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“The biggest harm that AI is likely to do to 
individuals in the short term is job displacement, 
as the amount of work we can automate with 
AI is vastly bigger than before. As leaders, it 
is incumbent on all of us to make sure we are 
building a world in which every individual has 
an opportunity to thrive.”

Andrew Ng, Stanford University

A rtificial intelligence (or AI) is typically 
defined as the capability of a machine to 

imitate intelligent human behavior. Hence AI 
can be seen as the latest form of automation, 
a fourth automation wave following the 
steam engine revolution in the 18th century, 
the combustion engine revolution in the early 
20th century and the semiconductor and IT revo-
lution in the 1970s-1980s. In this survey paper, 
we argue that the effects of AI and automation 
on growth and employment depend to a large 
extent on institutions and policies.

Thus, the next section is dedicated to discussing 
the effects of AI and automation on economic 
growth: on the one hand, as argued by Zeira 
(1998), Hémous & Olsen (2014), Acemoglu 
& Restrepo (2016) and Aghion et  al. (2017), 
AI can spur growth by replacing labor which is 
in finite supply by capital which is in unbounded 
supply, both in the production of goods and 
services and in the production of ideas; on the 
other hand, AI may inhibit growth if combined 
with inappropriate competition policy.

In a second section, we discuss the effects of 
AI and automation on aggregate employment. 
We present and discuss Acemoglu & Restrepo’s 
results (2017, hereafter AR-2017), and we build 
on their method to look at the effect of automation 
on employment in France over the 1994-2014 
period. We estimate that the installation of one 
extra robot reduced aggregate employment by 10 
workers at the employment zone level, and find 
an order of magnitude similar to AR-2017 – who  
found a loss of 6.2 jobs per extra robot in the 
US. We also find that non-educated workers 
are more negatively affected by robotization 
than educated workers. This in turn suggests 
that inappropriate labor market and education 
policies further reduce the positive impact that 
AI and automation could have on employment.

AI and Economic Growth

The Zeira Model

A benchmark model to think about the rela-
tionship between AI, automation, and growth  

is Zeira (1998). Here we reproduce the pre-
sentation of Zeira (1998) in Aghion et al. (2017), 
henceforth referred to as “AJJ”. Zeira assumes 
that final output is produced according to:

	 Y AX X X n
n= …1 2

1 2α α α.

where � �αi∑ = 1  and intermediate inputs Xi are 
produced according to:
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While Zeira thought of the Xi as interme-
diate goods, they can also be viewed as tasks 
(Acemoglu & Autor, 2011). Hence, tasks that 
have not yet been automated can be produced 
one-for-one by labor. Once a task is automated, 
one unit of capital can be used instead (Aghion 
et al., 2017).

Automation spurs economic growth as it 
replaces labor – which is in finite supply – by 
capital which is in unbounded supply, as a basic 
production input. Indeed, letting K and L denote 
aggregate capital stock and labor supply respec-
tively, then final output is ultimately produced 
(up to a constant) according to:

	 Y AK L= −α α1

where α reflects the overall share of tasks that 
have been automated.

Hence the rate of growth of per-capita GDP (i.e. 
of y Y L= / ) is equal to:

	 g g
y

A=
−1 α

Automation (e.g. as resulting from the AI revo-
lution) will increase α which in turn will lead 
to an increase in gy i.e. to an acceleration of 
growth. One issue with this model however, is 
that it predicts a rise in capital share, which in 
turn contradicts the so-called Kaldor fact that 
the capital share tends to be stable over time.

The Acemoglu-Restrepo Model

Acemoglu & Restrepo (2016) extend Zeira 
(1998) by assuming that final output is produced 
by combining the services of a unit measure of 
tasks X N N∈ −[ ]1,� , according to: 
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where tasks Xi are non automated, produced 
with labor alone when i I> �, and are automated 
i.e. capital and labor are perfect substitutes 
when i I< . σ  is the constant elasticity of 
substitution between tasks. With no major loss 
of insight, we can write:

	 X i K i Li i i= ( ) + ( )�α γ

where α i( ) is an index function with α i( ) = 0 if 
i I> � and α i( ) = 1 if i I<  and γ i eAi( ) = � .

In the full-fledged AR-2017 model with endo
genous technological change, the dynamics of 
I and N (i.e. the automation of existing tasks 
and the discovery of new product lines) results 
from endogenous directed technical change. 
Under reasonable parameter values guaran-
teeing that innovation is directed towards using 
the cheaper factor, there exists a unique and 
(locally) stable Balanced Growth Path (BGP) 
equilibrium. Stability of this BGP follows from 
the fact that an exogenous shock to I or N will 
trigger forces which bring the economy back 
to its previous BGP with the same labor share: 
the basic intuition is that if a shock leads to too 
much automation, then the decline in labor costs 
will encourage innovation aimed at creating new 
(more complex) tasks which exploit cheap labor.

What makes the capital share remain constant 
on this BGP is the fact that the automation of 
existing tasks is exactly offset by the creation of 
new tasks which require labor, at least initially. 
One special feature of this model is the assump-
tion that technical progress γ i eAi( ) = �  multiplies 
labor, but not capital, even after automation 
takes place. Yet, it seems difficult to conceive 
of concrete examples where an automated 
production process would be replaced by a 
highly productive labor-intensive task.1 Another 
feature is that the constancy of the capital share 
relies entirely on the continuous arrival of new 
labor intensive tasks. This prediction will be 
challenged in our section on AI and employ-
ment. The model by AJJ (2017), which also 
extends Zeira (1998), turns out to address these 
two objections.

Baumol’s Cost Disease and the AJJ model

In the following model by Aghion et al. (2017), 
a greater fraction of tasks are being automated 
over time since there are no new labor-intensive 
tasks to compensate for the automation of 
existing tasks. This feature is shared by Zeira’s 
model. Yet the complementarity between 

existing automated tasks and existing labor 
intensive tasks, together with the fact that labor 
becomes increasingly scarcer than capital over 
time, allows for the possibility that capital share 
remains constant over time.1

More formally, final output is produced 
according to:

Y A X dit t it= ( )∫� ρ ρ
0

1
1

where ρ < 0  (i.e. tasks are complementary), A 
is knowledge and grows at constant rate g and, 
as in Zeira (1998):
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Assuming that a fraction βt  of tasks is auto-
mated by date t, we can re-express the above 
aggregate production function as: 

Y A K Lt t t t t= + −( )( )− −β βρ ρ ρ ρ
ρ

1 1 1
1� � �

/

where Kt  denotes the aggregate capital stock 
and L Lt ≡  denotes the aggregate labor supply.

At the equilibrium, the ratio of capital share to 
labor share is equal to:
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Hence an increase in the fraction of automated 
goods βt has two offsetting effects on 

α
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a direct positive effect which is captured by the 
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 as we recall that 

ρ < 0. This latter effect relates to the well-known  
Baumol’s cost disease: namely, as 

K
L

t

t

 increases 
as a result of automation, labor becomes scarcer 
than capital which, together with the fact that 
labor-intensive tasks are complementary to 
automated tasks (indeed we assumed ρ < 0), 
implies that labor will command a sustained 
share of total income.

How about long run growth in this model? Let’s 
first consider the case where a constant fraction 
of not-yet-automated tasks become automated 

1.  In Hémous & Olsen (2016), new tasks do not feature a higher produc-
tivity for labor and add up to existing tasks instead of replacing automated 
tasks. As a result, their model predicts a decline in the labor share which 
matches quantitatively the decline observed in the US.
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each period, i.e. β θ β= −( )1 t . In this case, one 
can show that the growth rate converges to a 
constant in the long run.

Next, consider the case where all tasks become 
automated in finite time, i.e. where βt ≡ 1 for 
t T> . Then, for t T>  aggregate final good 
production becomes Y A Kt t t= , so that, if 
capital accumulates over time according to 
K sY K= − δ , we get a long run growth rate 

equal to g g sAY A= + − δ , which increases 
unboundedly over time as A grows at the expo-
nential rate gA.

Automation in the Production of Ideas

AJJ consider the polar case where the production 
of goods and services uses labor only, whereas 
automation affects the production of knowledge. 
Somehow, this gets us closer to what AI is all 
about, over and beyond automation. Namely, 
AJJ assume:

Y A Lt t t=

with:

A A X dit it= ( )∫φ ρ ρ
0

1
1

where, as before, ρ < 0  and 

X
L
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it

it
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Assuming that a fraction βt  of “idea-producing” 
tasks are automated by date t, then the above 
knowledge growth equation becomes:

A A K Lt t t t= + −( )( )− −φ ρ ρ ρ ρ ρβ β1 1
1

1

Let’s first consider the case where a constant 
fraction of not-yet-automated tasks become 
automated at each period, i.e. β θ β= −( )1 t . In 
this case, one can show that:

g gY A= = − −
−

1
1

ρ
ρ

θ
φ

so that even though we assume decreasing 
returns to knowledge accumulation as in Jones 
(1995), i.e. φ > 0, automation in the production 
of ideas maintains a positive long-run growth 
rate of (per capita) GDP.

Next, consider the case where all tasks become 
automated in finite time, i.e. where βt ≡ 1 for 
t T> . Then, for t T> , the growth of knowledge 
satisfies the equation:

	 A A Kt t= φ

where:

	 K sY K= − δ

In this case AJJ shows that A Y Lt t= /  becomes 
infinite in finite time. This extreme form of 
explosive growth is referred to as a “singularity”.

Explaining the Decline in Growth

Given the predictions of theoretical models, 
why haven’t we observed a growth outburst in 
developed countries, particularly in the US over 
the past decade, even though automation and AI 
are affecting a growing share of activities? One 
explanation for the absence of explosive growth 
may simply be that some essential inputs to 
production or research cannot be automated: 
in this case the Baumol’s cost disease effect is 
back and holds growth down. Yet, this does not 
account for the fact that productivity growth 
has actually declined over the past decade.

Aghion et  al. (2019), henceforth ABBKL, 
propose the following explanation. Suppose 
that there are two main sources of heteroge-
neity across firms in the economy. The first 
one is “product quality” which improves as a 
result of innovation on each product line. But 
on top of product quality, some firms –  call 
them “superstar” firms – may enjoy a persis-
tent “efficiency advantage” over other firms. 
Natural sources of such an advantage are the 
organizational capital, the development of 
networks, or the ability to escape taxation: these 
help superstar firms to enjoy higher mark-ups 
than non-superstar firms with the same level of 
technology. The story developed by ABBKL 
is that a technological revolution, by reducing 
the firms’ cost of monitoring each individual 
activity, will induce all firms to expand their 
range of activities. However, since superstar 
firms enjoy higher profits on each product line 
than non-superstar firms with the same level of 
technology, the former will end up expanding 
at the expense of the latter. But this in turn 
will deter innovation by non-superstar firms, 
as innovating on a line where the incumbent 
firm is a superstar firm always yields lower 
profits than innovating on a line where the 
incumbent firm is a non-superstar firm. Thus 
overall, the technological revolution can result 
in lower aggregate innovation and lower 
average productivity growth in the long run, 
following an initial burst of growth associated 
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with the expansion of superstar firms into more 
product lines.2

This can explain why productivity growth in 
the US has declined continuously since 2005, 
after a burst of growth between 1995 and 2005, 
in the wake of the AI revolution following the 
ICT revolution. Moreover, it also accounts for 
the fact that, over the past decade, the average 
markup has markedly increased in the US, 
which was mostly due to a composition effect: 
namely, the share of higher-markup firms in the 
economy has gone up, but markups within firms 
have not shown any significant upward trend.

This explanation illustrates the fact that techno-
logical revolutions may have adverse effects on 
growth if institutions and policies do not adapt. 
Thus, ICT and AI have helped some superstar 
firms develop platforms/networks or social 
capital which in turn have acted as barriers to 
entry and/or innovation by non-superstar firms. 
The challenge is then to rethink competition 
policy so that the ICT and AI revolutions can 
fully deliver on their growth promises.

The above discussion has stressed the impor-
tance of appropriate institutions and policies for 
the impact of AI on growth. In the next session 
we analyze the impact of AI on employment, 
and there again we shall argue that institutions 
and policies matter.

Automation and Employment

Historical Background

Since AI is only in its infancy, empirical job 
data with hindsight are not available yet. 
Hence, empirical studies have focused on auto-
mation in a broad sense and on its impact on  
employment.

Early analyses showed an increase in technolo
gical unemployment based on a macroeconomic 
equilibrium analysis, but without a special focus 
on automation (Keynes, 1930; Leontief, 1952; 
Lucas & Prescott, 1974; Davis & Haltiwanger, 
1992; Pissarides, 2000).

In the wake of the IT and computer revolu-
tion in the 1990s, authors tried to explain the 
polarization of the labor market. The canonical 
skill-biased technological change became a 
major subject of investigation: several studies 
explained a rising wage gap and a better return 

on education by a rising demand for skilled labor 
versus non-skilled labor (Katz & Murphy, 1992; 
Krueger, 1993; Autor et al., 1998; Bresnahan 
et al., 2002; Acemoglu, 2002; Autor & Dorn, 
2013).23 This skill-biased technological change 
hypothesis did not foresee a replacement of 
labor by capital, but rather supported the idea 
of complementarity between technology and 
skilled workers (see Acemoglu & Autor, 2011, 
for an overview).

Following the critic of Card & DiNardo (2002), 
and the seminal paper of Autor et al. (2003), 
the theory of skill-biased technology declined, 
in favor of a “routinization” hypothesis. The 
academic consensus shifted to a labor-replacing 
view of automation in routine tasks. The under-
lying assumption became that “traditional” 
automation replaces routine jobs, and creates 
more demand for non-routine jobs that require 
skills that cannot be performed by machines. 
Indeed, empirical facts show that automation 
gave rise to more high-skilled and low-skilled 
jobs4, while crowding out medium-skilled jobs 
(Goos & Manning, 2007). Several studies high-
light the structural change in the labor market 
and show the disappearance of manufacturing 
and routine jobs (Autor et al., 2003; Jaimovich 
& Siu, 2012; Autor & Dorn, 2013; Charnoz 
& Orand, 2017; Blanas et al., 2019).

Some authors have tried to go beyond the scope 
of “traditional” automation by questioning the 
feasibility of automating jobs given current 
and presumed technological advances. They 
notably relax the assumption according to 
which automation could not threaten non-
routine jobs. Whereas Autor et al. (2003) 
argued that non-routine tasks such as legal 
writing, truck driving, medicine, selling, 
could not be substituted, this view has been 
questioned by Brynjolfsson & McAfee (2011) 
who advocate that automation is no longer 
limited to routine tasks, recalling the example 
of self-driving cars. Frey & Osborne (2017) 
have followed this path and estimated the 
probability of computerization5 of 702 jobs. 
Their main conclusion showed that 47% of 

2.  On the slowdown of productivity growth and its link with the rise of 
corporate market power and firm concentration, see also Liu et al. (2019).
3.  On the same issue, let’s also mention Beaudry et  al. (2013), who 
highlight the declining demand for non-skilled workers, but through a 
different mechanism. They argue that the over-qualification of workers 
induces less demand for qualified workers, who are therefore “forced” to 
accept underqualified jobs, while non-qualified workers are kicked out of 
the labor market.
4.  Goos & Manning (2007) refer to them as “lovely” and “lousy” jobs.
5.  Computerization is defined as job automation by means of computer-
controlled equipment.
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employment in the US is at risk of automation 
in the next ten or twenty years, whereas only 
33% of jobs have a low risk of automation. 
They also showed that there was a strong 
negative relationship between, on the one hand, 
wages and educational attainment and, on the 
other hand, the probability of computeriza-
tion. Frey & Osborne have been under harsh 
criticism: they ignore the task content of the 
jobs, and do not factor in the variability of a 
specific occupation across workplaces. Arntz 
et al. (2017) show that when factoring in the 
heterogeneity of tasks within occupations, only 
9% of all workers in the US face a high risk 
of automation. Last, Frey & Osborne’s method 
does not integrate the response of the economy 
in a general equilibrium model, i.e. the cost 
of automation, the response of wages, and the 
creation of new jobs. Despite technological 
advances, the cost of substitution between 
machines and labor could prevent firms from 
automating rapidly, especially if wages adapt. 
Moreover, other activities could develop and 
hire the redundant workers.

Being forward-looking without reasoning in a 
general equilibrium pattern seems unrealistic. 
Caselli & Manning (2019) criticize the fact that 
most current papers rely on a partial equilibrium 
analysis and do not draw on a formal model of 
the economy as a whole. Instead, they propose 
a very general framework for thinking about 
the effects of automation on different types of 
workers. They notably show that new tech-
nology is unlikely to cause wages for all workers 
to fall and will cause average wages to rise if 
the prices of investment goods fall relative to 
consumer goods.

The analyses of automation based on the 
routine-based technological change share one 
caveat: since their premise is that automation 
affects routine jobs, they do not question the 
measure of automation. Yet, getting an accu-
rate measure of automation is crucial, and 
this is what recent studies have tried to do. 
Earlier studies were based on the measure of 
computers or IT (Krueger, 1993; Autor et al., 
1998; Bresnahan et  al., 2002), recent papers 
investigate other measures of automation like 
automation related patents (Mann & Püttmann, 
2017), or the number of robots (Autor & Dorn, 
2013; Acemoglu & Restrepo, 2017; Dauth 
et al., 2017; Graetz & Michaels, 2018; Cheng 
et al., 2019). It is on this latest strand of liter-
ature that we focus in the remaining part of 
this paper.

The Effect of Robots  
on Employment in the US

As regards the impact of robots on net employ-
ment, evidence is mixed. Chiacchio et al. (2018) 
report negative effects –  one more robot per 
thousand workers reduces the employment rate 
in six EU countries by 0.16-0.20 percentage 
points. Yet, Autor et  al. (2015) and Graetz 
& Michaels (2018) find no effect of automa-
tion on aggregate employment. On German 
data, Dauth et al. (2017) find no evidence that 
robots cause total job losses, but they show a 
significant negative effect on employment in the 
manufacturing industry: each additional robot 
per thousand workers reduces the aggregate 
manufacturing employment-to-population ratio 
by 0.0595 percentage points.

In their paper “Robots and jobs: Evidence from 
US Labor Markets”, Acemoglu & Restrepo 
(2017) analyze the effect of the increase in 
industrial robot usage between 1990 and 2007 
on US labor markets. They answer this question 
using within-country variation in robot adop-
tion. The first part of the paper is dedicated to 
describing a theoretical model in which robots 
and humans are substitutes to derive equations 
and calculate the aggregate impact of robots 
on employment and wages. They show that, 
for each labor market, the impact of robots on 
jobs may be estimated by regressing the change 
in employment and wages on the exposure to 
robots and finally find that one more robot per 
thousand workers reduces the employment to 
population ratio by about 0.37 percentage points 
and wage growth by 0.73%. 

In detail, AR-2017 focus on the 722 commuting 
zones covering the US continental territory. For 
each commuting zone, they gather employment 
and wage data, and build a measure of the 
exposure to robots. Then they run regressions 
on all commuting zones, in order to investigate 
the impact of this exposure on the change in 
employment and the change in aggregate wages, 
i.e. to estimate the following relationships:

dlnL US
dlnW US

RobotsExp
RobotsExp

c L c c
L

c W c c
W

= ⋅ +
= ⋅ +







β ε
β ε

� �
� �

The best way to measure local exposure to 
robots would be to have a direct measure of 
the stock of robots in each commuting zone. 
Yet, no such data exist: the main source of data 
on robotics is provided by the International 
Federation of Robotics (IFR), which gathers 
worldwide data from robot producers, on sales, 
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the destination of sales and their classification 
by industrial sector. The main advantage of 
IFR data is to define a robot according to an 
ISO standard, which provides a homogeneous 
definition between industries. Indeed, a robot 
is defined as “an automatically controlled, 
reprogrammable, multipurpose manipulator 
programmable in three or more axes, which 
can be either fixed in place or mobile for 
use in industrial automation applications”. 
The main feature of this definition lies in the 
autonomy of the robot to perform tasks. From 
these data, they deduce the stock of robots by 
country and by year from 1993 on6, but only 
on a country – or a group of countries – scale. 
The IFR provides data on the stock of robots 
for 19 employment categories, i.e. 2-digit 
nomenclature data in the non-manufacturing 
sector and 3-digit data in the manufacturing 
sector. Graetz & Michaels (2018) were the first 
to use the IFR data. They estimated that the 
robotization process between 1993 and 2007 
contributed to the annual labor productivity 
growth by 0.36 percentage points.

AR-2017 build a local index, which is based on 
the rise in the number of robots per worker in 
each industry on the one hand, and on the local 
distribution of labor between different industries 
on the other hand.

For each commuting zone, the index measuring 
the exposure to robots between 1990 and 2007 
is inspired by the index measuring the exposure 
to Chinese imports, which has been developed 
by Autor, Dorn & Hanson (2013). The main 
idea underpinning this index is to exploit the 
variation in local industry employment struc-
ture before the period of interest, in order to 
spread a variable (robots, imports, etc.) which is 
only available at the national level. Autor et al. 
(2013) highlight the fact that the variation of the 
index stems from two sources: the share of the 
manufacturing employment, and the specializa-
tion in exposed industries within manufacturing. 
Since we want to capture the second source of 
variation, it is important to control for the share 
of manufacturing employment at the beginning 
of the period, as we will see in detail later. The 
measure used in the paper to measure the expo-
sure to robots at the commuting zone level is:

RobotsExpc
i I

ci
i
US

i
US

il
R
L

R
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2007 1970 2007
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199= −
∈
∑ ,�

,�

,� 33
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
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The sum runs over all the 19 industries i in 
the IFR data. lci

1970 stands for the 1970 share of 
employment in industry i for a given commuting 

zone i. Ri  and Li stand for the stock of robots and 
the number of people employed in a particular 
industry i.

The variation of robots exposure between 
commuting zones is then used in order to 
explain the observed evolution of employment 
and wages. Several controls are included in the 
regressions. An important feature is to take into 
account changes in trade patterns. Acemoglu 
& Restrepo therefore use data from Autor et al. 
(2013) on the exposure to Chinese imports, and 
construct similar measures of the exposure to 
imports from Mexico. This local labor market 
exposure to import competition from China 
(Mexico) is once more calculated in an analo-
gous fashion as in Autor et al. (2013), i.e. the 
national change in import volume from China 
(Mexico) per worker and per sector, weighted by 
the sectoral composition of employment in the 
zone. Another feature is controlling for growth 
of capital stock (other than robotics) and growth 
of IT capital. Other controls include the share of 
employment in routine jobs in 1990, a measure 
of offshoring of intermediate inputs, baseline 
differences in demographics in 1990, baseline 
shares of employment in manufacturing, durable 
manufacturing and construction, as well as the 
share of female employment in manufacturing. 
AR-2017 also construct estimates of the number 
of robot integrators in each commuting zone.67 
As they explain in their theoretical develop-
ment, the empirical estimations are based on 
two patterns: a quite unrealistic pattern where 
commuting zones do not trade, and a more 
realistic pattern where trade between zones is 
taken into account. The underlying idea is that if 
an industry in a given zone adopts more robots, 
then it will become more productive and will 
export its cheaper product to its neighbors. 

As underlined by Acemoglu & Retsrepo them-
selves, a major concern with their empirical 
strategy is that the adoption of robots in a given 
US sector could be related to other trends in 
that sector. Therefore, they use an instrumental 
method and make two-stage least squares esti-
mates. Their method is similar to the method 
used by Autor et  al. (2013) on US data and 
Bloom et al. (2015) on European data in order 
to estimate the impact of Chinese imports. 

6.  Yet, for the US, the repartition of robots is not fully detailed by manu-
facturing industry on the 1993-2004 period. The full detail is given from 
2004 on. Outside manufacturing, the number of robots is available for: 
agriculture, forestry and fishing, mining, utilities, construction, education, 
research and development and services.
7.  Companies that install and program robots for different industrial 
applications.
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In the first stage, they regress the US exposure to 
robots on the exogenous exposure to robots in the 
other advanced European countries, calculated 
using the same approach as on US data, with the 
industry-level spread of robots in other advanced 
economies as an instrument for the adoption of 
robots in US industries. In the second stage, 
they regress the change in employment (resp. 
wages) on the instrumented exposure to robots. 
The main result is that the commuting zones the 
most exposed to robots have experienced the 
worst evolutions in terms of employment (resp. 
wages) between 1990 and 2007.

Under the assumption that there is no trade taking 
place between commuting zones, AR-2017  
estimate that each additional robot per thou-
sand workers reduces aggregate employment to 
population ratio by 0.37 percentage points and 
aggregate hourly wages growth by about 0.73%. 
If they take trade between commuting zones into 
account, and calibrate a macroeconomic model, 
they find that the magnitude of the estimates 
decreases and that one extra robot per thousand 
workers reduces the aggregate employment to 
population ratio by 0.34 percentage points and 
aggregate hourly wages by 0.5%. Adding control 
variables such as Chinese and Mexican import 
volumes, the share of routine jobs and offshoring 
has little impact on the estimates. Among other 

robustness checks, AR-2017 run IV regressions 
where they exclude the commuting zones with 
the highest exposure to robots (consequence of 
an important initial automotive employment 
in these areas). The estimates are quite similar 
to previous specifications, and they conclude 
that their results are not solely driven by highly 
exposed areas.

Robots and Employment in France

In this section, we reproduce the method 
developed by Acemoglu & Restrepo (2017) on 
French data over the 1994-2014 period, in order 
to compare the magnitude of the results obtained 
in France with those obtained using US data.

Figure I plots how the number of robots evolved 
in France from 1994 to 2014. Similarly to 
AR-2017, data on robots are provided by the 
International Federation of Robotics (IFR). The 
overall number of robots, pictured by the blue 
curve, grows steadily between 1994 and 2007, 
then stagnates from 2007 to 2011, and finally 
slightly decreases between 2012 and 2014.

In order to ensure the comparability of our 
results with those of AR-2017 or Dauth et al. 
(2017), we use a very close framework. We then  

Figure I
Evolution of the number of robots in France (1994-2014)
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define the exposure to robots in a French 
employment zone8 between 1994 and 2014:

RobotsExpc
i I

ic
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iL
L

R
L

R
1994
2014 1994
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where Lic,�1994 refers to employment in the 
employment zone c in industry i in 1994, 
Lc,�1994 refers to employment in employment 
zone c in 1994 and Li,�1994 refers to employment 
(in thousands) in industry i in 1994. Ri,�1994 and 
Ri,� �2014 respectively stand for the total number 
of robots in industry i in 1994 and 2014. Data 
on employment are obtained from the French 
administrative database DADS.

Our index therefore reflects the exposure to 
robots per 1,000 workers between 1994 and 
2014. Figure  II plots the geographical distri-
bution of the exposure to robots. The average 
exposure in France is 1.16 between 1994 and 
2014, well below the average exposure in 
Germany of 4.64 during the same period. This 
exposure is also more homogeneous in France, 
with a standard deviation of 1.42 versus 6.92 in 
Germany. The order of magnitude of exposure 
to robots in France is closer to the exposure 
in the United States between 1993 and 2007. 

Figure  II shows a fairly marked North/South 
divide. Indeed, while the North has high expo-
sure rates, most southern employment zones 
have a rate close to 0. The Northeast, with a 
strong industrial heritage, but also the West 
(Normandy and eastern Brittany) are among the 
highly exposed regions. In the least exposed 
regions, one finds the entire Atlantic coast and 
the French Riviera.8

In order to measure the impact of exposure to 
robots on local labor markets, we adopt a strategy 
similar to the one initiated by Autor et al. (2013) 
to investigate the impact of Chinese imports 
on local labor markets in the United States. 
Our variable of interest is the evolution of the 
employment-to-population ratio between 1990 
and 2014. In the first and most naïve specifica-
tion, we study the impact of exposure to robots 
on the evolution of employment-to-population 
ratio. This ratio is constructed from census data. 
However, it is important to control for other 
characteristics that may influence the evolution 
of the employment-to-population ratio. To do 

8.  According to the official definition provided by Insee, an employment 
zone is a geographical area within which most of the labor force lives and 
works. It provides a breakdown of the territory adapted to local studies on 
employment.

Figure II
Exposure to robots in France (1994-2014)
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so, we construct two other exposure indices. 
First, an exposure index for information and 
communication technologies (ICT) ICTExp, 
built in a similar way as the exposure to robots 
index. The number of robots is replaced by the 
ICT capital stock in industry i. Data come from 
the EUKLEMS database. Second, we build an 
international trade exposure index TradeExp 
using the COMTRADE database. The number 
of robots is replaced by net imports from China 
and Eastern Europe (Bulgaria, Czech Republic, 
Estonia, Croatia, Hungary, Lithuania, Latvia, 
Poland, Romania, Slovakia, Slovenia) in 
industry i. In some regressions, we also add a 
vector Xc of control for the employment zone c: 
demographic characteristics in 1990 (population 
share by level of education and population share 
between 25 and 64 years old), broad industry 
shares in 1994 and broad region dummies. 
Finally, we can write:

∆
L

Pop
RobotsExp

TradeExp TICExp X

c

c
c

c c

,

,�

1994

1994
1

2 3

= +

+ + +

α β

β β γ cc c+ 

Even if these control variables partially purge 
OLS estimations, an instrumental variable 
approach is necessary to discuss causal impact 
of robots on employment. In fact, one may 
imagine a shock, which we do not capture in 
our controls, but which may impact both the 
installation of robots at the local level and 
local labor markets characteristics. Always 
in a comparability perspective, we adopt the 

approach of AR-2017 and Dauth et al. (2017), 
according to which the stocks of robots in 
industries from n developed countries are 
used to build n indexes of exposure to robots. 
These n indexes are built with employment data 
from 1978, to avoid concerns about reverse 
causality: those pre-existing levels cannot be 
impacted by robot installations. We select the 
following countries: Germany, Denmark, Spain, 
Italy, Finland, Norway, Sweden and the United 
Kingdom. Data from North America (US and 
Canada) are not considered, because we only 
have information on the total number of robots 
before 2004, without any industry breakdown.

All the share variables (employment-to-
population ratio, population share by level of 
education, etc.) are considered in percentage 
points in the following regression. Table 1 
displays the results of the OLS regressions.

This table shows a negative correlation between 
exposure to robots and change in employment-
to-population ratio. However, the correlation 
becomes non-significant in column (6) when we 
include all the controls and in column (7) when 
we exclude the commuting zones with the highest 
exposure to robots. In the first five columns where 
the correlation is significant, the magnitude of the 
effect ranges from -1.090 to -0.515.

In the instrumental variable regression shown in 
Table 2, the coefficients of robots exposure are 

Table 1
The effect of robots exposure on employment, 1990-2014, OLS estimates

Dependent variable: Change in employment-to-population ratio 1990-2014 (in percentage points)

(1) (2) (3) (4) (5) (6) (7)

RobotsExp1994
2014 -1.090*** 

(0.253)
-0.749*** 
(0.263)

-0.594** 
(0.239)

-0.515** 
(0.243)

-0.549* 
(0.294)

-0.398 
(0.244)

-0.430 
(0.324)

ITCExp1994
2014 -3.099* 

(1.586)
-2.397 
(1.594)

-2.495* 
(1.455)

-0.304 
(1.620)

-0.165 
(1.576)

-0.154 
(1.588)

TradeExp1994
2014 -0.743*** 

(0.247)
-0.690*** 
(0.215)

-0.825*** 
(0.239)

0.0857 
(0.243)

-0.123 
(0.278)

-0.124 
(0.280)

Demographics Yes Yes Yes

Region dummies Yes Yes Yes

Broad industry shares Yes Yes Yes

Remove Highly exposed areas Yes

Observations 297 297 297 297 297 297 295

R-squared 0.058 0.090 0.198 0.205 0.249 0.407 0.406
Notes: Demographics control variables are population share by level of education and population share between 25 and 64 years old. Broad industry 
shares cover the share of workers in manufacturing, agriculture, construction, retail and the share of women in manufacturing in 1994. Broad region 
dummies refers to the 13 metropolitan regions of France. Highly exposed areas are Poissy and Belfort-Montbéliard-Héricourt. Robust standard errors 
in parentheses. Levels of significance: ***: p<0.01, **: p<0.05, *: p<0.1.
Sources: IFR, COMTRADE, EUKLEMS, DADS, Census data.
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significant whatever the specification chosen, 
even the one with all the controls. The magni-
tude of first-stage F-statistics indicates that the 
weak instrument bias is unlikely to be a problem 
here. Moreover, we observe that the magnitude 
of the effects increases in comparison with those 
obtained by OLS. Column (1) begins with the 
regression without any control. The negative 
impact of exposure to robots on employment 
is massive: one more robot per 1,000 workers 
leads to a drop in the employment-to-population 
ratio of 1.317 percentage points. Column  (2) 
adds controls on ICT and imports exposures. If 
the ICT exposure coefficient is not statistically 
significant, there is a negative impact of net 
imports on employment-to-population ratio, 
as in Autor et al. (2013) for the United States. 
The coefficient for exposure to robots remains 
of the same order of magnitude. Other controls 
are successively included in columns (3) to 
(5): demographic characteristics in column (3), 
broad region dummies in column (4) and broad 
industry share before 1994 in column (5). In 
each specification, the coefficient of exposure 
to robots remains negative and significant, 
even if its magnitude decreases slightly. On the 
contrary, the coefficient of exposure to imports 
becomes insignificant when we add information 
about the industry composition of the employ-
ment zones. Finally, column (6) combines all the 
controls and column (7) removes highly exposed 
areas. The effect of the exposure to robots is 

still negative and significant, even though its 
magnitude has been reduced in comparison with 
the specification without any control.

In our last specification, we obtain a negative 
effect of exposure to robots on employment: 
one more robot per 1,000 workers leads to a 
drop in the employment-to-population ratio of 
0.686 percentage points. A quick calculation 
allows us to conclude that the installation of 
one more robot in a commuting zone reduced 
employment by 10.7 jobs.9 The order of magni-
tude is similar to AR-2017, who found an impact 
of 6.2 fewer jobs for one more robot. According 
to the IFR, the number of robots in France 
increased by around 20,000 between 1994 and 
2014. Our result implies a loss of 214,000 jobs 
(10.7*20,000) during this period due to robots.

Results focusing on the 1990-2007 period, 
like AR-2017, are presented in Table A1 in the 
Appendix. Using specification with all controls, 
we conclude that 1 more robot per 1,000 workers 
led to a drop in the employment-to-population 
ratio of 0.438 percentage points. This estimation 
is even closer to that of AR, who estimated a 
drop of 0.371 percentage points.

9.  Our exposure to robots is defined in “robots for 1,000 workers”. 
According to the OECD, the average employment-to-population ratio was 
0.64 in 2014. Hence, the installation of one more robot reduced employ-
ment by (0.686/100)*1000/0.64=10.7 jobs.

Table 2
The effect of robots exposure on employment, 1990-2014, IV estimates

Dependent variable: Change in employment-to-population ratio 1990-2014 (in percentage points)

(1) (2) (3) (4) (5) (6) (7)

RobotsExp1994
2014 -1.317*** 

(0.325)
-1.010*** 
(0.322)

-0.974*** 
(0.271)

-0.737** 
(0.296)

-0.790*** 
(0.300)

-0.686*** 
(0.241)

-0.986*** 
(0.351)

ITCExp1994
2014 -2.569 

(1.618)
-1.699 
(1.578)

-2.094 
(1.444)

-0.176 
(1.590)

-0.0323 
(1.518)

0.101 
(1.538)

TradeExp1994
2014 -0.670*** 

(0.242)
-0.589*** 
(0.211)

-0.773*** 
(0.230)

0.110 
(0.240)

-0.0922 
(0.276)

-0.0882 
(0.279)

Demographics Yes Yes Yes

Region dummies Yes Yes Yes

Broad industry shares Yes Yes Yes

Remove Highly exposed areas Yes

Observations 297 297 297 297 297 297 295

First-stage F statistic 53.7 29.4 24.0 25.7 25.1 23.6 46.5

R-squared 0.055 0.087 0.193 0.203 0.248 0.405 0.400
Notes: Demographics control variables are population share by level of education and population share between 25 and 64 years old. Broad industry 
shares cover the share of workers in manufacturing, agriculture, construction, retail and the share of women in manufacturing in 1994. Broad region 
dummies refers to the 13 metropolitan regions of France. Highly exposed areas are Poissy and Belfort-Montbéliard-Héricourt. Robust standard errors 
in parentheses. Levels of significance: ***: p<0.01, **: p<0.05, *: p<0.1.
Sources: IFR, COMTRADE, EUKLEMS, DADS, Census data.
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Finally, we investigate the possibility of hetero
geneous employment effects of the exposure to 
robots across education levels. Since we only 
have this kind of information for individuals 
between 25 and 54 years old, we restrict our 
analysis to this population. The results are 
similar to those presented in Tables  1 and 2. 
Coefficients estimating the exposure to robots 
by education level are presented in Figure III 
(with confidence intervals of 90%). The 
Certificate of Professional Aptitude (CAP) and 
the Diploma of Occupational Studies (BEP) are 
both French professional education degrees. 
The lower the level of education, the greater 
the negative impact of exposure to robots. The 
impact is non-significant for people with high-
school diploma. The effect is even positive, 
but not significant for college graduates. This 
heterogeneity emphasizes the key role played 
by education and the need for public policies. 
In order to limit the negative effects of technical 
progress on employment, public policies should 
notably aim at rising the education level and at 
promoting continuous training.

Discussion

The analyses above raise several potential 
issues. First, are robots so different from other 
sources of automation? The IFR definition of 
robots is quite restrictive and does not include 
machines like automatic tellers, which replace 

human labor as well as robots. Taking a broader 
measure of technological progress into account 
would make it possible to use data over a longer 
period, i.e. to use more evidence from the past.

Another potential concern is that the analysis 
relies on the hypothesis that the number of 
robots installed by a given industry, divided by 
the importance of the industry in the commuting 
zone, is the same across commuting zones. Yet, 
robotization by a given industry may be more 
intense in commuting zone A than in commuting 
zone B even if the shares of that industry are the 
same in both regions.

A third potential concern is that variations in the 
robots exposure index across commuting zones 
are mostly related to the spatial distribution 
of automotive activities over the US territory 
in 1990, since industrial robots are predomi-
nant in the automotive industry – automotive  
robots account for more than one third of 
total robots. Using this variation to explain 
employment boils down to asking whether 
the importance of the automotive industry in a 
given commuting zone in 1990 can explain the 
evolution of employment in that zone over the 
twenty following years.

Indeed, most of the robotization took place in 
the automobile industry, and in the 1990s and 
the 2000s, the American automobile market 

Figure III
The effects of robots exposure by education level
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experienced large-scale restructuring. Since the 
late 1980s, numerous automotive assembly facili
ties have relocated in the South of the United 
States, a region which previously had a small 
automotive presence. This has caused concern 
among the traditional automotive communities 
in upper Midwest and southern Ontario (Hill 
& Brahmst, 2003). Similar outsourcing trends 
occurred in the French automobile industry. If 
many closures took place in a commuting zone 
strongly specialized in automobile in the 1990s, 
then the negative relationship between exposure 
to robots and employment might just reflect the 
relocation of automobile plants. AR-2017 deal 
with that concern in two different ways. First, 
they exclude commuting zones with very high 
exposure to robotization, which presumably are 
also locations with high initial employment in 
the automotive industry. Doing so does not 
affect the basic regression results.10 Second, 
they run OLS regressions where exposure to 
robots in automotive manufacture and expo-
sure to robots in other industries are treated as 
separate regressors: they find that coefficients 
on the two regressors are quite similar. Overall, 
Acemoglu & Restrepo (2017) conclude that 
there is no concern with the predominance of 
industrial robots in the automotive industry.

*  * 
*

In this paper, we have surveyed recent work 
on artificial intelligence and its effects of 
economic growth and employment. Our main 
conclusion is that the effects of AI and auto-
mation on growth and employment depend to 
a large extent on institutions and policies. Yet, 
despite solid theoretical foundations on how 

to model automation and AI, and despite some 
compelling empirical work, we are still at an 
early stage in fully understanding all the welfare 
implications of these technologies.10

In the first section, we have argued that while AI 
can spur growth by replacing labor, which is in 
finite supply, by capital which is in unbounded 
supply, it may inhibit growth if combined with 
inappropriate competition policy.

In the second section, we discussed the effects 
of AI and automation on aggregate employment: 
building on Acemoglu & Restrepo (2017), we 
have looked at the effect of robotization on 
employment in France over the 1994-2014 
period. We find that robotization reduces 
aggregate employment at the employment zone 
level. We also find that non-educated workers 
are more negatively affected by automation than 
educated workers. This suggests that inappro-
priate labor market and education policies could 
reduce the positive impact of AI and automation 
on employment.

A natural next step would be to bridge the 
analysis in the two sections. We are currently 
working to this. Another avenue of research is to 
investigate how labor market characteristics can 
affect the nature of innovation, for example, 
whether the innovation is aimed at automa-
tion or the creation of new product lines.The 
former idea is explored in current work by the 
present authors, and the latter is explored in 
recent work by Dechezleprêtre et al. (2019). 
Other extensions, in particular on the effects 
of AI on consumption and well-being, await 
future research.�

10.  Similar results are shown for France, cf. Table 2, column (7).
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APPENDIX_ ____________________________________________________________________________________________

Tableau A1
The effect of robots exposure on employment, 1990-2007, IV estimates

Dependent variable: Change in employment-to-population ratio 1990-2007 (in percentage points)

(1) (2) (3) (4) (5) (6) (7)

RobotsExp1994
2007 -0.382*** 

(0.119)
-0.344* 
(0.198)

-0.508*** 
(0.195)

-0.148 
(0.197)

-0.560** 
(0.217)

-0.438** 
(0.198)

-0.633** 
(0.298)

ITCExp1994
2007 -0.322 

(1.613)
0.990 

(1.611)
-1.274 
(1.571)

2.844 
(2.142)

1.845 
(2.019)

2.184 
(2.056)

TradeExp1994
2007 -0.217 

(0.319)
-0.285 
(0.293)

-0.400 
(0.324)

0.301 
(0.347)

0.107 
(0.383)

0.111 
(0.391)

Demographics Yes Yes Yes

Region dummies Yes Yes Yes

Broad industry shares Yes Yes Yes

Remove Highly exposed areas Yes

Observations 297 297 297 297 297 297 295

First-stage F statistic 45.7 24.8 29.3 24.7 22.6 25.7 44.4

R-squared 0.004 0.007 0.075 0.129 0.144 0.293 0.284
Notes: Demographics control variables are population share by level of education and population share between 25 and 64 years old. Broad industry 
shares cover the share of workers in manufacturing, agriculture, construction, retail and the share of women in manufacturing in 1994. Broad region 
dummies refers to the 13 metropolitan regions of France. Highly exposed areas are Poissy and Belfort-Montbéliard-Héricourt. Robust standard errors 
in parentheses. Levels of significance: ***: p<0.01, **: p<0.05, *: p<0.1. 
Sources: IFR, COMTRADE, EUKLEMS, DADS, Census data.


