation differs between
the two protocols, the indicator variable of belonging to
one of the two subsamples is explanatory of participation
(due to the random selection of one sample over the other -
mathematically if s

1 and s
2 are the sampling designs of the

two subsamples 1 and 2, then s
1
⫫ s

2), while by construction
it does not explain yi.

For example, incentives that increase the participation of a
subsample of people, randomly selected from a larger sample,
allow the construction of an instrument indicator variable for
the Heckman model (Wing 2019). These may be financial
incentives or greater stimulus efforts, for example.
It is also possible, under certain circumstances, to use in-
terviewer indicators or variables characterising the call rank
for a telephone survey (Behaghel, Crépon, Gurgand, and
Le Barbanchon 2015).

Differences in protocol between sub-samples may also be due
to the use of different modes of data collection for different
sub-samples, with some collection modes achieving higher
participation rates than others. However, it is known that in
general, respondents do not all participate in the same way

depending on the collection mode proposed. The effect of the
instrument on participation is therefore not uniform. On the
other hand, a solution that meets the monotony hypothesis is
to implement ”nested” protocols. In other words, the alterna-
tive protocol, allowing for a better response rate, must include
the collection mode(s) of the reference protocol, so that it
can effectively be said that if a person to whom the reference
protocol was applied had been offered the alternative protocol,
he or she would necessarily have responded. For example,
a design in which one group was assigned to telephone
and the other to internet would not verify this property
because there is no evidence that a person participating on the
internet would have participated if offered the telephone for
responding (and vice versa). However, a protocol in which
all respondents are offered a response via the internet but,
in addition, a random sub-sample is offered to respond by
telephone, immediately verifies the sufficient conditions for
the application of a Heckman model.

More recent extensions of the Heckman model have been
developed in the literature, in particular in order to get
rid of the strongly parametric assumptions of the Heckman
model. For a recent general presentation of the framework of
these non-parametric models, the reader is invited to refer to
Tchetgen Tchetgen and Wirth (2017). Previously, deviations
from the Heckman model, by using alternative or empirical
distributions, have been the subject of several articles. One
example is that of Martins (2001). One can also refer to
the references indicated by Boutchenik, Coudin, and Maillard
(2019), in a different context.

C. Identifying endogenous selection

In this part, we try to deepen the understanding of the endoge-
nous selection mechanism and its identification. The relation
(11) shows that the key to dealing with the endogenous
selection problem is to identify the relationship between ri
and yi. In this paragraph we will detail the assumptions made
in Heckman’s model about the form of this relationship and
outline some ways of taking into account more general forms
of relationship.

We assume here that the conditions under which Heckman’s
model (13) is convergent are met, conditions which we shall
hereafter designate by condition 8 or heckit model, a term used
in the econometric literature (Greene 2003). We will assume
in this framework that yi is continuous, the case where yi
is a binary variable being generalized from the continuous
case. We will also assume, unless otherwise stated, that the
instrument wi is binary.
Independently of the parametric hypotheses on which it
is based, the particularity of the model is to suppose the
existence of a latent variable r∗i which orders the individual
willingness to participate in the survey (i.e. with a given
realization of the random residual ε0i ). The form adopted and
the existence of the latent variable, apart from its linearity,
translate in a fairly logical way the individual behaviour

8. It should be noted that these conditions are more general than those
of Heckman’s model, since we are not, at this stage, making any hypothesis
on the joint distribution of the residuals. In sum, the heckit model is limited
to the equations (13) and to the existence of a joint distribution of (ε0i , ε

1
i )

of any kind.
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consisting in deciding whether or not to participate in the
survey 9. Moreover, the scientific literature on selection effects
most often takes the existence of this latent variable for
granted, without questioning it, on the grounds that it reflects,
in its essential generality, the individual behaviour at work
(Vytlacil 2002, Lee 2009).

In a model with a latent variable, the participation of the
individual i follows directly from this variable : if this one
is positive or null, the individual participates, otherwise he
does not participate. In the heckit model, the variable r̄∗i =

c
0 + zi can be seen as an individual propensity to participate

in the survey, under the average collection effort, conditional
on the individual characteristics zi. The average individual
propensity to participate under the average collection effort
is here characterised by c0+zi. The addition of an instrument
– binary in this case – in the model stands for an increased
collection effort for the subset of individuals such that wi = 1.
For these individuals, participation is increased according to
a valuation of the collection effort, in terms of participation,
which is set at the value ψ (for the notations refer to the
model 13).

In practice, knowing the link between yi and ri means either
identifying the functional form that links these two variables,
or identifying the one that links the variables yi and r

∗
i . As

these two variables are linked (i.e. their residuals are not
independent), the observation of the link between yi and
ri or r∗i requires an instrument. The instrument makes it
possible to ”move” the two variables exogenously. And we
can thus identify, at least in part, the relationship between
these functions.

To understand the conditions for identifying this relationship,
let us look more precisely at what happens in the (yi, r̄∗i )
plane, where r̄

∗
i is the individual propensity to participate

under the average collection effort and conditional to the in-
dividual characteristics zi. Note that this individual propensity
is not observed.

A similar analysis, developed in the appendix B, can be
carried out in the plane (yi, π̄i), where π̄i = Pr(r̄i = 1) =
Pr(r̄∗i ⩾ 0) is the probability of participation under the average
collection effort, this probability being actually observed.

Only the analysis in the (yi, r̄∗i ) plane is developed here. In
this plane, all the individuals are ordered by their propensity
to participate r̄∗i = c

0 + ziβ + ε
0
i under the average collection

effort and conditionally to their individual characteristics zi.
We assume a binary instrument wi ≡ wi ∈ {0, 1}. Using the
instrument wi, we can write according to (15) :

E(yi∣zi, wi = 1, ri = 1) − E(yi∣zi, wi = 0, ri = 1)
= %σ (λ(c0 + ziβ + ψ) − λ(c0 + ziβ))
≈ %σλ

′(c0 + ziβ)ψ

9. In terms of behaviour, the form of this latent variable translates quite
naturally the existence of an individual propensity to participate in the survey
considered. This propensity will differ from one individual to another and
will, very generally, depend on the individual’s characteristics and personal
context, as well as the characteristics of the survey. It is also likely that
residuals, independent of the conditions, do affect participation. This is the
case, for example, in a telephone survey, when contact calls are made to the
respondent’s home when he or she is not there.

The last line corresponding to the first order of the Taylor
development of the function λ 10, calculated at the point c0 +
ziβ, λ′ being the first derivative of function λ. Then,

r
∗
i (wi = 1∣zi, ε0i ) − r∗i (wi = 0∣zi, ε0i ) = ψ

It follows that :

E(yi∣zi, wi = 1, ri = 1) − E(yi∣zi, wi = 0, ri = 1)
r∗i (wi = 1∣zi, ε0i ) − r∗i (wi = 0∣zi, ε0i )

≈ %σλ
′(c0 + ziβ)

(23)
With the help of the above relations, it is possible to specify
the situation as it stands in the (yi, r̄∗i ) plane. In this context,
it is useful to note that the heckit model does not make
explicit the relation y(r̄∗). However, the relation (23) gives
the directing coefficient of the tangent to the curve y(r̄∗), at
the mean point between the two collection efforts.

It can be noted that the expression of the slope of the y(r̄∗)
curve at this point does not depend on ψ, i.e. the valuation
of the additional collection effort in terms of additional
participation. This confirms the role of ψ which can be
assimilated here to an exogenous parameter (in the sense of
mathematical functions depending on a parameter) for the two
implicit functions E(yi∣zi, ψ) and E(r∗i ∣zi, ψ) of ψ. As ψ is
involved in a linear way in these two quantities (in accordance
with the postulated link between the two residuals of the
outcome and participation equations), it disappears at the first
order of magnitude, in the modelling of y(r̄∗) 11.

Figure 1 shows a general case in which the relationship
between y and r̄

∗ is decreasing. This would correspond to
a situation in which high incomes would be reluctant to
respond to the survey, while low income would respond more
willingly, for example. In these circumstances, if an income is
higher than average, the probability that the considered person
will participate in the survey is lower, all other things being
equal. So in the heckit model, the correlation is negative.
In the (y, r∗) plane, individuals are ordered according to their
propensity to participate under the average effort r̄∗i . All
those with r̄∗i ⩾ 0 participate under the average effort. These
individuals are shown in blue circles in figure 1. Then, when
the instrument is implemented, i.e. the collection effort is
increased, the origin of the r̄∗i shifts to the left by an amount ψ
(here positive, reflecting an increase in participation due to the
increase in collection effort), so that those whose propensity
is such that r̄∗i + ψ ⩾ 0 now participate. To the previous
respondents, using this increased collection effort, are added
the respondents corresponding to the red circles in Figure
1. The difference in the means of y on these two sets of
respondents (blue points on one side, and red and blue on the

10. approximation valid when ψ is small. It is worth mentioning here that
the λ function is the inverse of the Mills ratio in the bivariate Gaussian case.
More generally, it can be assumed here that it is any function, depending
on the joint distribution of the residuals, without the need to specify it
further, the only important hypotheses being that E(ε1i ∣ε

0
i ) = %σε

0
i and

symmetrically, E(ε0i ∣ε
1
i ) = % ε

1
i/σ . By the way, this is one of the approaches

used by econometricians to generalise Heckman’s reasoning to any bivariate
distribution of residuals (Greene 2003, for example).

11. This is also the statistical consequence of the fact that this pa-
rameter is associated with an instrumental variable. In this context, at
the the differential point of view, we have : ∆E(yi∣ri = 1, zi)/∆r

∗
i =

(∆E(yi∣ri = 1, zi, ψ)/∆ψ ) × (∆r
∗
i (ψ)/∆ψ )−1.
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other), related to the difference in the means of r∗i on these
same sets, gives the local slope of the y(r̄∗) curve. This is the
derivative of this function. It is shown in green in figure 1.

Fig. 1. Curve y(r∗), respondents and non-respondents under two nested
collection protocols
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Note : r∗
i
(wi = 0) corresponds to the average value of r∗ for respondents

under the average collection effort (i.e. such that wi = 0). r∗
i
(wi = 1) is

the average value of r∗ for respondents under the enhanced collection effort
(i.e. such that wi = 1). Formally, in the enhanced protocol, the responding
individuals are those who respond to the average protocol (the blue dots), plus
those who respond due to the extra collection effort (the red dots). Similarly,
yi(wi = 0) is the average value of y for respondents under the average
collection effort and yi(wi = 1) is the average value of y for respondents
under the enhanced collection effort. The individuals represented by crosses
are never observed; we only know that they do not participate under either
the average collection effort or the enhanced protocol. The black curve is the
true y(r∗) function, which is not observable. The green line is the tangent
to this curve, observed with the instrument (see text).

As explained above, the instrument and its associated coef-
ficient ψ act as a parameter for the two related functions, y
and r̄∗. This parameter allows to identify the link. The latter
is de facto known locally. In other words, if the function
y(r̄∗) is not linear, the approximation given by the Heckman
model is only valid in the vicinity of the participation rate
considered. If, for example, the enhanced collection effort
(corresponding to the instrument) increases a low original
response rate by 10 points, say 30%, then it is unlikely that
the linear approximation obtained in the vicinity of a 30-40%
participation rate is still valid for non-respondents with high
outcome values, as shown in Figure 1.

In practice, if one has a binary instrument, the only knowledge
one can get of the link between y and r̄

∗ is a local one. It
is possible to acquire a more extensive knowledge (i.e. on a
larger support of y and r̄

∗ than their real supports) by im-
plementing several protocols allowing to reach differentiated
levels of participation, from the lowest to the highest. Such
a sequence of protocols, applied on independent samples,

can use a selection model identical to the basic protocol, the
only difference being the application of a different instrument
for each sub-sample associated with a given protocol. For
example, if three protocols associated with three sub-samples
are implemented (G(k))

k∈{0,1,2}, with participation increasing
with the sample number, then compared to the model (13),
only equation (ii) is modified in:

r
∗
i = c

0
+ ziβ + w

(1)
i ψ + w

(2)
i κ + ε

0
i

where w(1)
i = 1 if i ∈ G(1) ∪G(2) and w(2)

i = 1 if i ∈ G(2). In
this model, %, characteristic of the endogenous selection, is
the same for all the protocols and the possible non-linearity
of the relation between y and r̄∗ goes through the coefficient
ψ associated with the instruments of the subsample G(1). In
fact, relation (23) is now replaced by two relations (we note
wi = (w(1)

i , w
(2)
i )) :

(a) E(yi∣zi,wi = (1, 0), ri = 1) − E(yi∣zi,wi = (0, 0), ri = 1)
r
∗
i (wi = (1, 0)∣zi) − r∗i (wi = (1, 0)∣zi)

≈ %σλ
′(c0 + ziβ)

(b) E(yi∣zi,wi = (1, 1), ri = 1) − E(yi∣zi,wi = (1, 0), ri = 1)
r
∗
i (wi = (1, 1)∣zi) − r∗i (wi = (1, 0)∣zi)

≈ %σλ
′(c0 + ziβ + ψ)

(24)
If we want to be able to describe more easily a non-linearity of
the function y(r̄∗), it is possible to associate to the two pairs of
protocols (G(0)

, G
(1)) and (G(1)

, G
(2)), two different selection

modes. This can be done by estimating two models separately.
It can also be done with a single model and two different
selection equations (Vella 1998, Ogundimu and Hutton 2016).
In this way, the coefficients % appearing in (24-(a − b)) are
estimated as two distinct coefficients.

V. SEPARATING MEASUREMENT ERROR DUE TO MODE OF
DATA COLLECTION AND ENDOGENOUS SELECTION BIAS

When using the Heckman model with differences in protocols
involving several modes of data collection as an instrumental
variable, it has so far been assumed that there are no measu-
rement effects on the modelled variable of interest.
If there is a measurement error, i.e. respondents respond
differently, depending on the mode of data collection, to
the question to which the variable of interest yi is asso-
ciated, without this effect being the result of self-selection
by the respondents, then, under certain circumstances, it is
theoretically possible to identify these mode-specific effects.
Indeed, in terms of Heckman’s modelling, a measurement
effect explains the variable yi, while it plays no role in the
selection equation. Let us explain this point in more detail.

Let us suppose that there are J + 1 modes of data collection,
noted j ∈ {0, 1, . . . , J} and that mode 0 is the reference
mode in relation to which we determine the measurement
error associated with the alternative modes j ∈ {1, . . . , J}.
The model (13) can then be written:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(i) yi = c
1
+ ziχ +

J

∑
j=1

αj1(mi = j) + ε1i

(ii) r
∗
i = c

0
+ ziβ +wiψ + ε

0
i

(iii) ri = 1(r∗i ⩾ 0)
©Insee 10



where mi stands for the mode 12 with whom the individual
i answers the survey. If i is non-respondent, then mi is not
observed. Its value is thus conventional and can for example
be assumed to be equal to 0, without consequence on the
identification of the model. In this model, the αj can be
identified when the variable mi is not collinear with the wi

instruments. The identifying assumption is therefore that the
mode does not explain (or is not related to) the choice of
whether to participate in the survey.
From this point of view, an exclusion condition on mi must
be verified in the selection equation. This is therefore a
strong constraint that requires a very specific protocol to be
verified. In the general case, there is every reason to believe
that the mode also affects participation. The most natural
way to ensure independence of mode and participation is
to reserve a sub-sample on which participation is ensured,
prior to a randomised assignment to a collection mode. This
ensures that the mode indicator variable only affects y, not
participation. However, in practice, such a protocol is rarely
implemented because it is costly to ensure participation before
assigning a collection mode and it is not possible to ensure
the absence of non-response once the collection mode has
been assigned, despite prior agreement.
Under this hypothesis, where mi is exogenous with respect to
the selection equation, the (αj)j∈{1,...,J}, estimated by maxi-
mum likelihood, estimate the measurement error associated
with the alternative modes, compared to the reference mode.
This method holds for both the continuous and the discrete
case.

Conversely, if one introduces the mode mi into the outcome
equation without first ensuring that the exclusion conditions
are indeed met, it is extremely likely that mi is endogenous
in this equation. Indeed, the mode probably influences partici-
pation. The non-inclusion of mi in the participation equation
rejects the mode in the residual of this equation, which is
by hypothesis correlated with that of the outcome equation.
Therefore mi, the explanatory variable of yi, is likely to be
correlated with the residual in the outcome equation 13. Thus
the regression coefficients associated with the measurement
effects in the outcome equation are biased. And, unlike the
reasoning in paragraph III, where we were interested in the
prediction of the model, it is the coefficients associated with
the measurement effects that we are interested in here.
Therefore, without an ad hoc protocol to ensure that the
exclusion conditions are met, it is not possible to identify
a measurement effect in the outcome equation, together with
endogenous selection.

We can go further in the reasoning by showing that if a
measurement error exists at the same time as an endogenous
selection mechanism, nothing is identifiable if the increase in
participation results from the addition of an additional collec-
tion mode: in this case, neither the measurement error nor the
endogenous selection is identifiable. Indeed, if a measurement
error exists at the same time as an endogenous selection
mechanism, then the non-inclusion of the measurement error

12. mi therefore takes its values in {0, . . . , J} according to the collection
mode associated with the individual i.

13. Under the assumption that endogenous selection is suspected, for
example if a correlation coefficient in a Heckman bivariate probit model
is estimated at the same time as the measurement effect.

in the outcome equation returns it to the ε1i residual, and then
to ε0i via the correlation that exists between the residuals due
to endogenous selection. If at this stage the r∗i instruments
are linked to the mode of collection 14, then the exclusion
conditions of the Heckman model no longer hold, in particular
in the participation equation.

In summary:
— to deal with endogenous selection, one can combine

modes of data collection for a randomly selected
subsample, but this mechanism only corrects for en-
dogenous selection under the assumption that there is
no mode-related measurement error;

— and at the same time, one cannot correct for a measu-
rement error that would occur simultaneously with the
endogenous selection, if the exclusion conditions ne-
cessary to identify measurement errors in the outcome
equation do not hold.

Therefore, combining modes of data collection to address
endogenous selection carries a real risk of failure if mea-
surement error associated with the mode is suspected. In
this case, an instrument based on increased incentives to
participate, applied to a random sub-sample, but independent
of the mode of data collection (e.g. financial incentives or
additional significant follow-up efforts), should be preferred.
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APPENDIX

A. Some variations on conditional laws

In this appendix, some useful results on probabilities and
conditional expectations are shown. The aim is to remind the
reader of these results and to familiarise him or her with
the reasoning used throughout the text. In the first part, we
return to the conditioning and conditional orthogonality of
variables. A second part derives the results on the bivariate
normal model, underlying the Heckman model.

Unless explicitly stated, all variables considered here are
vectors.
Any random variable y is characterised by a probability
density fy(u). This one verifies by definition : P(y < y) =
∫u<y} fy(u)du. Two variables (y, z) have a joint distribution
fy,z(u, v). y is a random variable (we say ”y knowing z”),
whose density (called ”conditional law of y knowing z”) is:

fy∣z(u∣z = v) =
fy,z(u, v)
fz(v)

The variables y and z are independent if and only if their joint
density is the product of their marginal densities: fy,z(u, v) =
fy(u)fz(v). In this case we note y ⫫ z. This relation is
symetrical, i.e. (y ⫫ z⇔ z ⫫ y). Equivalently,

y ⫫ z⇔ (∀v , fy∣z(u∣z = v) = fy(u))

This can also be written more simply :

y ⫫ z⇔ fy∣z(u∣z) = fy(u) (25)

We note that if y ⫫ z, then the variables y and z are not
correlated (i.e. have a zero correlation). Indeed, let us suppose
without loss of generality that E(y) = E(z) = 0 and let us
calculate

E(yz) = ∫ uvfyz(u, v)dudv

= ∫ ufy(u)du∫ vfz(v)dv
= 0

We note incidentally that

x ⫫ y ⇒ E(xy) = E(x)E(y) (26)

The expectation of a variable y is E(y) = ∫ ufy(u)du. We
can define, in a coherent way, the conditional expectation of
y by :

E(y∣z = z) = ∫ ufy∣z(u∣z = z)du

Here again, it is customary to adopt the following simplified
notation:

E(y∣z) = ∫ ufy∣z(u∣z)du

From the above, it can be deduced that

y ⫫ z⇒ E(y∣z) = E(y)

We note that the expression E(y∣z) defines a random variable
which is a function of the random variable of z. Therefore,

E(y) = ∫ E(y∣z = v)fz(v)dv
©Insee 12



The formula for iterated conditional expectations, which is
always verified, is deduced:

E(y) = E (E(y∣z)) (27)

On the other hand, to be able to be calculated, it is necessary
to know in extenso the conditional expectation E(y∣z) and
the law of the variable z. We can chain the conditional
expectations by iteration:

E(y∣z) = E [E(y∣x, z)∣ z] (28)

Finally, it is possible that the independence of variables is
conditional on another variable. For example, the variables
x∣z and y∣z can be independent whereas x and y are not. This
property makes sense in relation to the above. By extension
of the previous notations:

x ⫫ y∣z⇔ [fx,y∣z(x, y∣z = z) = fx∣z(x∣z = z)fy∣z(y∣z = z)]
(29)

Under this assumption, it is possible to separate the ex-
pectation calculations. Let any separable function g(x,y) =
g1(x)g2(y). We can calculate its expectation conditional on
z. By hypothesis, x ⫫ y∣z therefore

E(g(x,y)∣z) = ∫ g1(u)g2(v)fx∣z(u∣z)fy∣z(v∣z)dudv

= ∫ g1(u)fx∣z(u∣z)du ∫ g2(v)fy∣z(v∣z)dv
= E(g1(x)∣z) E(g2(x)∣z)

And, in particular, taking g(x, y) = xy, we have :

x ⫫ y∣z⇒ E(xy∣z) = E(x∣z) E(y∣z) (30)

This formula can be seen as a generalization of the relation
(26).
We notice, thanks to this last expression, that the application
of the formula of the iterated conditional expectations is
not immediate. Indeed, by the iterated expectations (relation
27), we have E [E(xy∣z)] = E(xy). On the other hand,
E [E(x∣z) E(y∣z)] ≠ E(x)E(y). Indeed, for this last property
to be true, the variables E(x∣z) and E(y∣z) would have to
be independent, and therefore in particular independent of
the variable z with respect to which the two conditional
expectations are determined here.

Finally, it may be useful to note that

x ⫫ y∣z⇒ E(x∣y, z) = E(x∣z) (31)

Indeed,

fx∣y,z(u∣y, z) = fx,y∣z(u, v∣z)/fy∣z(v∣z)
= fx∣z(u∣z)fy∣z(v∣z)/fy∣z(v∣z)
= fx∣z(u∣z)

according to (29), hence the announced result.

b

To fix ideas, let us consider three random variables, x, y and
z. Suppose that (a, b, α, β) is a set of constants,

{ x∣z = a + bz + e
y∣z = α + βz + ε

(32)

with e ↪ N (0, σ2
e ), ε ↪ N (0, σ2

ε ) and z ↪ N (η, σ2), where
N (η, σ2) denotes the normal distribution with expectation η
and variance σ2. It is further assumed that e ⫫ z and ε ⫫ z.
These elements allow us to specify the distribution of the
random vector (x, y)′, conditional to z:

(x, y)′∣z ↪ N [(a + bz
α + βz

) , ( σ
2
e ρσeσε

ρσeσε σ
2
ε

)] (33)

where ρ denotes the correlation of the variables e and ε.
Classically, given what precedes, the density of the vector
variable (x, y)∣z is the product of the marginal densities of
x∣z and y∣z if, and only if, ρ = 0. Finally, in the present case,
the following equivalences hold:

ρ = 0 ⇔ e ⫫ ε ⇔ x ⫫ y∣z (34)

The following results can be established:
— E(x∣z) = a + bz without restriction. Under the same

conditions, E(y∣z) = α + βz.
— E(xy∣z) = (a + bz)(α + βz) = E(x∣z)E(y∣z) is verified

if, and only if, x ⫫ y∣z. Indeed,

E(xy∣z) = E((a + bz + e)(α + βz + ε)∣z)
= (a + bz)(α + βz) + E(eε∣z)
= (a + bz)(α + βz) + ρσeσε

according to (32) and (33).The application of equiva-
lences (34) allows us to conclude.

— Using the previous expression, we can also calculate,
thanks to the formula of iterated conditional expecta-
tions:

E(xy) = E [E(xy∣z)]
= (a + bη)(α + βη) + bβσ2 + ρσeσε

And, E(x) = a + bη and similarly, E(y) = α + βη. It
follows that:

E(xy) − E(x)E(y) = bβσ2
+ ρσeσε

Thus, the covariance of x and y is zero if, and only
if, x or y is independent of z (i.e. b = 0 or β = 0) or
z is certain (i.e. σ = 0) and, simultaneously to one or
the other of the preceding conditions, ρ = 0.

— Another useful point to note at this stage
is that E(xy) − E(x)E(y) is different from
E [E(xy∣z) − E(x∣z)E(y∣z)]. Indeed, if we have
E [E(xy∣z)] = E(xy), it is not true for the second
component of the expression. This is because,

E [E(x∣z)E(y∣z)] = E [(a + bz)(α + βz)]
= (a + bη)(α + βη) + bβσ2

which is obviously different from E(x)E(y) = (a +
bη)(α + βη), except when z is a certain variable or x
or y is independent of z. This comes from the fact
that the formula of conditional iterated expectations
does not hold for a product of variables : the total
expectation is (only) a linear application. We find here
a property mentioned in the penultimate paragraph of
the previous section.

With the previous dependency model, it is possible to conti-
nue to explain the conditional laws and expectations. Thus,
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we can determine the unconditional law of the vector (x, y)′:

(x, y)′ ↪ N [(a + bη
α + βη

) , ( σ
2
e + b

2
σ
2

ρσeσε + bβσ
2

ρσeσε + bβσ
2

σ
2
ε + β

2
σ
2 )]

It is thus possible to calculate E(x∣y). We know that for all
normal variables u and v, of correlation c, E(u∣v) = cv. We
deduce that :

E(x∣y) = a + bη + ρσeσε + bβσ
2

σ2
ε + β

2σ2
(y − α − βη) (35)

We can also calculate E(x∣y, z). Starting from the expression
(32), we have :

E(x∣y, z) = a + bz + E(e∣y, z) (36)

Now E(e∣y, z) = E(e∣ε = y − α − βz). Then, by hypothesis,

(e, ε)′ ↪ N ((0
0
) , ( σ

2
e ρσeσε

ρσeσε σ
2
ε

))

Now, as before, E(e∣ε) = ρσe

σε
ε. Then

E(e∣y, z) = ρσeσε (y − α − βz) (37)

And finally,

E(x∣y, z) = a − ρσeσεα + (b − ρβ σeσε )z + ρ
σe
σε
y (38)

The results (35) and (38) are interesting. We can note the
following points:

— Relation (38) shows that if ρ = 0, then E(x∣y, z)
does not depend on y. In other words, in this case,
E(x∣y, z) = E(x∣z) = a+ bz. However, if ρ = 0, E(x∣y)
still depends on y for the part which “goes through”
z. Indeed, from (35) comes :

E(x∣y; ρ = 0) = a + bη + bβσ
2

σ2
ε + β

2σ2
(y − (α + βη))

And it would be too quick, starting from (36), to pass
from E [E(x∣y, z)∣y] = a+bE(z∣y)+E(e∣y) to E(x∣y) =
a + bη which would be, of course, false, because:

1) on the one hand, E(z∣y) ≠ η ; we can show that
E(z∣y) = η+ βσ

2

σ2
ε+β

2σ2 (y− (α+βη)) which therefore
depends on y;

2) and on the other hand, E(e∣y) ≠ 0, this by virtue
of the relation (37) and of what precedes.

— The relation (35) shows that even if x and y are
not generated by the same variable z (i.e. b = 0
or β = 0), the correlation of the residuals e and
ε generates a conditional dependence since E(x∣y)
effectively depends on y.

— At the same time, even if ρ = 0, the expectation of x
conditional on y depends on y, through the variable z
(point already mentioned above).

— From relation (38), we have again E(x∣z) = a + bz.
Indeed, starting from (38), we have:

E(x∣z) = E [E(x∣y, z)∣ z]
= a − ρ

σe
σε
α + (b − ρβ σeσε ) z + ρ

σe
σε

E(y∣z)

Now E(y∣z) = α + βz, hence the result.

B. Analysis of the conditions for identifying endogenous
selection in the (yi, π̄i) plane

In this plan, the variables are observable. Contrary to the case
presented in paragraph IV-C, the individuals are not ordered
on the π axis since for the same probability of participation,
individuals can or cannot participate in the survey (according
to the realization of the ε0i residual appearing in the partici-
pation equation). In this plane, the relation

E(yi∣zi, wi = 1, ri = 1) − E(yi∣zi, wi = 0, ri = 1)
≈ %σλ

′(c0 + ziβ)ψ

seen previously is still true. Then, according to the relation
(18), we have, using a Taylor development to the first order :

πi(wi = 1∣zi, ε1i ) − πi(wi = 0∣zi, ε1i )

≈ ϕ (
c
0 + ziβ +

%

σ
ε
1
i

√
1 − %2

) ψ
√

1 − %2

where ϕ is the density of the zero-mean and unit-variance
normal law. It follows that :

E(yi∣zi, wi = 1, ri = 1) − E(yi∣zi, wi = 0, ri = 1)
πi(wi = 1∣zi, ε1i ) − πi(wi = 0∣zi, ε1i )

≈

%σ
√

1 − %2 [ϕ (
c
0 + ziβ +

%

σ
ε
1
i

√
1 − %2

)]
−1

λ
′(c0 + ziβ)

As before, ψ plays the role of a parameter for the two
functions E(yi∣ri = 1, zi, ψ) and πi(ψ). The corresponding
situation is presented in figure 2. The previous expression
corresponds to the slope of the straight line shown in green
in the figure. This straight line, as an approximation of the
y(π̄) curve in the vicinity of (π(w = 0), y(w = 0)) is observable
since the average values of y and π are. On the other hand, as
before, the previous tangent gives only an approximation of
the curve for observed collection rates. In the example of the
figure, the approximation obtained for low participation rates
may not be valid for higher rates. The discussion in paragraph
IV-C on the (yi, r̄∗i ) plane also applies in the case considered
here.

C. Simulations using the R package sampleSelection

In this appendix, we present simulations based on synthetic
observations giving rise to endogenous selection and the
results obtained using Heckman models fitted to these ob-
servations.

All the results presented here are obtained from the R code
NRC-Heck-model.R 15. This program uses the sampleSe-
lection 16 package (Toomet and Henningsen 2008).

15. Accessible under GitHub at the following link : https://github.
com/InseeFrLab/NRC-heck-model

16. https://cran.r-project.org/package=
sampleSelection
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Fig. 2. Curve y(π), respondents and non-respondents under two nested
collection protocols
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Note : πi(wi = 0) corresponds to the average value of π for respondents
under the average collection effort (i.e. such that wi = 0). πi(wi = 1)
corresponds to the average value of π for respondents under the reinforced
collection effort (i.e. such that wi = 1). Formally, in the reinforced protocol,
the responding individuals are those who respond to the average protocol
(the blue dots), plus those who respond due to the extra collection effort (the
red dots). Similarly, yi(wi = 0) is the average value of y for respondents
under the average collection effort. yi(wi = 1) is the average value of
y for respondents under the reinforced collection effort. The individuals
represented by crosses are never observed; we only know that they do
not participate under either the average collection effort or the reinforced
protocol. The black curve is the true y(π) function, which is not observable.
The green line is the tangent to this curve, observed with the instrument (see
text).

1) Construction of the synthetic population and self-
selection: We build a population of 10 000 individuals whose
income depends on three exogenous variables x1, x2, x3, each
of these variables being drawn in a uniform distribution U , on
[2, 5], [0, 2], and [0, 1] respectively. The income is obtained
by the following relation:

y = 2 × x1 + 1 × x2 − 0.5 × x3 + ε (39)

where εi is drawn from a normal distribution N (0, 22).
We deduce that the true mean income is 7.75 and the true
standard deviation of the arithmetic mean of a sample of
10 000 independent and identically distributed (iid) indivi-
duals is 0.0277.

An empirical distribution of a vector of 10 000 incomes
(yi)i∈{1,...,10 000} is given in figure 3. The simulated mean
associated with the drawing of these 10 000 individuals is
7.74. The standard deviation of the mean is 0.0274.
An endogenous selection mechanism is simulated, based on
the previous income, for the 10 000 simulated individuals,
according to the following relationship, so that participation

Fig. 3. Histogram of simulated income
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decreases with income:

{ r
∗
i = −0.4 + (max(y) − yi) /30 + 0.2 × 1(i ⩽ 3000) + νi
ri = 1(r∗i ⩾ 0)

(40)
where max(y) denotes the maximum observed on the
(yi)i∈{1,...,10 000} and νi is a random variable drawn in a
normal distribution N (0, 0.22). The number of respondents
nr = ∑i ri ; the mean of nr is 4 550 and, in the simulated
draw, it is 4 518. According to (40), the first 3 000 individuals,
ranked from 1 to 10 000, have their latent participation
variable reinforced, compared to the 7 000 following in-
dividuals. This indicator of belonging to the first 3 000
individuals is consistent with the definition of an instrument
since it explains the increased participation of these 3 000
individuals, without playing a role in income formation.
Figure 4 plots the distributions of simulated participation
probabilities, depending on whether individuals are in the
group with increased participation (to which the instrument
is associated) or not.
Figure 5 shows the probability of response as a function of
income for all 10 000 individuals. We note, as expected, the
decrease in the function obtained and the separation of the two
groups, depending on whether the individual is in the group
of 3 000 individuals affected by the increased probability of
response to which the instrumental variable will be associated,
or whether the individual is among the 7 000 remaining.
This figure can be compared to the figure 2, subject to
two adjustments. Firstly, the abscissa and ordinate of the
two figures must be exchanged. Secondly, the curve drawn
in figure 2 refers, on the abscissa, to the probability of
response π̄ under the average collection effort, i.e. at zero
instrument value. Strictly speaking, the instrument, when
it is non-zero, increases the probability of participating. It
therefore shifts the inclusion probability curve upwards under
the increased collection effort, at a given y, in the system of
axes in Figure 5. This is precisely what is observed in the
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Fig. 4. Distribution of simulated response probabilities
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Note : distribution of the response probabilities, in black for the first 3000
individuals in the sample, i.e. those for whom the probability of participating
is reinforced (in connection with the instrumental term in 0.2×1(i ⩽ 3000)
in the expression (39), and in red, for the 7000 remaining individuals. By ap-
plying (40), πi = Φ [(−0.4 + (max(y) − yi) /30 + 0.2 × 1(i ⩽ 3000)) /0.2].
Densities estimated by Gaussian kernel method (Silverman 1986).

latter figure: the uninstrumented probabilities (i.e. under the
average collection effort) and the instrumented probabilities
(i.e. under the reinforced collection effort) are represented in
the same graph. In Figure 2, we have chosen, on the contrary,
to keep the probability under the average collection effort,
by showing the additional points of respondents, obtained
because of the instrumentation, using a different colour (red
in this case) from that of respondents in the sample without
instrumentation (blue).

2) Estimators and variance: From the previous population
simulation, we study the expectation and variance of different
estimators for the simulated population in the absence of non-
response, on the one hand, and for the respondents alone, on
the other, in relation to the simulated participation variable.
The estimators for the respondents are either Hajek estimators
– biased by construction – or Horvitz-Thompson estimators
based on inclusion probabilities from one- or two-stage He-
ckman models, obtained by reweighting the respondents, in
accordance with relation (19), or by imputing the responses of
non-respondents, in accordance with relation (17). Different
ways of variance estimation are used: by multiple generation
of the simulated population, or by bootstrapping on a par-
ticular simulation of the population of 10 000 individuals,
the bootstrap estimation being naturally the only one by
simulation that can be used, in practice, when working on
a real sample.

The table I gives the results of the different simulations
carried out. Several points should be underlined concerning
the results presented in this table.

— As expected, we observe the strong bias of the esti-

Fig. 5. Plot of simulated response probabilities as a function of income
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Note : In application of (40), πi =

Φ [(−0.4 + (max(y) − yi) /30 + 0.2 × 1(i ⩽ 3000)) /0.2]. The upper curve
(top right) corresponds to individuals whose probability of participation is
enhanced by the instrument.

mated income on respondents (see column “Average”
of the table I : compare row (b) to row (a)). The diffe-
rence between the true value (7.74) and the estimated
value on respondents (6.81) is much wider than the
confidence intervals on the estimators (of 0.1 point of
semi-amplitude).

— The Hajek estimator using the true inclusion pro-
babilities of the respondents, i.e. those calculated
using the true distribution of the latent variable, as
in Figure 4, is unbiased (row (c)). This estimator is,
however, more uncertain than the one for the whole
population (row (a)). It is also more uncertain than the
Hajek estimator for respondents (row (b)), due to the
increased dispersion of the weights (standard deviation
of 0.0515 versus 0.0383).

— The Heckman estimators (rows (d-g)), obtained in one
or two steps by reweighting respondents or imputing
non-respondents, are unbiased with respect to their
confidence intervals. The associated standard devia-
tions are higher than the reference standard deviation
for mean of population income: the ratio of standard
deviations is about 3, compared to a situation without
non-response. Thus – and this is natural – endogenous
non-response and its treatment have a cost in terms of
loss of precision.

— The standard deviation estimators are themselves sub-
ject to imprecision. The comparison of columns (2)
and (3) with column (1) of the table I for the es-
timators in rows (a-b) gives the signature of this
uncertainty. Given the order of magnitude of this un-
certainty, the bootstrap estimators and those obtained
by population simulation are compatible.
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— Provided that the uncertainty of the standard devia-
tion estimators obtained by simulation is small, the
Heckman estimator by reweighting is more accurate
(about 20%) than the one obtained by imputing non-
respondents (compare rows (d) and (e) of the table,
then (f) and (g)). This is true whether the Heckman
estimators are based on a one-step or two-step model.

— Estimators based on one-step Heckman models are
more accurate (5 to 10%) than estimators based on
two-step models, whether the correction is made by
reweighting (comparing lines (d) and (f)) or by im-
putation (comparing lines (e) and (g)). This result
is related to the higher efficiency of the maximum
likelihood (i.e. one-step) estimator compared to the
two-step estimator.

— Regarding the computation time of the bootstrap
loops, the experiment shows that the standard devia-
tion converges rather slowly. The results are stable
from a number of bootstrap loops higher than 10 000.
Also, the calculation is rather long since the Heckman
estimator requires, at each bootstrap loop, to perform
a likelihood optimization. This likelihood is more
complex in the one-step case, and therefore longer to
calculate, than in the two-step case. Although the one-
step estimator is more efficient, in this context the two-
step estimator can be preferred since the calculation
of the one-step Heckman-corrected Hajek estimator
takes, in this case, twice as long.
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TABLE I
SIMULATED ESTIMATES AND ASSOCIATED VARIANCES

Estimate Size Average Standard-deviation %̂ Remark

(1) (2) (3) (4)

(a) µ̂ =
1
n
∑ yi 10000 7.74 0.0273 0.0274 0.0270

(b) µ̂ =
1
nr

∑ riyi 4518 6.81 0.0383 0.0384 0.0390

(c) µ̂ = ∑αiriyi 4518 7.68 0.0515 αi = (real probability of inclusion)−1
(d) µ̂Heckman-1St. 4518 / 10000 7.75 0.0676 0.0722 -0.363 reweighting (†)
(e) µ̂Heckman-1St. 4518 / 10000 7.77 0.0878 0.0848 imputation
(f) µ̂Heckman-2St. 4518 / 10000 7.75 0.0733 0.0792 -0.368 reweighting (†)
(g) µ̂Heckman-2St. 4518 / 10000 7.78 0.0927 0.0881 imputation

Note : n = 10 000 ; in the equations, the notations refer to the relations (39) and (40). The column “Average ” is the estimated value for a particular draw of
the synthetic population, the same as that used in figures 3, 4 and 5. (1): application of the analytical variance formula; (2): variance by bootstrap (20 000
loops) in a particular draw of the simulated reference population, the same as the one corresponding to rows (a) to (c) of the table; (3): variance computed
through multiple generation (2 000 simulations) of the population (comparable to a true simulated variance) – in this case, the number of respondents is on
average 4 550 individuals; (4) correlation coefficient of the residuals in the Heckman model (cf. relation (13), for example), the standard deviation resulting
from the maximum likelihood estimation being 0.0460 ; testing the absence of endogenous selection is equivalent to testing the nullity of this coefficient ;
(†) : winsorised for the predicted inclusion probabilities lower than 0.1, which are thus reprocessed in order to be saturated at this level.
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