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Unravelling the Influence of Household 
Characteristics and Decisions on their Carbon 
Footprint: A Quantile Regression Analysis
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Abstract – This study uses data from the 2017 French Household Budget Survey (Enquête Budget 
de famille) and an input‑output model to examine the carbon footprint distribution of French 
households. Using multivariate nested models and quantile regression techniques, it explores 
disparities in households carbon footprints stemming from socioeconomic characteristics (e.g., 
size, age, education), income, or household decisions (e.g., home energy source, dwelling type, 
car ownership). The findings show that the three dimensions are crucial for understanding carbon 
footprint differences. Other characteristics being equal, education, age and household size, 
influence carbon emissions. Household decisions also have great explanatory power, especially 
at the bottom of the distribution, while the type of urban unit (urban/peri‑urban/rural) has no 
significant influence on carbon emissions.
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In 2019, the French government enacted 
the Energy and Climate Law1 (Loi éner‑

gie‑climat), one of the aims being to achieve 
the net zero emissions (NZE) target set by the 
European Union for 2050. This ambitious plan 
aims to reduce France’s fossil fuel consumption 
by 40% compared to 2012. While the energy 
sector is expected to make significant contribu‑
tions to promote sustainable production, there is 
increasing emphasis on the “citizen‑consumer” 
concept, which places individuals at the heart 
of this transition (Rumpala, 2009). Household 
consumption generates GHG emissions both 
directly (e.g., driving a diesel vehicle) and 
indirectly (e.g., eating meat), contributing to 
their carbon footprint. Beyond its unambiguous 
use in environmental accounting, this conven‑
tional indicator also reflects two additional 
dimensions of the environmental transition: 
liability and vulnerability. The liability aspect 
highlights how varying household consump‑
tion patterns create different environmental 
pressures. In this context, households with the 
greatest carbon footprints should drastically 
reduce their emissions since they bear rela‑
tively more responsibility for global warming 
and have the highest potential for GHG emis‑
sion abatement. Furthermore, the household’s 
carbon footprint can determine its relative 
exposure to increasing energy prices induced 
by carbon pricing policies. Favoring sustain‑
able consumption can be costly and socially 
challenging due to distributive effects. When 
formulating environmental strategies, policy‑
makers should balance the costs and benefits  
of the transition by considering these aspects.

These considerations emphasize the importance 
of initiating an inclusive transition, as carbon 
footprints are typically unevenly distributed 
across households (Chancel & Piketty, 2015). 
Two main sources of inequality should be 
considered to explain carbon footprint dispar‑
ities. As a consequence of the intertwined 
relationship between carbon emissions and 
consumption levels, income inequality explains 
much of the unequal carbon footprint distribu‑
tion (Weber & Matthews, 2008; Duarte et al., 
2012; Büchs & Schnepf, 2013; Nässén, 2014; 
Christis et al., 2019; Sager, 2019; Pottier et al., 
2020; Lévay et al., 2021). Economists have 
typically analyzed this vertical dimension of 
inequality by examining the income or expend‑
iture elasticity of carbon footprints (Lenzen, 
1998; Büchs & Schnepf, 2013). If it is generally 
accepted that looking at the distribution through 
the lens of income is a relevant procedure, emis‑
sions variability can also be important within 

same‑income groups (Berry, 2019; Douenne, 
2020; Pottier et al., 2020). Socioeconomic and 
sociodemographic factors such as household 
size, education level, the age of the reference 
person, and geographic location can provide 
information about households’ carbon footprints. 
These factors are associated with the horizontal 
dimension2 of inequalities.

While many studies have confirmed the impor‑
tance of these factors on households’ carbon 
footprints, it is worth considering whether 
individual choices may also play a significant 
role in portraying emissions. For instance, we 
may wonder if the source of home energy or the 
type of dwelling can explain large variations in 
emissions. To some extent, we should determine 
which aspect is more closely associated with 
GHG emissions and, therefore, more relevant to 
understand carbon footprint inequality. If such 
a dichotomy between household characteristics 
and decisions may be irrelevant at first sight, it 
may be relevant for policymakers. In their quest 
for the optimal instrument, policymakers seek 
efficient levers to markedly reduce emissions. 
Although invariable attributes largely shape 
consumption habits, individual choices offer 
greater potential for initiating behavioral change 
due to their greater flexibility. Understanding these 
relationships could help policymakers to formu‑
late environmental policies that target specific 
unsustainable behaviours while safeguarding 
the well‑being of more constrained households.

Furthermore, in most cases, the studies of GHG 
emissions determinants have predominantly 
focused on the average effects of variables 
through ordinary least squares (OLS) regressions 
(Pottier, 2022). However, the effects can differ 
depending on the part of the distribution of the 
emissions under consideration. The sensitivity 
of carbon footprints to changes in specific char‑
acteristics may differ whether we are looking 
at its average or at the top or the bottom of the 
distribution, potentially leading to misleading 
results when only the average is considered. 
Therefore, we should investigate whether 
emission disparities arise from socioeconomic 
characteristics or decision variables and whether 
these factors exert the same level of influence 
across the entire distribution of emissions.

This study addresses this gap by employing 
an innovative approach to analyze the emis‑
sions distribution of French households. After 
estimating the carbon footprint of households 

1. https://www.ecologie.gouv.fr/loi‑energie‑climat
2. They contribute to carbon footprint inequalities between households of 
the same income group.

https://www.ecologie.gouv.fr/loi-energie-climat
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using a hybrid methodology combining input‑
output tables and life cycle assessment, the first 
objective is to evaluate whether socioeconomic 
characteristics and choices remain significant 
in explaining carbon footprint inequality when 
income is controlled for. We use multivariate 
nested OLS regression models to discern how 
these factors effectively influence the carbon 
footprint of French households. Second, we 
employ quantile regression models to explore 
how these factors affect carbon footprints 
across distribution segments. Comparing these 
results with mean estimates highlights potential 
misconceptions about emissions across different 
dimensions. Previous research by Han et al. 
(2015) specifically examined household carbon 
footprints in China using quantile regression 
models. Their findings support the potential 
different impacts of characteristics on different 
quantiles of emissions distribution, with poten‑
tially inversed impacts between the bottom and 
the top of the distribution.

This study is structured as follows: section 1 
covers data, methodology, and some estimates of 
carbon footprint distribution. Section 2 reviews 
empirical findings from the literature and 
introduces the econometric models. Section 3 
presents the econometric results, followed by 
a discussion of their implications, before the 
article concludes.

1. Households’ Carbon Footprint 
Estimation
1.1. The Household Budget Survey

Data on household expenditures were sourced 
from the 2017 edition of the Enquête Budget 
de Famille (Household Budget Survey, BDF), 
conducted by the National Institute of Statistics 
and Economic Studies (INSEE). We focus on 
the 12,000 households residing in Metropolitan 
France. The survey spans six consecutive waves 
and captures the weekly consumption patterns 
of households. The sample is representative, 
devoid of seasonal effects, and calibrated to 
approximate national statistics. The survey 
provides information on household expenditures 
and resources. Expenditures are categorized 
into almost 250 items based on the five‑digit 
Classification of Individual Consumption by 
Purpose (COICOP).

As remarked by Douenne (2020), fuel 
consumption may be overestimated for some 
households. While this variability between 
households decreases when considering aggre‑
gated expenditures, challenges remain when 
examining the distribution of fuel consumption 

within income groups. To address this potential 
issue, we complement the BDF survey with 
data from the Enquête Mobilité des Personnes 
(French Mobility Survey, EMP) of 2019. This 
survey, conducted by the Service des Données et 
Études Statistiques (Statistical Data and Studies 
Department, SDES), provides information on 
French households’ trips and transportation 
habits as well as on their socioeconomic char‑
acteristics. To align the two datasets, we adopt 
a statistical methodology inspired by the work 
of Douenne (2020) and based on the method 
developed by D’Orazio et al. (2006). This 
methodology consists in matching households 
with the most similar characteristics possible. 
Using a non‑parametric nearest neighbour 
distance (NND) hotdeck method, we match 
households based on income, type of urban 
unit, household type, number of vehicles, and 
consumption units. Once the trips made in 
kilometers are obtained, we transform them into 
expenditures using an expenditure per kilometer 
factor estimated at the income decile and type 
of urban unit (i.e., urban, peri‑urban, rural) 
levels as in Douenne (2020). This ensures that 
expenditures remain relatively proportional to 
those reported in the original BDF survey.

In total, we consider around 2303 expenditures 
at the COICOP level. We aggregate expenditures 
in eight categories to reflect the composition of 
the household carbon footprint properly while 
ensuring fair coverage of budget allocations 
across durables, non‑durables goods, and services.

The eight categories are food, market 
services, non‑market services, home energy, 
manufactured goods, transportation, cultural 
& entertainment, and construction. Food 
expenditures correspond to nutrition, tobacco, 
and beverage expenses. While market services 
include expenditures for hairdressing, cell 
phone contracts, insurance, and real estate 
services for instance, non‑market services 
mainly cover education, health, and social 
protection expenses. Home energy expenses 
include mostly energy bills. Manufactured goods 
include durable and semi‑durable goods such as 
textiles, furniture, new vehicles, and household 
appliances. Transportation comprises spending 
on fuels, mobility services, and equipment. 
Cultural & entertainment expenses relate to 
dining out, hotel stays, and cultural activities.  
Finally, construction expenditures encompass 

3. Expenditures for rent, taxes, and subsidies are excluded due to the 
challenges involved in justifying and interpreting their embedded carbon 
emissions. Therefore, the total budget considered here may miss certain 
expenditures, notably for low‑income households.
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housing renovations and the construction of 
new buildings. We present the expenditures of 
French households in 2017 following our aggre‑
gated classification in the Online Appendix (see 
Table S1‑1 – link at the end of the article).

1.2. Estimating the Carbon Footprint of 
Households

There are two main approaches to calculating 
embedded carbon emissions in consump‑
tion. The top‑down approach uses national 
accounts and environmental extensions of 
input‑output (EE‑IO) tables. In contrast, the 
bottom‑up approach estimates emissions at the 
product level using life cycle assessment (LCA). 
This second approach consists of a meticulous 
inventory of the energy and materials used 
throughout a product's value chain, in order to 
calculate the total emissions emitted during its 
production, use and disposal (Steubing et al., 
2022).

In this study, we combine the two methods: 
EE‑IO for estimating indirect emissions and 
LCA for direct emissions. Household expendi‑
tures are linked to the carbon intensity of goods 
and services to derive total GHG emissions 
embedded in consumption. This synthetic 
method has been used in numerous studies 
to estimate households’ carbon footprints at 
both the global (Lenzen et al., 2006; Hubacek 
et al., 2017a; 2017b; Bruckner et al., 2022) and 
national levels (Baiocchi et al., 2010; Renner, 
2018; Malliet, 2020).

1.2.1. The Computation of Indirect Emissions

As a significant proportion of French households’ 
carbon footprint is generated by imports, it is 
essential to incorporate multi‑regional interde‑
pendencies in production. In this study, we rely 
on the multi‑region input‑output (MRIO) tables 
from Exiobase 3 (Stadler et al., 2018) for 2017. 
Exiobase offers a comprehensive and integrated 
accounting framework of environmental metrics. 
Moreover, it provides a product‑level disaggre‑
gation, which is more suitable for estimating 
the induced carbon footprint of consumption.

At its core, an input‑output model is a system 
of linear equations, where each equation 
describes how an industry’s output is distrib‑
uted throughout the economy (Leontief, 1970). 
Consequently, input‑output tables take the form 
of matrices, with rows indicating the distribution 
of a producer’s output across all industries and 
columns indicating the composition of inputs 
required by a specific industry to produce its 
output. These flows are typically expressed 

in monetary terms (in million euros) at basic 
prices. Our specific input‑output model consists 
of 200 products that fulfill the final demand 
of households, public administrations, and 
non‑profit organizations for 44 countries and five 
rest of the world regions (i.e. a total of 49 regions).

The starting point of an input‑output analysis 
is based on the monetary values of the flows of 
products from each sector (as a producer / seller) 
to each other (as a purchaser / buyer). The trans‑
actions between pairs of sectors (from sector i  to 
sector j) are noted zi j, . In other words, sector j’s 
demand for inputs from other sectors is related 
to the number of goods and services produced 
by sector j  over the same year. External sales 
to households, government, and foreign trade 
constitute the exogenous part of the model, which 
describes the total final demand. Assuming that 
we have 200 products for each of the 49 regions (
n = 9 800, ), constituting the global economy, and 
if we denote by x the column vector of sectors’ 
total output and by f  the column vector of total 
final demand addressed to sectors, we can write 
the following standard equation:
  x Z f= +1
where 1 is the summation vector of size n �� ×1. 
A fundamental assumption of the input‑output 
model is the dependency between inter‑sector 
flows and total production. These ratios refer to 
technical coefficients, expressed as a z xi j i j j, ,�� = . 
The main objective of the input‑output analysis 
is to determine the required output growth of 
each sector to meet final demand variations. 
Since final demand is exogenous, technical 
coefficients are constant, and total output is 
endogenous, we can represent the model in 
matrix form, as follows:
  x I A f�� �� � �= −( )−1

where I  is the identity matrix of size n n×  and 
A is the matrix of technical coefficients4 of size 
n n× . L I A= −( )−�� 1 forms the total requirement 
matrix, also known as the Leontief inverse. It 
gathers the amount of total output from sector i  
required to satisfy the final demand of sector j .

This standard framework can be extended to 
account for emissions flows between sector 
products (Lenglart et al., 2010; Mardones & 
Muñoz, 2018). The environmental extension 
relies on a carbon accounting framework, which 
includes the amount of carbon dioxide equiv‑
alent5 (CO2e) emitted directly by each sector. 
Assuming a proportional relationship between 

4. In matrix form: A = Z diag ‑1( )x .
5. We use the estimates of GHG emissions composed of seven gases 
transformed in carbon dioxide equivalent.
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total production and total emissions, we obtain 
the direct carbon intensity as D g xj

d
j j= /  where 

g j captures the total absolute amount of direct 
emissions. Dd  is a row vector of dimension n 
and expresses the tons of CO2e (tCO2e) emitted 
by the sector product j  with respect to its total 
output (tCO2e/€).

At this stage, these carbon intensities only 
consider the direct emissions of a particular 
sector to produce a good or service. However, the 
carbon emitted for producing a specific product 
also integrates upstream emissions, representing 
emissions from other sectors’ products to produce 
a final good or service. To get the total (direct and 
indirect) carbon intensity of product j , we must 
include indirect emissions from input require‑
ments. Therefore, the total emission intensities 
are represented by the following equation:
  D D I At d= −( )−1

where Dt  is a row vector of dimension n 
composed by total carbon intensities. For the 
purpose of our study, we consider only the 
carbon intensities of the 200 products consumed 
in France.

One difficulty of this analysis is to make 
legitimate correspondence between the budget 
survey and the final demand in the input‑output 
model. In other words, we want to bridge 
macroeconomic aggregates with microeconomic 
estimates. Two main aspects must be consid‑
ered here. First the correspondence between 
goods and services at the microeconomic level 
(expressed in COICOP) and the MRIO denomi‑
nation. Secondly, as MRIO tables are expressed 
in basic prices and budget surveys at purchaser 
prices, price conversion should be performed6 
before multiplying households’ expenditures 
with carbon intensities.

We use the concordance matrix7 of Ivanova et al. 
(2017) to allocate aggregated expenditures of 
households (64 groups of expenditures) into 
the 200 products available in Exiobase. For 
some groups of expenditures, the allocation to 
a product is unambiguous since there is a perfect 
match between the two categories. However, it 
is also possible that one item corresponds to 
more than one product. Indeed, some expendi‑
ture items can be directly or indirectly linked to 
the production of several products. In this case, 
the concordance matrix splits expenditure into 
shares between several products.

For price conversion, we also rely on the work 
of Ivanova et al. (2017), which developed 
a methodology to transform consumption 
amounts into basic prices for Exiobase tables. 

We can convert price units using various trade 
statistics. This approach allows us to reallocate 
margins and taxes to their respective sectors, 
resulting in a “deflated final demand” at basic 
prices. Furthermore, this approach keeps the 
input‑output framework at basic prices while 
not overestimating emissions from purchases.

Households’ expenditures8 are aggregated to 
match the 64 groups of expenditures. We create 
matrix B , which includes each household’s 
budget allocated to the 64 expenditure groups. 
Then, we define a budget allocation matrix 
M  of size 64 200�× , which is the concordance 
matrix between the group of 64 expenditures and 
sectors. We obtain the CO2e emissions for the 
200 groups of expenditures as follows:
  E BM Dind

FR
t= ⋅ ( )diag �

where DFR
t  is the row vector of dimension 1 200�× , 

describing the total carbon intensity of French 
sectors. Thus, the elements of Eh

ind  depicts the 
indirect carbon emissions of household h that we 
sum following our product aggregation.

1.2.2. The Computation of Direct Emissions

While the previous methodology approxi‑
mates the cradle‑to‑gate approach in carbon 
accounting, physical quantities consumed are 
generally better suited for estimating direct 
emissions (e.g., home energy and transport) as 
they relate to the product’s use phase. These 
emissions may originate from various sources, 
such as nuclear, oil, coal, natural gas, wind, or 
solar energy. For these specific expenditures, 
we use an emission converter process that 
transforms expenditures into energy quantities 
(kWh, kg, and ℓ) and then into CO2e emissions. 
While price estimates for energetic products are 
extracted from annual statistics of the SDES, the 
Agence de la transition écologique (the French 
Agency for Ecological Transition, ADEME) 
provides the emission structure of energetic 
products in the Base carbon V23.0. We establish 
an emissions converter table (Table 1) from these 
data to convert expenditures into CO2e emissions.

Data on household vehicles allow us to connect 
each type of vehicle to its respective fuel type, 
including gasoline, diesel, liquefied petroleum 
gas, or electricity. Similarly, differentiating 
home energy sources enables matching with 
varying emissions intensities. However, a 
challenge arises from the combined energy 

6.  Purchaser  price  is  the  amount  of money  paid  by  the  final  purchaser 
for the good or service produced, including taxes, subsidies, and margins.
7. The concordance matrix is available in the supplementary materials of 
Ivanova et al. (2017).
8. Expenditures related to direct emissions are excluded.



 ECONOMIE ET STATISTIQUE / ECONOMICS AND STATISTICS N° 545, 202432

bill expenditures that include both gas and 
electricity. Following Pottier et al. (2020), we 
approximate the split between these energy 
sources by allocating expenditures based on the 
proportion spent on electricity and gas (which 
are distinguishable) within a group of households 
sharing the same heating system characteristics.

The direct segment of the carbon footprint is 
calculated through a straightforward process. 
First, expenses are divided by the average energy 
price (in €/kWh, €/kg, €/ℓ). Then, they are multi‑
plied by the emission factor (in kg of CO2e per 
kWh, kg, or ℓ). As a result, for a household h, 
direct emissions Eh

dir  are defined by:

  E
m
p

vh
dir

r

h r

r
r= ⋅









∑ ,

where pr  is the price9 of the energy source r  per 
quantity, mh r,  is the expenditure of household h 
for the energy source r , and vr  is the emissions 
factor10 for the energy source r .

Finally, the carbon footprint of the household 
h is defined as the sum of direct and indirect 
emissions stemming from consumption:
  E E Eh

tot
h
dir

h
ind= + .

1.3. The Unequal Distribution of 
Emissions Across Households

1.3.1. Through the Vertical Dimension

According to our calculation, on average, a 
French household emits 19 tons of CO2e annually,  
and the median annual carbon footprint equals 

16.5 tons of CO2e. Overall, our estimations 
are close to those of Pottier et al. (2020) and 
Malliet (2020) for 2011, once the differences 
in scope are taken into account. Indeed, unlike 
them, we do not include emissions stemming 
from public administration11 in our calculations. 
Furthermore, discrepancies can be explained 
by differences in methodology for estimating 
direct emissions, particularly including travel 
information from EMP.

Unsurprisingly, transport emerges as the largest 
contributor to the carbon footprint, averaging 
6.5 tons of CO2e. Home energy usage also 
represents a significant portion, emitting around 
4.7 tons of CO2e on average. Food consump‑
tion is the third most emitting category, with an 
average carbon footprint of 3.1 tons of CO2e. 
These three sources accounted for over 75% of 
the average carbon footprint in 2017.

Figure I represents the carbon footprint of 
households segmented by consumption items for 
each income decile. The income is the income 
per consumption unit.12

9. We use purchaser prices, including taxes and margins.
10. The total emission structure includes upstream and combustion emissions.
11. While Pottier et al. (2020) found that these emissions represent an addi‑
tional 2.5 tCO2e in the annual carbon footprint of French households, Malliet 
(2020) suggested that this could represent more than 3.5 tCO2e. After this 
correction, our results are very close: an average of 21 tCO2e corrected for 
Malliet (2020) and an average of 19 tCO2e corrected for Pottier et al. (2020).
12. It is derived from the disposable income adjusted for household com‑
position using  the modified OECD equivalence scale. This scale assigns 
a weight  of  1  to  the  first  adult,  0.5  to  the  second adult  and  subsequent 
individuals aged 14 and above, and 0.3 to each child under 14.

Table 1 – Emissions converter for the main energetic sources in 2017
Consumption 

item
Energy  
source

Consumption price structure Emission structure
Unit HTT(1) HTVA(2) TTC(3) Unit Combustion Upstream Total

Transport

Gazole €/ℓ 0.48 1.03 1.23 kgCO2e/ℓ 2.51 0.655 3.165
SP98 €/ℓ 0.54 1.2 1.44 kgCO2e/ℓ 2.43 0.409 2.839
SP95-E10 €/ℓ 0.49 1.13 1.35 kgCO2e/ℓ 2.43 0.409 2.839
SP95 €/ℓ 0.49 1.15 1.38 kgCO2e/ℓ 2.43 0.409 2.839
GPL €/ℓ 0.53 0.62 0.74 kgCO2e/ℓ 1.60 0.262 1.862

Energy

Electricity €/kWh 0.11 0.14 0.16 kgCO2e/kWh 0.04 0.016 0.057
Natural gas €/kWh 0.05 0.06 0.07 kgCO2e/kWh 0.20 0.039 0.239
Domestic fuel oil €/ℓ 0.50 0.62 0.74 kgCO2e/ℓ 2.68 0.571 3.251
Propane €/kWh 0.11 0.11 0.13 kgCO2e/kWh 0.23 0.027 0.257
Butane €/kg 2.03 2.03 2.44 kgCO2e/kg 2.95 0.487 3.437
Coal €/kg - 0.15 - kgCO2e/kg 2.49 0.230 2.720
Wood €/kg - - 6.53 kgCO2e/kg 0.01 0.016 0.030

(1) HTT (hors toutes taxes) excludes taxes.(2) HTVA (hors taxe sur la valeur ajoutée) adds to HTT the national tax on energetic products.
(3) TTC (toutes taxes comprises) encompasses the French value-added tax.
Note: Natural gas and propane are expressed in kWh LCV (low calorific value).
Lecture: In 2017, one liter of gazole costs €1.23 TTC and emits around 3.165 kg of CO2e.
Field: Metropolitan France.
Source: SDES 2022, ADEME, Base carbone V23.0.
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On average, households in the top 10% of the 
income distribution emit 31 tons of CO2e. This 
represents 2.6 times the carbon footprint of 
households in the bottom 10%, which emit, on 
average, 12 tons of CO2e. As Pottier et al. (2020) 
emphasized, at least three effects might explain 
households’ carbon footprint distribution. 
Firstly, the “volume effect” reflects the linear 
dependency between expenditures and emis‑
sions. This effect is linked to the methodology 
used to compute the carbon footprint. Indeed, 
since expenditures are multiplied by carbon 
intensities, an increase in expenditures results 
in a rising level of emissions, all else being 
equal (Pottier et al., 2020). However, the ratio of 
annual expenditures between the first and the last 
decile is approximately 3.2, slightly higher than 
the emissions ratio.13 This refers to the second 
effect, known as the “structure effect” which 
reflects that consumption patterns tend to vary 
as income grows. This argument explains why 
the carbon intensity of consumption of low‑in‑
come households is generally higher than that of 
high‑income households (Lenglart et al., 2010; 
Pottier et al., 2020). The carbon intensity of 
consumption amounts to 0.85 kgCO2e per euro 
spent for low‑income households, compared to 
0.66 for high‑income households. This suggests 
that certain emission categories may reach a 
saturation threshold as income increases. Once 
essential needs such as energy and food are met, 
high‑income households can reallocate their 
spending towards products with lower carbon 
intensity (Weber & Matthews, 2008; Büchs & 
Schnepf, 2013). It is the third effect, known as 

the “quality effect”, which suggests that there 
might be imbalances between expenditures and 
emissions attributable to product quality. Higher 
expenditures generally indicate the purchase of 
higher‑quality products, which often have a 
relatively lower carbon footprint compared to 
cheaper alternatives. In our study, consumption 
is aggregated and linked to the carbon intensity 
of an average product. Therefore, we cannot 
account for this quality effect, potentially 
leading to overestimating the carbon footprint 
for high‑income households.

1.3.2. Through the Horizontal Dimension

While the analysis by income level provides 
insight into the distribution of household 
carbon footprints, an analysis by socioeconomic 
variables is also crucial. Figure II shows that 
the carbon footprint and its decomposition by 
types of consumption varies with socioeconomic 
characteristics.

The carbon footprint structure is, on average, 
close in rural and urban areas (Figure II‑A). 
Peri‑urban households typically emit more 
than rural and urban households due to mobility 
needs. However, rural households exhibit signif‑
icantly higher variance in emissions,14 nearly 
double that of urban households, meaning that 
rural households’ carbon footprints are more 

13.  Notice also that the income ratio between D1 and D10 (around 6.2) is 
even higher than the consumption ratio. This confirms that the level of con‑
sumption decreases and the fraction of savings increases as income grows.
14. Households in rural areas exhibit a carbon footprint variance of 172.05, 
whereas those in urban areas have a variance of 96.34.

Figure I – Average carbon footprint by income decile
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varied than those in cities and suburbs (Pottier 
et al., 2020). Regarding the tenure status of the 
residence (Figure II‑B), owners have a carbon 
footprint 55% higher than tenants, primarily due 
to higher construction, energy and transportation 
expenditures. If it is intuitive that construction 
and energy expenditures vary with tenure status, 
differences in transportation expenditures 
regarding tenure status pose interpretative chal‑
lenges. The main difference between households 
living in houses versus apartments arises from 
construction and energy use (Figure II‑C). 
There is a concave relationship between the 
age of the reference person and emissions level 
(Figure II‑D). Changes in transportation habits 
primarily drive fluctuations in carbon footprint 
over a lifetime, which tends to first increase 
with age and then sharply decrease, by around 
one third between 35‑54 and more than 70. This 
decrease is not offset by an increase in home 

energy emissions, which increases by only 10%, 
despite being 60% higher for 55 years old and 
more than for relatively younger households. 
Interestingly, the slight difference between the 
35‑54 and 55‑70 age cohorts is primarily due to 
lower purchases of manufactured goods.

Additionally, in the Online Appendix (see 
Figure S1‑I), we display the average household 
carbon footprint by education level and home 
energy source. The education level is typically 
a proxy for income, though there is significant 
variation in emissions among higher education 
levels. Regarding home energy use, households 
using electricity for heating have the lowest 
emissions, approximately 20% lower than 
average households. However, despite having 
low home energy emissions, households heating 
with renewable sources counterbalance this 
advantage with a significant carbon footprint 
from transportation.

Figure II – Carbon footprint by socioeconomic characteristic
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2. Understanding Factors Influencing 
Households’ Carbon Footprint

2.1. The Main Determinants of the 
Household Carbon Footprint

To identify the most relevant determinants of 
the carbon footprint of French households, we 
rely on the extensive literature available. Firstly, 
we acknowledge the role of income in leading 
the analysis of households’ carbon footprint 
(Weber & Matthews, 2008; Büchs & Schnepf, 
2013) due to the interlink between income and 
expenditures and the methodological approach 
used to compute household emissions (Pottier 
et al., 2020). Socioeconomic variables such 
as household size and composition are crucial 
in this analysis (Gough et al., 2011; Büchs & 
Schnepf, 2013). These characteristics may reflect 
divergent needs and consumption behaviours, 
influenced further by the age of the reference 
person and her education level (Lenglart et al., 
2010; Bourgeois et al., 2021). If socioeco‑
nomic characteristics may explain differences 
in emissions levels, households’ carbon foot‑
print also depends on individual choices, more 
or less constrained, which directly influence 
their emissions level, especially that of direct 
emissions. For instance, home energy source 
(Reinders et al., 2003; Wiedenhofer et al., 2013; 
Pottier et al., 2020), dwelling type (Nässén, 
2014; Malliet, 2020), tenure status (Charlier, 
2015; Bourgeois et al., 2021), geographic 
location (Herendeen et al., 1981; Duarte et al., 
2012; Gill & Moeller, 2018) or car dependency 
(Bureau, 2011; Wiedenhofer et al., 2013) can 
reflect these behavioural patterns.

Consistent with the literature and the previous 
empirical results, our econometric model includes 
variables that encompass all these dimensions 
and therefore takes into account the influence of 
both socioeconomic characterisics and household 
decisions. We include household size, the reference 
person’s age (four age groups), and her education 
level15 (four levels, based on the International 
Standard Classification of Education – ISCED). 
The variables related to individual choices include 
the type of urban unit, the number of fossil fuel vehi‑
cles owned, the home energy source,16 the dwelling 
type (i.e., house or apartment), and the tenure status 
(i.e., owner, tenant or free lodging). The type of 
urban unit reflects the influence of mobility needs 
on carbon footprints, particularly in isolated regions 
where car dependency is high (Orfeuil, 2020). 
It is based on urban area zoning,17 categorized 
into three groups: urban (reference group), rural, 
and peri‑urban areas.18 Descriptive statistics are 
available in the Online Appendix (see Table S1‑2).

2.2. OLS and Quantile Regression Models

We use two approaches to assess the relative 
importance of each set of variables on carbon 
emissions. The first one consists in imple‑
menting multivariate nested models within 
the OLS framework. Model (1) includes only 
socioeconomic variables X1. Then, model (2) 
is augmented with income dummies Kd  to test 
whether the socioeconomic variables are still 
relevant for explaining the logarithm of the 
carbon footprint ES  of type S  (i.e., total, direct, 
or indirect). Finally, we add a set of variables 
X 3 related to consumption choices and form 
model (3):

  ln ,E X K XS

d
d d( ) = + + + +

=
∑α εβ β β1 1

1

9

2 3 3

where α  is a constant, and ε  an error term. For 
each specification, we provide statistics such as 
the variance inflation factor (VIF) to monitor the 
risk of multicollinearity, as well as the AIC and 
BIC criteria to aid in model selection. Finally, 
standard errors are estimated using heteroscedas‑
ticity‑consistent covariance matrix estimators.

In the second approach, we use quantile 
regressions to capture the impact of house‑
hold characteristics on different quantiles of 
emissions levels. Unlike the OLS framework, 
which estimates the conditional mean, quantile 
regression estimates the conditional quantiles 
of a response variable given a set of predictors. 
This approach, introduced by Koenker & Bassett 
(1978), enables us to explore how relationships 
vary across different quantiles of emissions.

The most comprehensive model is retained 
for quantile regressions. We assume that the 
conditional quantiles of the carbon footprints 
distribution have a linear form:

  Qτ τβln E X XS( )( ) = ′|

where τ  corresponds to the different quantiles, 
and X  is the set of predictors. We consider 
τ ∈ }{0 10 0 25 0 50 0 75 0 90. ; . ; . ; . ; . . Following Koenker 

15.  The first  level (reference) comprises households with no educational 
background (i.e. no diploma or basic education). The second level is 
upper secondary education (e.g., A‑level diploma or professional certifica‑
tion). The third  level considers the first  tertiary degree of education (e.g., 
short‑cycle tertiary education or Bachelor’s). The fourth level includes a 
second tertiary education degree (e.g., master’s degrees, engineering, or 
doctorate).
16. Categorized as follows: oil and coal (reference group), electricity, gas, 
renewables (i.e. wood, solar, aerothermal, and geothermal), and others.
17. https://www.insee.fr/fr/statistiques/1281191
18. For urban households, we consider households living in towns 
belonging to major, medium, and minor centers. For households living in 
peri‑urban, we consider the towns belonging to the suburbs of a major 
center and multipolarized towns in large urban areas. For rural households, 
we consider households living in isolated towns, towns included in suburbs 
of medium and small centers, and other multipolarized towns.

https://www.insee.fr/fr/statistiques/1281191
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& Bassett (1978), for each τ , βτ  is estimated by 
solving the following minimization problem:

  β ρ βτ β τ
 = ( ) − 

=
∑arg min ln '1

1N
E X

w

N

w
s

w�

where w is a household and ρτ .( ) a test function 
defined by:

  ρ
τ ≥
ττ u
u

u( )
−( )





for
for

� u� 0�
� u� <01

The estimator of a quantile regression is the 
least absolute deviation estimator. We use a 
bootstrapping approach with 1,000 replications 
to estimate standard errors.

3. Econometric Results

3.1. The OLS Framework

3.1.1. The Average Impact of Factors on 
Total Emissions

Let us begin by looking at the relationships 
between household characteristics, household 

decisions, and the carbon footprint through nested 
models. In model (1a) (Table 2), we estimate 
the impact of household characteristics on total 
emissions. Initially, we assess whether these vari‑
ables are helpful in explaining household carbon 
footprint without taking income into account.

We observe a positive relationship between 
the household size and total emissions. At a 
given age and education level of the reference 
person, an additional individual in the household 
generates a carbon footprint 22% higher on 
average. The household’s carbon footprint also 
varies with its position within the age pyramid. 
Lenglart et al. (2010) show that compared to a 
household with a reference person aged over 
59, a relatively younger household exhibits 
different consumption patterns and, conse‑
quently, distinct carbon emissions. Our results 
show that compared to households whose refer‑
ence person is between 18 and 34 years old, 
households with a reference person aged 55‑70 
emit significantly more. Given the size of the 

Table 2 – OLS regression results for total emissions
(1a) (2a) (3a)

Constant 1.748*** (0.022) 1.735*** (0.025) 1.885*** (0.029)
Number of individuals 0.218*** (0.005) 0.074*** (0.005) 0.047*** (0.004)

Reference person’s age
(Ref.: 18-34)

35-54 0.156*** (0.016) 0.100*** (0.014) 0.035*** (0.013)
55-70 0.387*** (0.017) 0.194*** (0.015) 0.044*** (0.014)
+71 0.312*** (0.020) 0.118*** (0.017) −0.008 (0.017)

Reference person’s educa-
tion level
(Ref.: no education)

Upper 
secondary 0.253*** (0.013) 0.128*** (0.012) 0.070*** (0.010)

First tertiary 0.441*** (0.016) 0.166*** (0.014) 0.134*** (0.013)
Second tertiary 0.587*** (0.019) 0.169*** (0.019) 0.194*** (0.017)

Tenure status
(Ref.: owner)

Tenant −0.110*** (0.011)
Free lodging −0.150*** (0.040)

Home energy source
(Ref.: fuel and coal)

Electricity −0.155*** (0.013)
Gas −0.090*** (0.013)
Renewable −0.221*** (0.014)
Other −0.218*** (0.036)

Type of dwelling
(Ref.: apartment) House 0.097*** (0.011)

Type of urban unit
(Ref.: urban)

Peri-urban −0.001 (0.013)
Rural 0.016 (0.013)

Number of fossil fuel vehicles 0.230*** (0.007)
Income control No Yes Yes
Observations 12,081 12,081 12,081
R2 0.262 0.448 0.555
Variance Inflation Factor (max) 1.39 1.78 2.23
AIC 20,057.2 16,677.1 14,074.9
BIC 20,123.8 16,810.2 14,274.7

Note: Heteroscedastic-robust standard errors are in parentheses. ***, ** and * indicate a p-value of 1%, 5% and 10% respectively. The dependent 
variable is the logarithm of total emissions (in tCO2e).
Lecture: In model (1a), one additional individual in the household increases the total carbon footprint by 22% on average.
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household and the education level of the refer‑
ence person, households with a reference person 
between 50 and 70 years old have an average 
carbon footprint 40% higher than those between 
18 and 34. Finally, the higher the education 
level, the higher the carbon footprint (Baiocchi 
et al., 2010; Lenglart et al., 2010; Büchs & 
Schnepf, 2013). Accounting for age and size of 
the household, households with second tertiary 
level have a carbon footprint approximately 60% 
larger than those with no education.

Unsurprisingly, when income levels are incor‑
porated into the analysis (model (2a)), the 
explanatory power increases by around 70%, 
suggesting the importance of this variable for 
analysing households’ carbon footprints (Lenglart 
et al., 2010; Pottier et al., 2020; Douenne, 2020). 
Household size, the age and education level of the 
reference person remain statistically significant, 
but their importance is lesser. The coefficients’ 
magnitude decreases by approximately 60% 
on average for previously statistically signif‑
icant variables when income is included. For 
example, the difference in average carbon 
footprints between the most educated and least 
educated households narrows to less than 20%.

In model (3a), we examine if including house‑
hold decisions modifies the previous results. 
We observe that the home energy source is 
also a determining factor of carbon footprint. 
Households using sources other than oil or coal 
unsurprisingly have a lower carbon footprint. 
Keeping other variables constant, households 
using renewable energy as their primary source 
have a carbon footprint 22% lower than house‑
holds heating with oil or coal. However, it is 
important to stress that the energy source used 
in the dwelling is particularly linked to the type 
of dwelling (Malliet, 2020). While establishing 
a direct causal relationship between dwelling 
type and energy demand is complex, the findings 
indicate that households in apartments generally 
have a lower carbon footprint than households 
living in houses. For instance, in our sample, 
65% of households living in apartments reside 
in relatively small buildings where natural 
gas is predominantly used as the main energy 
source. In contrast, house households are like‑
lier to be homeowners,19 which correlates with 
higher emission levels. Indeed, tenure status is 
crucial in understanding variations in house‑
hold emissions. Holding other factors constant, 
households owner of their residence have higher 
emissions levels than the others.

Regarding mobility, the number of fossil 
fuel vehicles in the household is statistically 

significant. Controlling for other observed vari‑
ables, an additional fossil fuel vehicle leads to a 
23% increase in emissions. Conversely, the type 
of urban unit makes no significant differences in 
carbon emissions when other characteristics and 
income effects are controlled for. In other words, 
income and household characteristics emerge as 
critical factors in explaining carbon footprint 
variation across different types of urban units.

Additionally, we observe a sharp increase in 
the model’s explanatory power when we add 
household decision variables, with the R2 
growing from 45% to more than 55%. This 
highlights the crucial role of decision variables 
in carbon footprint analysis. Assuming that the 
variable selection is optimal, household deci‑
sions increase the R2 by 24%, compared to a 
model containing only socioeconomic variables 
and income.

Whether these relationships are confined to the 
analyzed emission source remains to be seen 
(Duarte et al., 2012; Büchs & Schnepf, 2013). 
We should investigate whether certain character‑
istics or choices better explain direct emissions 
compared to indirect emissions and vice versa.

3.1.2. Direct and Indirect Emissions

This section compares the analysis of direct 
emissions (Table 3) and indirect emissions 
(Table 4). Based on models (1b), (2b), (1c), 
and (2c), we observe that the link of household 
size is stronger with indirect emissions than 
with direct emissions, whether controlling 
for income effects or not. As the household 
size increases, there might be economies of 
scale to achieve regarding direct emissions 
rather than indirect emissions (Lenglart et al., 
2010; Büchs & Schnepf, 2013). For instance, 
we may assume that the birth of a child will 
lead to additional expenditures in terms of 
textiles, food, or medical care rather than fuel 
consumption or home heating, for instance. We 
also observe a clear difference between direct 
and indirect emissions regarding the age of the 
reference person. The emission gap between age 
groups is statistically significant for almost all 
age groups when explaining direct emissions, 
whether controlling for income effects and other 
variables or not (models (2b) and (3b)). Contrary 
to what is generally established (Lenglart et al., 
2010; Büchs & Schnepf, 2013; Nässén, 2014), 
older households have, on average, higher 
direct emissions than younger households. For 
direct emissions, model (3b) suggests that the 

19. While 88% of house residents are owners (including owners with mort‑
gage), only 66% of apartment residents are owners.
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gap between 70 years old or more and young 
reference persons (18‑34) is larger than between 
55‑70 years old and young reference persons. 
However, this does not apply to indirect emis‑
sions, where the oldest households indirectly 
emit, on average, 10% less than youngest 
households when controlling for income and 
other variables (model (3c)).

There are similarities and differences in the 
impact of household decisions on direct and 
indirect emissions. Unsurprisingly, the type 
of energy used in the dwelling is statistically 
significant in explaining direct emissions 
(model (3b)), but makes no difference to indi‑
rect emissions. Moreover, living in a house 
rather than in an apartment is positively related 
to direct emissions and negatively related to 
indirect emissions. This difference likely arises 
because households living in houses have more 
space to heat, or do so more intensively due to 
different insulation levels, compared to those 
living in apartments. Transportation solutions 

to commute might also indirectly explain the 
relationship.

Concerning the type of urban unit, contrary to 
expectations, rural households have lower direct 
emissions than urban households, while urban 
households have lower indirect emissions on 
average. The difference between peri‑urban and 
urban areas is not significant. A higher number of 
fossil fuel vehicles in a household is significantly 
and positively linked to higher direct and indi‑
rect emissions. As for the positive and significant  
relationship between the number of fossil fuel 
vehicles in households and indirect emissions, 
this could be due to the fact that an additional car 
entails expenditure on servicing and maintenance,  
which is likely to increase indirect emissions.

The comparison of the three models (i.e., a, b, 
and c) suggests that the explanatory power of the 
models distinguishing between emission sources 
is lower than those focusing on the total carbon 
footprint. Then if we were to rank the groups 

Table 3 – OLS regression results for direct emissions
(1b) (2b) (3b)

Constant 0.856*** (0.031) 0.814*** (0.037) 0.999*** (0.039)
Number of individuals 0.212*** (0.007) 0.071*** (0.007) 0.017*** (0.006)

Reference person’s age
(Ref.: 18-34)

35-54 0.248*** (0.023) 0.200*** (0.021) 0.083*** (0.018)
55-70 0.535*** (0.024) 0.354*** (0.023) 0.077*** (0.020)
+71 0.526*** (0.028) 0.342*** (0.027) 0.110*** (0.024)

Reference person’s edu-
cation level
(Ref.: no education)

Upper secondary 0.282*** (0.018) 0.156*** (0.017) 0.052*** (0.014)
First tertiary 0.372*** (0.022) 0.105*** (0.021) 0.065*** (0.017)
Second tertiary 0.405*** (0.026) 0.013 (0.026) 0.091*** (0.021)

Tenure status
(Ref.: owner)

Tenant −0.093*** (0.015)
Free lodging −0.165*** (0.055)

Home energy source 
(Ref.: fuel and coal)

Electricity −0.275*** (0.017)
Gas −0.132*** (0.017)
Renewable −0.404*** (0.018)
Other −0.359*** (0.045)

Type of dwelling
(Ref.: apartment) House 0.334*** (0.015)

Type of urban unit
(Ref.: urban)

Peri-urban −0.007 (0.016)
Rural −0.044*** (0.016)

Number of fossil fuel vehicles 0.396*** (0.010)
Income control No Yes Yes
Observations 12,026 12,026 12,026
R2 0.146 0.256 0.498
Adjusted R2 0.146 0.255 0.498
Variance Inflation Factor (max) 1.40 1.77 2.22
AIC 27,343.8 25,710.2 20,981.4
BIC 27,410.3 25,843.3 21,181.1

Note: Heteroscedastic-robust standard errors are in parentheses. ***, ** and *, indicate a p-value of 1%, 5% and 10% respectively.
The dependent variable is the logarithm of direct emissions (in tCO2e).
Lecture: In model (1b), one additional individual in the household increases direct emissions by 21% on average.
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of variables by relevance according to emission 
sources, we would say that decision variables are 
relatively better than socioeconomic character‑
istics in explaining direct emissions. Indeed, the 
R2 value nearly doubled between models (2b) 
and (3b), a result closely tied to the methodology 
used to estimate direct emissions. In contrast, the 
decision variables introduced in model (3c) only 
marginally enhance the explanatory power. On 
the contrary, socioeconomic variables could be 
more effective in expliaing indirect emissions 
than direct emissions (R2 is higher in model (1c) 
than in model (1b)).

While these multivariate models offer valuable 
insights to enlighten relationships between 
different groups of variables and discerning 
their relevance in explaining the two types of 
carbon emissions, they only explore relations 
to the average. Indeed, some relationships may 
disappear or be amplified when considering 
other quantiles of the distribution of carbon 
footprints. Therefore, it is interesting to identify 

relationships within a more flexible analytical 
framework.

3.2. The Quantile Regression Framework

3.2.1. The Impact of Income Across Different 
Emission Quantiles

Before analyzing the influence of household 
characteristics on their carbon footprint through 
quantile regressions, it is important to under‑
stand the impact of income on emissions. In this 
section, our goal is to estimate the elasticity of 
carbon footprint with respect to income using 
the most comprehensive model:

  ln lnE X X XS( ) = + + ( ) + +α εβ β β1 1 2 2 3 3

where X 2 is the household’s disposable income. 
We also estimate the elasticity at various emis‑
sions quantiles through quantile regressions. 
In Figure III, we display the beta coefficients, 
along with their respective confidence intervals, 
reflecting the income elasticity of the carbon 

Table 4 – OLS regression results for indirect emissions
(1c) (2c) (3c)

Constant 0.979*** (0.026) 0.989*** (0.029) 0.984*** (0.040)
Number of individuals 0.248*** (0.006) 0.089*** (0.006) 0.081*** (0.006)

Reference person’s age
(Ref.: 18-34)

35-54 0.077*** (0.019) 0.015 (0.017) −0.001 (0.017)
55-70 0.291*** (0.021) 0.077*** (0.019) 0.036* (0.019)
+71 0.137*** (0.024) −0.075*** (0.021) −0.091*** (0.022)

Reference person’s edu-
cation level
(Ref.: no education)

Upper secondary 0.267*** (0.016) 0.132*** (0.015) 0.102*** (0.015)
First tertiary 0.552*** (0.019) 0.249*** (0.018) 0.221*** (0.018)
Second tertiary 0.758*** (0.023) 0.291*** (0.024) 0.279*** (0.023)

Tenure status
(Ref.: owner)

Tenant −0.100*** (0.015)
Free lodging −0.085* (0.047)

Home energy source
(Ref.: fuel and coal)

Electricity 0.013 (0.019)
Gas 0.021 (0.019)
Renewable 0.008 (0.020)
Other −0.007 (0.043)

Type of dwelling
(Ref.: apartment) House −0.085*** (0.015)

Type of urban unit
(Ref.: urban)

Peri-urban 0.013 (0.020)
Rural 0.075*** (0.019)

Number of fossil fuel vehicles 0.138*** (0.008)
Income control No Yes Yes
Observations 12,081 12,081 12,081
R2 0.262 0.408 0.424
Adjusted R2 0.262 0.405 0.423
Variance Inflation Factor (max) 1.39 1.78 2.23
AIC 25,081.8 22,476.1 22,125.6
BIC 25,148.4 22,609.3 22,325.3

Note: Heteroscedastic-robust standard errors are in parentheses. ***, ** and *, indicate a p-value of 1%, 5% and 10% respectively.
The dependent variable is the logarithm of indirect emissions (in tCO2e).
Lecture: In model (1c), one additional individual in the household increases indirect emissions by 25% on average.
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footprint at the mean and various quantiles. 
First, the income elasticity of carbon footprint 
is always below unity, confirming that the 
household carbon footprint grows less rapidly 
than income. Second, our OLS estimates are 
relatively small compared to other findings. 
While Lenglart et al. (2010) found an income 
elasticity of about 0.6, Chancel (2022) and 
Malliet (2020) found an estimate of 0.9 and 0.5, 
respectively. The divergence between our results 
and theirs is attributable to methodological  
differences, particularly the non‑integration of 
other variables in the estimation (Lévay et al., 
2022).

The quantile regression estimates highlight 
a significant variation in elasticity across 
different emissions levels, with income elasticity 
regarding total emissions ranging from 0.4 at 
the first decile to 0.1 at the last decile. This 
indicates that income differences have less 
impact at the top of the emissions distribution 
than at its bottom, emphasizing a relative 
decoupling between income and emissions as 
we move towards the top of the conditional 
distribution. The income elasticity is higher 
for indirect emissions than for direct ones. This 
means indirect emissions are more responsive 
to income changes across all quantiles than 
direct emissions (Figure III‑C). Additionally, 
income variations have minimal impact at the 
upper end of the distribution, as evidenced by 
the small income elasticity of direct emissions 
(Figure III‑B) for this group.

3.2.2. The Impact of Socioeconomic Factors 
on Various Emission Quantiles

As in the most comprehensive models of the 
analysis presented in section 3.1, the following 
quantile regressions include income deciles and 
the whole set of variables (demographic charac‑
teristics and household decision variables). As a 
result, these estimates can be directly compared 
to findings of section 3.1.

Model (4a) considers the logarithm of total 
carbon emissions as the dependent variable 
(Table 5). Regarding household size, we observe 
a positive relationship with total emissions what‑
ever the quantile considered. Holding all other 
variables constant, an additional household 
member is associated with a 5% increase in 
the first decile of the conditional carbon foot‑
print distribution, compared to a 4% increase 
in the last decile. The effect of household 
size is more or less the same as that obtained 
with the OLS model (see model (3a)). The 
age of the household reference person does 
not have the same impact on the different 
quantiles of the distribution of total household 
emissions. Middle‑aged (35‑54) and older 
adults (55‑70) tend to have slightly higher 
carbon footprints than younger adults (18‑34), 
except for higher deciles, suggesting that 
age differences are less pronounced at 
very high emission levels, possibly due to  
consistently high consumption patterns across 
age groups.

Figure III – The income elasticity of household carbon footprint at the mean and at various quantiles
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Note: The black points represent the quantile regression estimates, the horizontal grey line shows the OLS estimate, and the dashed lines are 
confidence intervals calculated using the bootstrap method with 1,000 replications.
Lecture: For the quantile regression, conditional to the first decile, a 1% increase in the household’s disposable income increases total emissions 
by 0.4%.



ECONOMIE ET STATISTIQUE / ECONOMICS AND STATISTICS N° 545, 2024 41

Unravelling the Influence of Household Characteristics and Decisions on their Carbon Footprint

However, when turning to direct emissions 
(see model (4b), Table 6), the gap between 
households with reference person aged 71 
years or over and those with reference person 
aged 18‑34 is significant for emissions at or 
below the median, with the strongest effect in 
the first quartile. By contrast, the gap between 
the two age groups is of opposite sign for 
indirect emissions (see model (4c), Table 7), 
but is only significant at the upper end of the 
conditional distribution. This suggests that in 
the lowest emission segment, elderly households 
may have higher energy needs than younger 
ones. However, at higher emission levels, older 
households might consume less food or market 
services compared to younger households  
(see Figure II).

For education level, we find a similar relationship 
as in OLS models. The emission gap between 
households with second tertiary education and 
no education is quite large at all quantiles of the 
distribution. The gap is even greater between 
households with tertiary education and those 
with no education.

3.2.3. The Impact of Consumption Choices at 
Different Emission Quantiles

We find significant relationships between 
carbon emissions and consumption choices 
variables with our quantile regressions, as for 
the OLS estimations. Regarding tenure status, 
we again find a higher carbon footprint among 
homeowners than renters. It is interesting to 
note that the difference between homeowners 
and renters tends to increase as we move up the 
conditional distribution of indirect emissions but 
decreases in the case of direct emissions. For 
low emitters, the difference in direct emissions 
is larger between homeowners and renters, with 
homeowners emitting more due to higher home 
energy expenditures. However, the gap between 
homeowners and renters is more pronounced at 
the upper quantile of the distribution for indirect 
emissions.

Beyond the fact that households using oil or coal 
for heating consistently have higher carbon foot‑
prints, the largest emission gaps are observed 
with renewables, or any other sources besides 

Table 5 – Quantile regression results for total emissions
(4a)

0.10 0.25 0.50 0.75 0.90
Constant 1.168***(0.059) 1.534***(0.042) 1.949***(0.037) 2.254***(0.036) 2.678***(0.060)
Number of individuals 0.050***(0.006) 0.045***(0.005) 0.041***(0.004) 0.044***(0.005) 0.042***(0.008)

Reference person’s 
age
(Ref.: 18-34)

35-54 0.057***(0.023) 0.042***(0.016) 0.033** (0.014) 0.041** (0.016) 0.009 (0.023)
55-70 0.056* (0.028) 0.039** (0.017) 0.037** (0.015) 0.040** (0.019) 0.043 (0.028)
+71 0.018 (0.034) 0.010 (0.019) −0.004 (0.018) −0.015 (0.022) −0.067** (0.027)

Reference person’s 
education level
(Ref.: no education)

Upper 
secondary 0.078***(0.023) 0.081***(0.013) 0.066***(0.012) 0.048***(0.015) 0.034* (0.018)

First tertiary 0.132***(0.024) 0.143***(0.016) 0.138***(0.014) 0.113*** (0.015) 0.086***(0.022)
Second 
tertiary 0.186***(0.030) 0.184***(0.020) 0.157***(0.020) 0.174***(0.019) 0.216***(0.032)

Tenure status
(Ref.: owner)

Tenant −0.122***(0.023) −0.088***(0.013) −0.086***(0.013) −0.098***(0.012) −0.130***(0.018)
Free lodging −0.306***(0.054) −0.220***(0.053) −0.109** (0.043) −0.083***(0.031) −0.002 (0.058)

Home energy source
(Ref.: fuel and coal)

Electricity −0.160***(0.025) −0.155***(0.016) −0.161***(0.015) −0.157***(0.016) −0.142***(0.022)
Gas −0.065***(0.023) −0.076***(0.016) −0.099***(0.015) −0.111*** (0.016) −0.115*** (0.023)
Renewable −0.257***(0.027) −0.230***(0.016) −0.222***(0.016) −0.199***(0.016) −0.179***(0.022)
Other −0.344***(0.056) −0.262***(0.045) −0.184***(0.039) −0.144***(0.034) −0.088 (0.060)

Type of dwelling
(Ref.: apartment) House 0.151***(0.022) 0.127***(0.013) 0.103***(0.013) 0.071***(0.012) 0.035** (0.019)

Type of urban unit
(Ref.: urban)

Peri-urban −0.040 (0.026) −0.020 0.015) 0.009 (0.016) 0.023 (0.016) 0.029 (0.022)
Rural −0.020 (0.026) 0.001 0.015) 0.003 (0.016) 0.036* (0.016) 0.035 (0.022)

Number of fossil fuel vehicles 0.237***(0.010) 0.238***(0.007) 0.214***(0.007) 0.209***(0.008) 0.182***(0.013)
Income control Yes
Observations 12,081
Note: Standard errors are in parentheses, computed using a bootstrapping approach with 1,000 replications. ***, ** and *, indicate a p-value of 
1%, 5% and 10% respectively.
Lecture: Conditional to the first decile of the total emissions distribution, an additional individual in the household generates an increase of 5% in 
emissions.
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electricity or gas, particularly at the lower 
quantiles of the conditional distribution (cf. 
Tables 5 and 6). This suggests that transitioning 
from a highly carbon‑intensive energy source 
to a less carbon‑intensive one reduces in larger 
proportions the carbon footprint of current low 
emitters.

Concerning the type of dwelling, the difference 
in carbon footprints between households in 
houses and apartments decreases as we move 
up the conditional distribution. Controlling for 
the other characteristics, living in a house rather 
than an apartment increases the ninth decile of 
the conditional distribution of carbon footprints 
by only 15%, but increases the first decile by a 
much greater proportion of nearly 70%. This 
gap may stem from differences in energy needs 
for heating.

There is no significant differences in the condi‑
tional distribution of households total emissions 
with the type of urban unit once the other char‑
acteristics are taken into account. However, as in 
the OLS analysis, type of urban units differences, 

especially between urban and rural areas, appear 
statistically significant in explaining indirect 
emissions, and to a lesser extent, but in the 
opposite direction, direct emissions. The effect 
in the quantile regression framework tends to 
become more pronounced at both ends of the 
conditional distribution.

Finally, concerning the number of fossil fuel 
vehicles in the household, the impact appears 
to be larger at the lower end of the conditional 
distribution, regardless of the type of emissions 
considered. Having one additional fossil fuel 
vehicle car increases by around 40% more the 
first decile of direct emissions than the ninth one 
(0.366/0.258). This may be because low‑con‑
sumption cars are typically more expensive, 
making them more accessible to affluent house‑
holds. This could mitigate the carbon impact of 
an additional fossil fuel vehicle at high‑emission 
segments. The frequency of car use could be 
important to consider as well. Finally, note that 
mean estimates are slightly higher than the 
impact of this variable on direct emissions at the 
middle of the distribution: all else being equal, 

Table 6 – Quantile regression results for direct emissions
(4b)

0.10 0.25 0.50 0.75 0.90
Constant −0.097 (0.074) 0.575***(0.049) 1.196***(0.039) 1.686***(0.043) 2.063***(0.047)
Number of individuals 0.011 (0.011) 0.017** (0.007) 0.010* (0.006) 0.009* (0.005) 0.009 (0.008)

Reference person’s 
age
(Ref.: 18-34)

35-54 0.097** (0.038) 0.082***(0.022) 0.067***(0.018) 0.046***(0.016) 0.054***(0.022)
55-70 0.078* (0.040) 0.075***(0.024) 0.059***(0.021) 0.058***(0.018) 0.055***(0.021)
+71 0.105** (0.044) 0.110*** (0.028) 0.086***(0.024) 0.085***(0.020) 0.082***(0.025)

Reference person’s 
education level
(Ref.: no education)

Upper 
secondary 0.074***(0.027) 0.047***(0.019) 0.050***(0.014) 0.055***(0.014) 0.051***(0.017)

First tertiary 0.073** (0.034) 0.046** (0.022) 0.067***(0.018) 0.077***(0.016) 0.054***(0.019)
Second 
tertiary 0.094** (0.048) 0.086***(0.028) 0.082***(0.021) 0.105***(0.021) 0.135***(0.025)

Tenure status
(Ref.: owner)

Tenant −0.123***(0.028) −0.086***(0.019) −0.074***(0.013) −0.064***(0.014) −0.067***(0.016)
Free lodging −0.569***(0.146) −0.175* (0.082) −0.102* (0.053) −0.050 (0.048) −0.055 (0.051)

Home energy source
(Ref.: fuel and coal)

Electricity −0.266***(0.026) −0.277***(0.021) −0.281***(0.015) −0.281***(0.018) −0.293***(0.019)
Gas −0.110*** (0.024) −0.103***(0.019) −0.137***(0.015) −0.172***(0.019) −0.210***(0.017)
Renewable −0.436***(0.031) −0.408***(0.021) −0.400***(0.017) −0.368***(0.018) −0.362***(0.022)
Other −0.418***(0.091) −0.453***(0.072) −0.418***(0.058) −0.284***(0.052) −0.282***(0.043)

Type of dwelling
(Ref.: apartment) House 0.667***(0.041) 0.445***(0.025) 0.285***(0.016) 0.215***(0.014) 0.149***(0.016)

Type of urban unit
(Ref.: urban)

Peri-urban −0.003 (0.032) −0.005 (0.018) −0.003 (0.018) 0.008 (0.017) 0.005 (0.019)
Rural −0.049 (0.032) −0.047** (0.018) −0.043** (0.019) −0.024* (0.017) 0.010 (0.021)

Number of fossil fuel vehicles 0.366***(0.012) 0.351***(0.013) 0.340***(0.008) 0.292***(0.010) 0.258***(0.010)
Income control Yes
Observations 12,026
Note: Standard errors are in parentheses, computed using a bootstrapping approach with 1,000 replications. ***, ** and *, indicate a p-value of 
1%, 5% and 10% respectively.
Lecture: Conditional to the first decile of the direct emissions distribution, an additional vehicle in the household generates an increase of 37% of 
emissions.
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Table 7 – Quantile regression results for indirect emissions
(4c)

0.10 0.25 0.50 0.75 0.90
Constant −0.026 (0.071) 0.514***(0.057) 0.994***(0.041) 1.504***(0.051) 1.926***(0.068)
Number of individuals 0.080***(0.010) 0.080***(0.007) 0.088***(0.005) 0.063***(0.008) 0.063***(0.011)

Reference person’s 
age  
(Ref.: 18-34)

35-54 0.034 (0.030) 0.025 (0.021) 0.001 (0.018) 0.006 (0.022) −0.017 (0.033)
55-70 0.068* (0.039) 0.066** (0.026) 0.052** (0.020) 0.025 (0.026) 0.003 (0.038)
+71 −0.010 (0.042) −0.040 (0.028) −0.062** (0.026) −0.110*** (0.027) −0.185***(0.040)

Reference person’s 
education level
(Ref.: no education)

Upper 
secondary 0.131***(0.031) 0.132***(0.020) 0.116*** (0.017) 0.066***(0.017) 0.047* (0.027)

First tertiary 0.244***(0.037) 0.259***(0.023) 0.223***(0.021) 0.178***(0.021) 0.164***(0.031)
Second 
tertiary 0.315***(0.041) 0.293***(0.032) 0.249***(0.024) 0.209***(0.026) 0.282***(0.048)

Tenure status
(Ref.: owner)

Tenant −0.040 (0.025) −0.066***(0.020) −0.093***(0.015) −0.111*** (0.018) −0.159***(0.031)
Free lodging −0.133 (0.083) −0.018 (0.062) −0.026 (0.040) −0.031 (0.044) −0.124* (0.077)

Home energy source
(Ref.: fuel and coal)

Electricity 0.047 (0.040) 0.008 (0.029) −0.008 (0.020) −0.001 (0.026) 0.017 (0.028)
Gas 0.087** (0.039) 0.010 (0.027) 0.010 (0.020) −0.004 (0.026) 0.011 (0.029)
Renewable 0.078** (0.042) 0.004 (0.032) 0.007 (0.021) −0.009 (0.027) 0.008 (0.034)
Other 0.003 (0.099) −0.036 (0.050) 0.005 (0.044) 0.034 (0.046) 0.071 (0.092)

Type of dwelling
(Ref.: apartment) House −0.150***(0.026) −0.076***(0.019) −0.061***(0.016) −0.049** (0.018) −0.036 (0.031)

Type of urban unit
(Ref.: urban)

Peri-urban 0.007 (0.042) 0.005 (0.030) 0.020 (0.018) 0.048* (0.025) 0.039 (0.033)
Rural 0.097***(0.037) 0.066** (0.030) 0.057***(0.017) 0.068***(0.024) 0.076** (0.031)

Number of fossil fuel vehicles 0.163***(0.011) 0.136***(0.012) 0.114*** (0.009) 0.118*** (0.010) 0.116*** (0.017)
Income control Yes
Observations 12,081
Note: The standard errors are in parentheses, computed using a bootstrapping approach with 1,000 replications. ***, ** and *, indicate a p-value 
of 1%, 5% and 10% respectively.
Lecture: Conditional to the first decile of the total emissions distribution, an additional individual in the household generates an increase of 8% of 
emissions.

an additional fossil fuel vehicle increases direct 
emissions by about 40% on average, which is 
slightly higher than the impact conditional to the 
median carbon footprint (34% increase).

*  * 
*

In this study, we compute the carbon footprint of 
French households using an input‑output model 
and data from the 2017 French Household Budget 
Survey. Our analysis reveals a wide disparity 
in carbon footprints among households. While 
income is recognized as a significant factor influ‑
encing carbon footprints (Weber & Matthews, 
2008; Büchs & Schnepf, 2013; Pottier, 2022), 
substantial disparities within income groups 
suggest the existence of other sources of vari‑
ation (Pottier et al., 2020; Douenne, 2020). 
Hence, we explore whether these differences 
stem from socioeconomic characteristics such 
as the household size, the reference person’s 
age and education level, or from household’s 
decisions that directly influence emissions such 

as the tenure status, the home energy source, 
the type of dwelling, the type of urban unit and 
the number of fossil fuel vehicles owned by the 
household. We used multivariate nested models 
to unravel these relationships and evaluate if 
they remain constant across the emission distri‑
bution using quantile regressions.

Firstly, we showed that characteristics such as 
education level, household size, tenure status, 
or home energy source, remain significantly 
correlated with carbon footprints even after 
controlling for income differences. Therefore, 
these characteristics are of primary importance 
when estimating the repercussions of envi‑
ronmental policies. Secondly, we observed 
that other characteristics (and income) being 
equal, the type of urban unit (urban/peri‑urban/
rural) have a limited impact on carbon footprint 
variability and, consequently, on vulnerability 
to environmental policy. Thirdly, given the 
variables selected and the methodology, the 
group of household decision variables appears to 
explain a significant part of emissions variance, 
especially for direct emissions.
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Considering the quantiles of the distribution 
rather than its mean confirms the variable 
importance of the household characteristics on 
direct as well as indirect emissions. Switching 
from a carbon‑intensive heating mode to a 
renewable one has more impact at the bottom 
of the distribution than at the top. Tenants tend 
to emit less than owners and the gap is larger at 
the top and bottom deciles than in the middle 
of the distribution. None of the relationships in 
the quantile regressions exhibit an inverse asso‑
ciation across the segments of the conditional 
distribution studied. In other words, no variable 
shows a strictly divergent influence between the 
upper and lower segments of the distribution.

These findings could help French policymakers 
to build efficient and resilient strategies to curb 
GHG emissions while minimizing the welfare 
costs associated with the environmental tran‑
sition. This study reveals that beyond income 
socioeconomic characteristics and household 
decisions are important to explain the carbon 
footprint distribution. Household decisons 
variables, which are also the most adjustable in 
the context of transition, appear to be the most 
important variables for understanding direct 
emissions, unlike socioeconomic characteristics, 
which are less or even not flexible, and therefore 
less likely to act as a lever for reducing their 
footprint. 

Link to the Online Appendix: 
www.insee.fr/en/statistiques/fichier/8562082/ES545_Semet_OnlineAppendix.pdf
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