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Online Complement – History and Foundations of Econometric and Machine Learning Models 

 
Econometrics and the Probabilistic Model 

 

The importance of probabilistic models in economics is rooted in Working’s (1927) questions and the attempts to 

answer them in Tinbergen’s two volumes (1939). The latter have subsequently generated a great deal of reflexions, 

as recalled by Duo (1993) in his book on the foundations of econometrics, and more particularly in the first chapter 

“The Probability Foundations of Econometrics”. Trygve Haavelmo, who was awarded the Nobel Prize in 

Economics in 1989 for his “clarification of the foundations of the probabilistic theory of econometrics” recognized 

that influence. More specifically, Haavelmo (1944), which initiated a profound change in econometric theory (as 

recalled in the Chapter 8 of Morgan (1990)), stated that econometrics is fundamentally based on a Probabilistic 

Model, for two main reasons. First, the use of statistical quantities (or “measures”) such as means, standard errors 

and correlation coefficients for inferential purposes can only be justified if the process generating the data can be 

expressed in terms of a probabilistic model. Second, the probability approach is relatively general, and is 

particularly well suited to the analysis of “dependent” and “non-homogeneous” observations, as they are often 

found on economic data. In this framework, we will assume that there is a probabilistic space (𝛺, ℱ,ℙ) such that 

observations (𝑦𝑖 , 𝑥𝑖) are seen as realizations of random variables (𝑌𝑖 , 𝑋𝑖). In practice, we are not very interested 

by the joint distribution of the pair (𝑌, 𝑋) : the law of 𝑋 is unknown (actually all the analysis is done conditional 

on observations 𝑥𝑖) and it is the law of 𝑌 conditional on 𝑋 that we will be interested in. In the following, we will 

denote 𝑥 a single observation, 𝑥 a vector of observations, 𝑋 a random variable, and 𝑋 a random vector. Abusively, 

𝑋 may also designate the matrix of individual observations (denoted 𝑥𝑖), depending on the context. 

 

Foundations of Mathematical Statistics 

 

As recalled in Vapnik (1998)’s introduction, inference in parametric statistics is based on the following belief: the 

statistician knows the problem to be analyzed well, in particular, he knows the physical law that generates the 

stochastic properties of the data, and the function to be found is written via a finite number of parameters1. To find 

these parameters, the maximum likelihood method is usually considered. There are many theoretical justification 

for this approach. We will see that in learning, philosophy is very different, since we do not have a priori reliable 

information on the statistical law underlying the problem, nor even on the function we would like to approach (we 

will then propose methods to construct an approximation from the data at our disposal, as in Vapnik (1998)). A 

“golden age” of parametric inference, from 1930 to 1960, laid the foundations for mathematical statistics, which 

can be found in all statistical textbooks, including those used nowadays as references in many courses.  

 

As Vapnik (1998) states, the classical parametric paradigm is based on the following three beliefs: 

- To find a functional relationship from the data, the statistician is able to define a set of functions, linear in their 

parameters, that contain a good approximation of the desired function. The number of parameters describing this 

set is small. 

- The statistical law underlying the stochastic component of most real-life problems is the normal law. This belief 

has been supported by reference to the central limit theorem, which stipulates that under large conditions the sum 

of a large number of random variables can be approximated by the normal distribution. 

- The maximum likelihood method is a good tool for estimating parameters. 

In this section we will come back to the construction of the econometric paradigm, directly inspired by that of 

classical inferential statistics. 

 

Conditional Distributions and Likelihood 

 

Linear econometrics has been constructed under the assumption of individual data, which amounts to assuming 

independent2 variables (𝑌𝑖 , 𝑋𝑖). More precisely, we will assume that, conditionally to the explanatory variables 𝑋𝑖, 
variables 𝑌𝑖 are independent. We will also assume that these conditional distributions remain in the same 

parametric family, but that the parameter is a function of 𝑥. In the Gaussian linear model it is assumed that: 

 

(𝑌|𝑋 = 𝑥) ∼
ℒ
𝒩(𝜇(𝑥), 𝜎2) where 𝜇(𝑥) = 𝛽0 + 𝑥

𝑇𝛽, and 𝛽 ∈ ℝ𝑝. (1) 

                                                 
1 This approach can be compared to structural econometrics, as presented for example in Kean (2010). 
2 It is possible to consider temporal observations, then we would have time series (𝑌𝑡, 𝑋𝑡), but we will not discuss those in 

this article. 
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It is usually called a ‘linear’ model since 𝔼[𝑌|𝑋 = 𝑥] = 𝛽0 + 𝑥
𝑇𝛽 is a linear combination of the covariates. It is 

said to be a homoscedastic model if Var[𝑌|𝑋 = 𝑥] = 𝜎2, where 𝜎2 is a positive constant. To estimate the 

parameters, the traditional approach is to use the Maximum Likelihood estimator, as initially suggested by Ronald 

Fisher. In the case of the Gaussian linear model, log-likelihood is written: 

logℒ(𝛽0, 𝛽, 𝜎
2|𝑦, 𝑥) = −

𝑛

2
log[2𝜋𝜎2] −

1

2𝜎2
∑(

𝑛

𝑖=1

𝑦𝑖 − 𝛽0 − 𝑥𝑖
𝑇𝛽)2. 

Note that the term on the right, measuring a distance between the data and the model, will be interpreted as 

deviance in generalized linear models. Then we will set:  

 

(�̂�
0
, �̂� , �̂�2) = 𝑎𝑟𝑔𝑚𝑎𝑥{logℒ(𝛽0, 𝛽, 𝜎

2|𝑦, 𝑥)} 

 

From the right term, the maximum likelihood estimator is obtained by minimizing the sum of the error squares 

(the so-called “least squares” estimator) that we will find in the “machine learning” approach. The first order 

conditions allow to find the normal equations, whose matrix writing is 𝑋𝑇[𝑦 − 𝑋 �̂�] = 0, which can also be written 

(𝑋𝑇𝑋) �̂� = 𝑋𝑇𝑦. If 𝑋 is a full (column) rank matrix, then we find the classical estimator: 

�̂� = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 = 𝛽 + (𝑋𝑇𝑋)−1𝑋𝑇ε (2) 
 

using residual-based writing (as often in econometrics), 𝑦 = x𝑇β + 𝜀. Gauss Markov’s theorem ensures that this 

estimator is the unbiased linear estimator with minimum variance. It can then be shown that 

�̂� ∼
ℒ
𝒩(𝛽, 𝜎2[𝑋𝑇𝑋]−1), and in particular, if we simply need the first two moments:  

 

𝔼[�̂�] = 𝛽 and Var[�̂�] = 𝜎2[XTX]−1 

 

In fact, the normality hypothesis makes it possible to make a link with mathematical statistics, but it is possible to 

construct this estimator given by equation (2) without that Gaussian assumption. Hence, if we assume that 𝑌|𝑋 =

𝑥 ∼
ℒ
𝑥𝑇𝛽 + 𝜀, where 𝜀 have the same distribution, with 𝔼[𝜀] = 0, Var[𝜀] = 𝜎2 , and Cov[𝜀, 𝑋𝑗] = 0 for all 𝑗, then 

�̂� is an unbiased estimator of β with smallest variance among unbiased linear estimators. Furthermore, if we cannot 

get normality at finite distance, asymptotically this estimator is Gaussian, with √𝑛(�̂� − 𝛽) →
ℒ
𝒩(0, 𝛴) as 𝑛 → ∞, 

for some matrix Σ.  

 

The condition of having a full rank X matrix can be (numerically) strong in large dimensions. If it is not satisfied, 

�̂� = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 does not exist. If 𝕀 denotes the identity matrix, however, it should be noted that 

(𝑋𝑇𝑋 + 𝜆𝕀)−1𝑋𝑇𝑦 always exists, whatever 𝜆 > 0. This estimator is called the ridge estimator of level \lambda 

(introduced in the 1960s by Hoerl (1962), and associated with a regularization studied by Tikhonov, 1963). This 

estimator naturally appears in a Bayesian econometric context. 

 

Residuals 

 

It is not uncommon to introduce the linear model from the distribution of the residuals, as we mentioned earlier. 

Also, equation (1) is written as often:  

𝑦𝑖 = 𝛽0 + 𝑥𝑖
𝑇𝛽 + 𝜀𝑖 (3) 

 

where 𝜀𝑖’s are realizations of independent and identically distributed random variables (i.i.d.) from some 𝒩(0, 𝜎2). 

distribution. With a vector notation, we will write ε ∼
ℒ
𝒩(0, 𝜎2𝕀); the estimated residuals are defined as:  

�̂�𝑖 = 𝑦𝑖 − [�̂�0 + 𝑥𝑖
𝑇 �̂�] 

 

Those (estimated) residuals are basic tools for diagnosing the relevance of the model. An extension of the model 

described by equation (1) has been proposed to take into account a possible heteroscedastic feature: 

(𝑌|𝑋 = 𝑥) ∼
ℒ
𝒩(𝜇(𝑥), 𝜎2(𝑥)) 

 

where 𝜎2(𝑥) is a positive function of the explanatory variables. In that case, this model can be rewritten as : 

𝑦𝑖 = 𝛽0 + 𝑥𝑖
𝑇𝛽 + 𝜎2(𝑥i) ⋅ 𝜀𝑖 

 

where residuals are always i.i.d., with unit variance: 
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𝜀𝑖 =
𝑦𝑖 − [𝛽0 + 𝑥𝑖

𝑇𝛽]

𝜎(𝑥𝑖)
 

 

While equations based on residuals are popular in linear econometrics when the dependent variable is continuous, 

it is no longer popular with counting models, or logistic regression. However, writing using an error term (as in 

equation (3)) raises many questions about the representation of an economic relationship between two quantities. 

For example, it can be assumed that there is a relationship (linear to begin with) between the quantities of a traded 

good, 𝑞 and its price 𝑝. This allows us to imagine a supply equation: 

𝑞𝑖 = 𝛽0 + 𝛽1𝑝𝑖 + 𝑢𝑖 
(𝑢𝑖 being an error term) where the quantity sold depends on the price, but in an equally legitimate way, one can 

imagine that the price depends on the quantity produced (what one could call a demand equation):  

𝑝𝑖 = 𝛼0 + 𝛼1𝑞𝑖 + 𝑣𝑖 
 

(𝑣𝑖 denoting another error term). Historically, the error term in equation (3) could be interpreted as an idiosyncratic 

error on the variable 𝑦, the so-called explanatory variables being assumed to be fixed, but this interpretation often 

makes the link between an economic relationship and a complicated economic model difficult, the economic theory 

speaking abstractly about a relationship between a magnitude, the econometric model imposing a specific shape 

(what magnitude is 𝑦 and what magnitude is 𝑥) as shown in more detail in Morgan (1990) Chapter 7. 

 

Geometric Properties of this Linear Model 

 

Let’s define the scalar product in ℝ𝑑, ⟨𝑎, 𝑏⟩ = 𝑎𝑇𝑏, and let’s note ‖ ⋅ ‖ the associated Euclidean standard, ‖𝑎‖ =

√𝑎𝑇𝑎 (denoted ∥⋅∥ℓ2  in the following sections). Note ℰ𝑋 the space generated by all linear combinations of the 𝑥 

components (including the constant). If the explanatory variables are linearly independent, 𝑋 is a full (column) 

rank matrix and ℰ𝑋 is a space of dimension 𝑝 + 1. Let’s assume from now on that the variables 𝑥 and 𝑦 are centered 

here. Note that no distributional hypothesis is made in this section, the geometric properties are derived from the 

properties of expectation and variance in the set of finite variance variables. 

With this notation, it should be noted that the linear model is written 𝑚(x) = ⟨x, β⟩. The space ℋ𝑧 = {𝑥 ∈
ℝ𝑘:𝑚(𝑥) = 𝑧} is a hyperplane (affine) that separates the space in two. Let’s define the orthogonal projection 

operator on ℋ0, 𝛱𝒳 = 𝑋[𝑋
𝑇𝑋]−1𝑋𝑇. Thus, the forecast that can be made for y is: 

 

�̂� = 𝑋[𝑋𝑇𝑋]−1𝑋𝑇𝑦 = 𝛱𝒳y. (4) 
 

As ε̂ = 𝑦 − �̂� = (𝕀 − 𝛱𝒳)𝑦 = 𝛱𝒳⊥𝑦, we note that �̂� ⊥ 𝑥, which will be interpreted as meaning that residuals are 

a term of innovation, unpredictable in the sense that 𝛱𝒳 �̂� = 0. 

 

The Pythagorean theorem is written here: 

 

‖𝑦‖2 = ‖𝛱𝒳𝑦‖
2 + ‖𝛱𝒳⊥𝑦‖

2 = ‖𝛱𝒳𝑦‖
2 + ‖𝑦 − 𝛱𝒳𝑦‖

2 = ‖ �̂� ‖2 + ‖ �̂� ‖2 

 

which is classically translated in terms of the sum of squares: 

∑𝑦𝑖
2

𝑛

𝑖=1⏟  
𝑛×𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

= ∑�̂�
𝑖
2

𝑛

𝑖=1⏟  
𝑛×𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

+ ∑(

𝑛

𝑖=1

𝑦𝑖 − �̂�𝑖)
2

⏟        
𝑛×𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

 

 

The coefficient of determination 𝑅2 is then interpreted as the square of the cosine of the angle 𝜃 between 𝑦 and 

𝛱𝒳y : 

𝑅2 =
‖𝛱𝒳𝑦‖

2

‖𝑦‖2
= 1 −

‖𝛱𝒳⊥𝑦‖
2

‖y‖2
= cos2(𝜃). 

 

An important application was obtained by Frish & Waugh (1933), when the explanatory variables are divided into 

two groups,  𝑋 = [𝑋1|𝑋2], so that the regression becomes: 

 

𝑦 = 𝛽0 + 𝑋1𝛽1 + 𝑋2𝛽2 + 𝜀 
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Frish & Waugh (1933) showed that two successive projections could be considered. Indeed, if 𝑦2
⋆ = 𝛱𝒳1⊥𝑦 and 

𝑋2
⋆ = 𝛱𝒳1⊥𝑋2, we can show that : 

�̂�
2
= [𝑋2

⋆𝑇𝑋2
⋆]−1𝑋2

⋆𝑇𝑦2
⋆ 

 

In other words, the overall estimate is equivalent to the combination of independent estimates of the two models 

if 𝑋2
⋆ = 𝑋2, i.e. 𝑋2 ∈ ℰ𝑋1

⊥ , which can be noted 𝑥1 ⊥ 𝑥2. We obtain here the Frisch-Waugh theorem which 

guarantees that if the explanatory variables between the two groups are orthogonal, then the overall estimate is 

equivalent to two independent regressions, on each of the sets of explanatory variables. This is a theorem of double 

projection, on orthogonal spaces. Many results and interpretations are obtained through geometric interpretations 

(fundamentally related to the links between conditional expectation and the orthogonal projection in space of 

variables of finite variance). 

 

This geometric interpretation might help to get a better understanding of the problem of under-identification, i.e. 

the case where the real model would be 𝑦𝑖 = 𝛽0 + 𝑥1
𝑇𝛽1 + 𝑥2

𝑇𝛽2 + 𝜀𝑖, but the estimated model is 𝑦𝑖 = 𝛽0 +
𝑥1
𝑇𝑏1 + 𝜂𝑖. The maximum likelihood estimator of 𝑏1 is : 

 

�̂�1 = (𝑋1
𝑇𝑋1)

−1𝑋1
𝑇𝑦

= (𝑋1
𝑇𝑋1)

−1𝑋1
𝑇[𝑋1,𝑖𝛽1 + 𝑋2,𝑖𝛽2 + 𝜀]

= (𝑋1
𝑇𝑋1)

−1𝑋1
𝑇𝑋1𝛽1 + (𝑋1

𝑇𝑋1)
−1𝑋1

𝑇𝑋2𝛽2 + (𝑋1
𝑇𝑋1)

−1𝑋1
𝑇𝜀

= 𝛽1 + (𝑋1′𝑋1)
−1𝑋1

𝑇𝑋2𝛽2⏟          
β12

+ (𝑋1
𝑇𝑋1)

−1𝑋1
𝑇𝜀⏟        

𝜈𝑖

 

so that 𝔼[�̂�1] = 𝛽1 + 𝛽12, the bias (𝛽12) being null only in the case where 𝑋1
𝑇𝑋2 = 0 (i.e. 𝑋1 ⊥ 𝑋2): we find here 

a consequence of the Frisch-Waugh theorem. 

 

On the other hand, over-identification corresponds to the case where the real model would be 𝑦𝑖 = 𝛽0 + 𝑥1
𝑇𝛽1 +

𝜀𝑖, but the estimated model is 𝑦𝑖 = 𝛽0 + 𝑥1
𝑇𝑏1 + 𝑥2

𝑇𝑏2 + 𝜂𝑖. In this case, the estimate is unbiased, in the sense 

that 𝔼(�̂�1) = 𝛽1 but the estimator is not efficient. Later on, we will discuss an effective method for selecting 

variables (and avoid over-identification). 

 

From parametrics to non-parametrics 

 

We can rewrite equation (4) in the form: 

�̂� = 𝑋 �̂� = 𝑋[𝑋𝑇𝑋]−1𝑋𝑇𝑦 = 𝛱𝒳y 

 

which helps us to see the forecast directly as a linear transformation of the observations. More generally, a linear 

predictor can be obtained by considering 𝑚(𝑥) = 𝑠x
𝑇𝑦, where sx is a weight vector, which depends on x, 

interpreted as a smoothing vector. Using the vectors sx𝑖, calculated from the observations 𝑥𝑖, we obtain a 𝑛 × 𝑛 

matrix 𝑆 so that �̂� = 𝑆𝑦. In the case of the linear regression described above,  𝑠𝑥 = 𝑋[𝑋
𝑇𝑋]−1𝑥, 𝑆 = 𝑋[𝑋𝑇𝑋]−1𝑋 

and in that case 𝑡𝑟𝑎𝑐𝑒(𝑆) is the number of columns in the 𝑋 matrix (the number of explanatory variables). In this 

context of more general linear predictors, trace(S) is often seen as equivalent to the number of parameters (or 

complexity, or dimension, of the model), and 𝜈 = 𝑛 − 𝑡𝑟𝑎𝑐𝑒(𝑆) is then the number of degrees of freedom (see 

Ruppert et al., 2003; Simonoff, 1996). The principle of parsimony says that we should minimize this dimension 

(the trace of the matrix S) as much as possible. But in the general case, this dimension is more to derive, explicitely. 

 

The estimator introduced by Nadaraya (1964) and Watson (1964), in the case of a simple non-parametric 

regression, is also written in this form since: 

�̂�ℎ (𝑥) = s𝑥
𝑇y =∑𝑠𝑥,𝑖

𝑛

𝑖=1

𝑦𝑖  with 𝑠𝑥,𝑖 =
𝐾ℎ(𝑥 − 𝑥𝑖)

𝐾ℎ(𝑥 − 𝑥1) + ⋯+ 𝐾ℎ(𝑥 − 𝑥𝑛)
, 

 

where 𝐾(⋅) is a kernel function, which assigns a value that is lower the closer 𝑥𝑖 is to 𝑥, and ℎ > 0 is the bandwidth. 

The introduction of this meta parameter ℎ is an important issue, as it should be chosen wisely. Using asymptotic 

developments, we can show that if 𝑋 has density 𝑓, 

𝑏𝑖𝑎𝑠[�̂�ℎ (𝑥)] = 𝔼[�̂�ℎ (𝑥)] − 𝑚(𝑥) ∼ ℎ
2 (
𝐶1
2
𝑚″(𝑥) + 𝐶2𝑚

′(𝑥)
𝑓′(𝑥)

𝑓(𝑥)
)  
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while Var[�̂�ℎ (𝑥)] ∼
𝐶3
𝑛ℎ

𝜎(𝑥)

𝑓(𝑥)
 

 

for some constants that can be estimated (see Simonoff (1996) for a discussion). These two functions evolve 

inversely with ℎ, as shown in Figure C1-I (where the metaparameter is actually ℎ−1), so a trade-off is necessary. 

The natural idea is then to try to minimize the mean square error, the MSE, defined as, 𝑏𝑖𝑎𝑠[�̂�ℎ (𝑥)]
2 +

Var[�̂�ℎ (𝑥)], and them integrate over 𝑥, which gives an optimal value for ℎ of the form ℎ⋆ = 𝑂(𝑛−1/5), and 

reminds us of Silverman’s rule – see Silverman (1986). In larger dimensions, for continuous x variables, a 

multivariate kernel with matrix bandwidth H can be used, and : 

 

𝔼[�̂�𝐻 (𝑥)] ∼ 𝑚(x) +
𝐶1
2
𝑡𝑟𝑎𝑐𝑒(𝐻𝑇𝑚″(𝑥)𝐻) + 𝐶2

𝑚′(𝑥)𝑇𝐻𝐻𝑇𝛻𝑓(𝑥)

𝑓(𝑥)
  

and Var[�̂�𝐻 (𝑥)] ∼
𝐶3

𝑛 det(𝐻)

𝜎(𝑥)

𝑓(𝑥)
 

 

If 𝐻 is a diagonal matrix, with the same term ℎ on the diagonal, then ℎ⋆ = 𝑂(𝑛−1/(4+dim(x)))]. However, in 

practice, there will be more interest in the integrated version of the quadratic error,  

 

𝑀𝐼𝑆𝐸(�̂�ℎ) = 𝔼[𝑀𝑆𝐸(�̂�ℎ (𝑋))] = ∫𝑀𝑆𝐸(�̂�ℎ (𝑥))𝑑𝐹(𝑥), 
 

and we can prove that :  

𝑀𝐼𝑆𝐸[�̂�ℎ] ∼
ℎ4

4
(∫ 𝑥2𝑘(𝑥)𝑑𝑥)

2
∫ [𝑚″(𝑥) + 2𝑚′(𝑥)

𝑓′(𝑥)

𝑓(𝑥)
]2𝑑𝑥

⏞                              
𝑏𝑖𝑎𝑠2

+
𝜎2

𝑛ℎ
∫ 𝑘2(𝑥)𝑑𝑥 ⋅ ∫

𝑑𝑥

𝑓(𝑥)

⏞            
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

,
  

 

as 𝑛 → ∞ and 𝑛ℎ → ∞. Here we find an asymptotic relationship that again recalls Silverman’s (1986) order of 

magnitude,  

ℎ⋆ = 𝑛−
1
5(

𝐶1∫
𝑑𝑥
𝑓(𝑥)

𝐶2∫ [𝑚″(𝑥) + 2𝑚′(𝑥)
𝑓′(𝑥)
𝑓(𝑥)

]𝑑𝑥

)

1
5

 

 

The main problem here, in practice, is that many of the terms in the expression above are unknown. Automatic 

learning offers computational techniques, when the econometrician used to search for asymptotic (mathematical) 

properties. 

 

Figure C1-I 

Optimal Meta-Parameter (or Goldilocks’ Problem): It Should Be neither Too Large (Too Much 

Variance), nor Too Small (Too Much Bias) 
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Exponential Family and Linear Models  

 

The Gaussian linear model is a special case of a large family of linear models, obtained when the conditional 

distribution of 𝑌 (given the covariates) belongs to the exponential family: 

 

𝑓(𝑦𝑖|𝜃𝑖 , 𝜙, 𝑥𝑖 ) = exp (
𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)

𝑎(𝜙)
+ 𝑐(𝑦𝑖 , 𝜙))  with 𝜃𝑖 = 𝜓(𝑥𝑖

𝑇𝛽) 

 

Functions 𝑎, 𝑏 and 𝑐 are specified according to the type of exponential law (studied extensively in statistics since 

Darmoix (1935), as Brown (1986) reminds us), and 𝜓 is a one-to-one mapping that the user must specify. Log-

likelihood has then a simple expression: 

 

logℒ(𝜃, 𝜙|𝑦) =∏log

𝑛

𝑖=1

𝑓(𝑦𝑖|𝜃𝑖 , 𝜙) =
∑ 𝑦𝑖
𝑛
𝑖=1 𝜃𝑖 − ∑ 𝑏𝑛

𝑖=1 (𝜃𝑖)

𝑎(𝜙)
+∑𝑐

𝑛

𝑖=1

(𝑦𝑖 , 𝜙) 

 

and the first order condition is then written: 
𝜕logℒ(𝜃, 𝜙|𝑦)

𝜕𝛽
= 𝑋𝑇𝑊−1[𝑦 − �̂�] = 0 

 

based on Müller’s (2011) notations, where 𝑊 is a weight matrix (which depends on 𝛽). Given the link between 𝜃 

and the expectation of 𝑌, instead of specifying the function 𝜓(⋅), we will tend to specify the link function 𝑔(⋅) 
defined by: 

�̂� = 𝑚(𝑥) = 𝔼[𝑌|𝑋 = 𝑥] = 𝑔−1(𝑥𝑇𝛽) 
 

For the Gaussian linear regression, we consider an identity link, while for the Poisson regression, the natural link 

(called canonical) is the logarithmic link. Here, as 𝑊 depends on 𝛽 (with 𝑊 = diag(𝛻𝑔(�̂�)Var[𝑦])) there is 

generally no explicit formula for the maximum likelihood estimator. But an iterative algorithm makes it possible 

to obtain a numerical approximation. By setting: 

 

𝑧 = 𝑔(�̂�) + (𝑦 − �̂�) ⋅ 𝛻𝑔(�̂�) 
 

corresponding to the error term of a Taylor development in order 1 of 𝑔, we obtain an algorithm of the form: 

�̂�
𝑘+1

= [𝑋𝑇𝑊𝑘
−1𝑋]−1𝑋𝑇𝑊𝑘

−1𝑧𝑘 

 

By iterating, we will define �̂� = �̂�
∞

, and we can show that – with some additional technical assumptions (detailed 

in Müller (2011)) – this estimator is asymptotically Gaussian, with: 

 

√𝑛(�̂� − 𝛽) →
ℒ
𝒩(0, 𝐼(𝛽)−1), 

 

where numerically 𝐼(𝛽) = 𝜙 ⋅ [𝑋𝑇𝑊∞
−1𝑋]. 

 

From a numerical point of view, the computer will solve the first-order condition, and actually, the law of 𝑌 does 

not really intervene. For example, one can estimate a “Poisson regression” even when 𝑦 ∈ ℝ+, not necessarily 𝑦 ∈
ℕ. In other words, the distribution of 𝑌 is only an interpretation here, and the algorithm could be introduced in a 

different way (as we will see later on), without necessarily having an underlying probabilistic model. 

 

Logistic Regression  

 

Logistic regression is the generalized linear model obtained with a Bernoulli’s distribution, and a link function 

which is the quantile function of a logistic law (which corresponds to the canonical link in the sense of the 

exponential family). Considering the form of Bernoulli’s law, econometrics proposes a model for 𝑦𝑖 ∈ {0,1}, in 

which the logarithm of the odds follows a linear model:  

 

log (
ℙ[𝑌 = 1|𝑋 = 𝑥]

ℙ[𝑌 ≠ 1|𝑋 = 𝑥]
) = 𝛽0 + 𝑥

𝑇𝛽 

or: 
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𝔼[𝑌|𝑋 = 𝑥] = ℙ[𝑌 = 1|𝑋 = 𝑥] =
𝑒𝛽0+𝑥

𝑇𝛽

1 + 𝑒𝛽0+𝑥
𝑇𝛽
= 𝐻(𝛽0 + 𝑥

𝑇𝛽),where 𝐻(⋅) =
exp(⋅)

1 + exp(⋅)
 

 

is the cumulative distribution function of a logistic variable. The estimation of (𝛽0, β) is performed by maximizing 

the likelihood:  

ℒ =∏(
𝑒𝛽0+𝑥𝑖

𝑇𝛽

1 + 𝑒𝛽0+𝑥𝑖
𝑇𝛽
)

𝑦𝑖𝑛

𝑖=1

(
1

1 + 𝑒𝛽0+𝑥𝑖
𝑇𝛽
)

1−𝑦𝑖

 

It is said to be a linear model because iso-probability curves here are the parallel hyperplanes 𝑏0 + 𝑥
𝑇𝛽. Rather 

than this model, popularized by Berkson (1944), some will prefer the probit model (see Berkson, 1951), introduced 

by Bliss (1934). In this model:  

 

𝔼[𝑌|𝑋 = 𝑥] = ℙ[𝑌 = 1|𝑋 = 𝑥] = 𝛷(𝛽0 + 𝑥
𝑇𝛽) 

 

where 𝛷 denotes the distribution function of the reduced centered normal distribution. This model has the 

advantage of having a direct link with the Gaussian linear model, since : 

 

𝑦𝑖 = 1(𝑦𝑖
⋆ > 0) with 𝑦𝑖

⋆ = 𝛽0 + 𝑥
𝑇𝛽 + 𝜀𝑖 

 

where the residuals are Gaussian, 𝒩(0, 𝜎2). An alternative is to have centered residuals of unit variance, and to 

consider a latent modeling of the form 𝑦𝑖 = 1(𝑦𝑖
⋆ > 𝜉) (where 𝜉 will be fixed). As we can see, these techniques 

are fundamentally linked to an underlying stochastic model. In the body of the article, we present several 

alternative techniques – from the learning literature – for this classification problem (with two classes, here 0 and 

1). 

 

Regression in High Dimension 

 

As we mentioned earlier, the first order condition 𝑋𝑇(𝑋 �̂� − y) = 0 is solved numerically by performing a QR 

decomposition, at a cost which consists in 𝑂(𝑛𝑝2) operations (where 𝑝 is the rank of 𝑋𝑇𝑋). Numerically, this 

calculation can be long (either because 𝑝 is large or because - to a lesser extent - because 𝑛 is large), and a simpler 

strategy may be to sub-sample. Let 𝑛𝑠 ≪ 𝑛, and consider a sub-sample size 𝑛𝑠 from {1,⋯ , 𝑛}. Then �̂�
𝑠
=

(𝑋𝑠
𝑇𝑋𝑠)

−1𝑋𝑠
𝑇𝑦𝑠 is a good approximation of �̂� as shown by Dhillon et al. (2014). However, this algorithm is 

dangerous if some points have a high leverage (i.e. 𝐿𝑖 = 𝑥𝑖(𝑋
𝑇𝑋)−1𝑥𝑖

𝑇). Tropp (2011) proposes to transform the 

data (in a linear way), but a more popular approach is to do non-uniform sub-sampling, with a probability related 

to the influence of observations (defined by 𝐼𝑖 = �̂�𝑖 𝐿𝑖/(1 − 𝐿𝑖)
2, and which unfortunately can only be calculated 

once the model is estimated). 

 

In general, we will talk about massive data when the data table of size does not fit in the RAM memory of the 

computer. This situation is often encountered in statistical learning nowadays with very often 𝑝 ≪ 𝑛. This is why, 

in practice, many libraries of algorithms assimilated to machine learning use iterative methods to solve the first-

order condition. When the parametric model to be calibrated is indeed convex and semi-differentiable, it is possible 

to use, for example, the stochastic gradient descent method as suggested by Bottou (2010). This last one allows to 

free oneself at each iteration from the calculation of the gradient on each observation of our learning base. Rather 

than making an average descent at each iteration, we start by drawing (without replacement) an observation x𝑖 
among the 𝑛 available. The model parameters are then corrected so that the prediction made from x𝑖 is as close as 

possible to the true value 𝑦𝑖 . The method is then repeated until all the data have been reviewed. In this algorithm 

there is therefore as much iteration as there are observations. Unlike the gradient descent algorithm (or Newton’s 

method) at each iteration, only one gradient vector is calculated (and no longer 𝑛). However, it is sometimes 

necessary to run this algorithm several times to increase the convergence of the model parameters. If the objective 

is, for example, to minimize a loss function ℓ between the model 𝑚𝛽(𝑥) and 𝑦 (like the quadratic loss function, as 

in the Gaussian linear regression) the algorithm can be summarized as follows:  

- Step 0: Mix the data 

- Iteration step: For 𝑡 ≥ 0, we draw 𝑖 ∈ {1,⋯ , 𝑛} without replacement, and we set: 

𝛽𝑡+1 = 𝛽𝑡 − 𝛾𝑡
𝜕ℓ(𝑦𝑖 , 𝑚𝛽𝑡(𝑥𝑖))

𝜕𝛽
 

This algorithm can be repeated several times as a whole depending on the user’s needs. The advantage of this 

method is that at each iteration, it is not necessary to calculate the gradient on all observations (more sum). It is 
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therefore suitable for large databases. This algorithm is based on a convergence in probability towards a 

neighborhood of the optimum (and not the optimum itself). 

 

Goodness of fit and model selection 

 

In the Gaussian linear model, the determination coefficient – noted 𝑅2 – is often used as a measure of fit quality. 

It is based on the variance decomposition formula discussed previously: 

1

𝑛
∑(

𝑛

𝑖=1

𝑦𝑖 − 𝑦)
2

⏟        
𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

=
1

𝑛
∑(

𝑛

𝑖=1

𝑦𝑖 − �̂�𝑖)
2

⏟          
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

+
1

𝑛
∑(

𝑛

𝑖=1

�̂�
𝑖
− 𝑦)2

⏟        
𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

 (5)
 

 

The 𝑅2 is defined as the ratio of explained variance and total variance, another interpretation of the coefficient that 

we had introduced from the geometry of the least squares: 

 

𝑅2 =
∑ (𝑛
𝑖=1 𝑦𝑖 − 𝑦)

2 − ∑ (𝑛
𝑖=1 𝑦𝑖 − �̂�𝑖)

2

∑ (𝑛
𝑖=1 𝑦𝑖 − 𝑦)

2
 

 

The sums of the error squares in this writing can be rewritten as a log-likelihood. However, it should be 

remembered that, up to one additive constant (obtained with a saturated model) in generalized linear models, 

deviance is defined (up to an additive constant) by: 

 

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒(𝛽) = −2log[ℒ] 
 

which can also be denoted Deviance(ŷ). A null deviance can be defined as the one obtained without using the 

explanatory variables x, so that �̂�
𝑖
= 𝑦. It is then possible to define, in a more general context (with a non-Gaussian 

distribution for 𝑌): 

 

𝑅2 =
𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒(𝑦) − 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒(�̂�)

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒(𝑦)
= 1 −

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒(�̂�)

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒(𝑦)
. 

 

However, this measure cannot be used to choose a model, if one wishes to have a relatively simple model in the 

end, because it increases artificially with the addition of explanatory variables without significant effect. We will 

then tend to prefer the adjusted 𝑅2 : 

 

𝑅
2
= 1 − (1 − 𝑅2)

𝑛 − 1

𝑛 − 𝑝
= 𝑅2 − (1 − 𝑅2)

𝑝 − 1

𝑛 − 𝑝⏟        
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

, 

where 𝑝 is the number of parameters of the model. Here, the quality of fit will be penalized overly too complex 

models. 

 

A similar idea will be found in the Akaike criterion, where 𝐴𝐼𝐶 = 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 + 2 ⋅ 𝑝 or in (bayesian) Schwarz 

criterion  𝐵𝐼𝐶 = 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 + log(𝑛) ⋅ 𝑝. In large dimensions (typically 𝑝 > √𝑛), we will tend to use a corrected 

AIC defined as: 

𝐴𝐼𝐶𝑐 = 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 + 2 ⋅ 𝑝 ⋅
𝑛

𝑛 − 𝑝 − 1
 

 

These criterias are used in so-called “stepwise” methods. In the “forward” method, we start by regressing to the 

constant, then we add one variable at a time, retaining the one that lowers the AIC criterion the most, until adding 

a variable increases the AIC criterion of the model. In the “backward” method, we start by regressing on all 

variables, then we remove one variable at a time, removing the one that lowers the AIC criterion the most, until 

removing a variable increases the AIC criterion from the model. 

 

Another justification for this notion of penalty (we will come back to this idea in machine learning) can be the 

following. Let us consider an estimator in the class of linear predictors: 

 

ℳ = {𝑚:  𝑚(𝑥) = 𝑠ℎ(x)
𝑇𝑦 where 𝑆 = (𝑠(𝑥1),⋯ , 𝑠(𝑥𝑛))

𝑇
 is a smoothing matrix} 
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and assume that y = 𝑚0(𝑥) + ε, with 𝔼[ε] = 0 and Var[ε] = 𝜎2𝕀, so that 𝑚0(𝑥) = 𝔼[𝑌|𝑋 = 𝑥]. From a 

theoretical point of view, the quadratic risk, associated with an estimated model �̂�, 𝔼[(𝑌 − �̂� (X))2] is written: 

ℛ(�̂�) = 𝔼[(𝑌 − 𝑚0(𝑋))
2]⏟          

𝑒𝑟𝑟𝑜𝑟

+ 𝔼[(𝑚0(𝑋) − 𝔼[�̂� (𝑋)])
2]⏟                

𝑏𝑖𝑎𝑠

+ 𝔼[(𝔼[�̂� (𝑋)] − �̂� (𝑋))2]⏟                
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

 

 

if 𝑚0 is the true model. The first term is sometimes called “Bayes error”, and does not depend on the estimator 

selected �̂�. 

 

The empirical quadratic risk, associated with a model 𝑚, is here: 

ℛ̂𝑛 (𝑚) =
1

𝑛
∑(

𝑛

𝑖=1

𝑦𝑖 −𝑚(𝑥𝑖))
2 =

1

𝑛
∥ 𝑦 − 𝑚(𝑥) ∥2 

(by convention). We recognize here the mean square error, “mse”, which will more generally give the “risk” of 

the model 𝑚 when using another loss function (as we will discuss later on). It could be proved that: 

𝔼[ℛ̂𝑛 (𝑚)] =
1

𝑛
∥ 𝑚0(𝑥) − 𝑚(𝑥) ∥

2+
1

𝑛
𝔼(∥ 𝑦 − 𝑚0(𝑥) ∥

2) 

 and : 

𝑛𝔼[ℛ̂𝑛 (�̂�)] = 𝔼(∥ 𝑦 − �̂� (𝑥) ∥
2) =∥ (𝕀 − 𝑆)𝑚0 ∥

2+ 𝜎2 ∥ 𝕀 − 𝑆 ∥2 

 

so that the (real) risk of �̂� is: 

ℛ𝑛(�̂�) = 𝔼[ℛ̂𝑛 (�̂�)] + 2
𝜎2

𝑛
𝑡𝑟𝑎𝑐𝑒(S). 

So, if trace(S) ≥ 0, (which is not a too strong assumption), the empirical risk underestimates the true risk of the 

estimator. Actually, we recognize here the number of degrees of freedom of the model, the right-hand term 

corresponding to Mallow’s 𝐶𝑝 introduced in Mallows (1973) using not the deviance but the 𝑅2). 

 

Machine Learning Philosophy 

 

In parallel with these tools developed by, and for economists, a whole literature has been developed on similar 

issues, centered on the problems of prediction and forecasting. For Breiman (2001a), a first difference comes from 

the fact that the statistic has developed around the principle of inference (or to explain the relationship linking 𝑦 

to variables 𝑥) while another culture is primarily interested in prediction. In a discussion that follows the article, 

David Cox states very clearly that in statistic (and econometrics) “predictive success […] is not the primary basis 

for model choice”. We will get back here on the roots of automatic learning techniques. The important point, as 

we will see, is that the main concern of machine learning is related to the generalization properties of a model, i.e. 

its performance – according to a criterion chosen a priori – on new data, and therefore on non-sample tests. 

 

A Learning Machine 

 

Nowadays, we speak of “machine learning” to describe a whole set of techniques, often computational, as 

alternatives to the classical econometric approach. Before characterizing them as much as possible, it should be 

noted that historically other names have been given. For example, Friedman (1997) proposes to make the link 

between statistics (which closely resemble econometric techniques – hypothesis testing, ANOVA, linear 

regression, logistics, GLM, etc.) and what was then called “data mining” (which then included decision trees, 

methods from the closest neighbors, neural networks, etc.). The bridge between those two cultures corresponds to 

“statistical learning” techniques described in Hastie et al. (2009). But one should keep in mind that machine 

learning is a very large field of research. 

 

The so-called “natural” learning (as opposed to machine learning) is that of children, who learn to speak, read and 

play. Learning to speak means segmenting and categorizing sounds, and associating them with meanings. A child 

also learns simultaneously the structure of his or her mother tongue, and acquires a set of words describing the 

world around him or her. Several techniques are possible, ranging from rote learning, generalization, discovery, 

more or less supervised or autonomous learning, etc. The idea in artificial intelligence is to take inspiration from 

the functioning of the brain to learn, to allow “artificial” or “automatic” learning, by a machine. A first application 

was to teach a machine to play a game (tic-tac-toe, chess, go, etc.). An essential step is to explain the objective it 

must achieve to win. One historical approach has been to teach the machine the rules of the game. If it allows a 

machine to play, it will not help the machine to play well. Assuming that the machine knows the rules of the game, 

and that it has a choice between several dozen possible moves, which one should it choose? The classical approach 

in artificial intelligence uses the so-called min-max algorithm using an evaluation function: in this algorithm, the 
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machine searches forward in the possible moves tree, as far as the calculation resources allow (about ten moves in 

chess, for example). Then, it calculates different criteria (which have been previously indicated to her) for all 

positions (number of pieces taken, or lost, occupancy of the center, etc. in our example of the chess game), and 

finally, the machine plays the move that allows it to maximize its gain. Another example may be the classification 

and recognition of images or shapes. For example, the machine must identify a number in a handwritten 

handwriting (checks, ZIP code on envelopes, etc.). It is a question of predicting the value of a variable 𝑦, knowing 

that a priori 𝑦 ∈ {0,1,2,⋯ ,8,9}. A classical strategy is to provide the machine with learning samples, in other 

words here millions of labelled (identified) images of handwritten numbers. A simple (and natural) strategy is to 

use a decision criterion based on the closest neighbors whose labels are known (using a predefined metric).  

 

The method of the closest neighbors (“𝑘-nearest neighbors”) can be described as follows: we consider (as in the 

previous part) a set of 𝑛 observations, i. e. pairs (𝑦𝑖 , 𝑥𝑖) with 𝑥𝑖 ∈ ℝ
𝑝. Let us consider a distance 𝛥 on ℝ𝑝 (the 

Euclidean distance or the Mahalanobis distance, for example). Given a new observation 𝑥 ∈ ℝ𝑝 the Euclidean 

distance or the Mahalanobis distance, for example). Given a new observation 𝑥𝑖 and 𝑥, in the sense that 𝛥(𝑥1, 𝑥) ≤
𝛥(𝑥2, 𝑥) ≤ ⋯ ≤ 𝛥(𝑥𝑛 , 𝑥) then we can consider as prediction for y the average of the 𝑘 nearest neighbors: 

𝑚𝑘(𝑥) =
1

𝑘
∑𝑦𝑖

𝑘

𝑖=1

. 

 

Learning here works by induction, based on a sample (called the learning – or training – sample). 

 

Automatic learning includes those algorithms that give computers the ability to learn without being explicitly 

programmed (as Arthur Samuel defined it in 1959). The machine will then explore the data with a specific 

objective (such as searching for the nearest neighbors in the example just described). Tom Mitchell proposed a 

more precise definition in 1998: a computer program is said to learn from experience 𝐸 in relation to a task 𝑇 and 

a performance measure 𝑃, if its performance on 𝑇, measured by 𝑃, improves with experience 𝐸. Task 𝑇 can be a 

defect score for example, and performance 𝑃 can be the percentage of errors made. The system learns if the 

percentage of predicted defects increases with experience. 

 

As we can see, machine learning is basically a problem of optimizing a criterion based on data (from now on called 

learning). Many textbooks on machine learning techniques propose algorithms, without ever mentioning any 

probabilistic model. In Watt et al. (2016) for example, the word “probability” is mentioned only once, with this 

footnote that will surprise and make smile any econometricians, “the logistic regression can also be interpreted 

from a probabilistic perspective” (p. 86). But many recent books offer a review of machine learning approaches 

using probabilistic theories, following the work of Vaillant and Vapnik. By proposing the paradigm of “probably 

almost correct” learning (PAC), a probabilistic flavor has been added to the previously very computational 

approach, by quantifying the error of the learning algorithm (usually in a classification problem). 

 

The probabilistic formalism in the 1980’s 

 

We have a training sample, with observations (𝑥𝑖 , 𝑦𝑖) where the variable 𝑦 is in a set 𝒴. In the case of 

classification, 𝒴 = {−1,+1}, but a relatively general set can be considered3. A predictor 𝑚 taking values in 𝒴, 

used to label (or classify) future new observations, using some features that lie in a set 𝒳. It is assumed that the 

labels are produced by an (unknown) classifier 𝑓 called target. For a statistician, this function would be the real 

model. Naturally, we want to build 𝑚 as close as possible to 𝑓. Let ℙ be a (unknown) distribution on 𝒳. The error 

of 𝑚 with respect to target 𝑓 is defined as ℛℙ,𝑓(𝑚) = ℙ[𝑚(𝑋) ≠ 𝑓(𝑋)], where 𝑋 ∼ ℙ or equivalently, 

ℛℙ,𝑓(𝑚) = ℙ[{𝑥 ∈ 𝒳:𝑚(𝑥) ≠ 𝑓(𝑥)}]. To obtain our “optimal” classifier, it becomes necessary to assume that 

there is a link between the data in our sample and the pair (ℙ, 𝑓), i.e. a data generation model. We will then assume 

that the 𝑥𝑖 are obtained by independent draws according to ℙ, and that then 𝑦𝑖 = 𝑓(𝑥𝑖). 
 

We can define the empirical risk of a classifier 𝑚, ℛ̂ (𝑚) =
1

𝑛
∑ 1𝑛
𝑖=1 (𝑚(𝑥𝑖) ≠ 𝑦𝑖). 

It is important to recognize that a perfect model cannot be found, in the sense that ℛℙ,𝑓(𝑚) = 0. Indeed, if we 

consider the simplest case, with 𝒳={𝑥1, 𝑥2} such that ℙ({𝑥1}) = 𝑝 and ℙ({𝑥2}) = 1 − 𝑝. The probability of never 

observing {𝑥2} among the 𝑛 observations is (1 − 𝑝)𝑛, and if 1 < 1/𝑛,, it is quite likely never to observe {𝑥2} so 

it can never be predicted. We cannot therefore hope to have a zero risk whatever ℙ. And more generally, it is also 

                                                 
3 Econometricians will always prefer {0,1}, because of connections with the Bernoulli distribution (and corresponds to lower 

and upper bound of probabilities). 
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possible to observe {𝑥1}  and {𝑥2}, and despite everything, to make mistakes on the labels. Also, instead of looking 

for a perfect model, we can try to have an “approximately correct” model. We will then try to find mmm such that 

ℛℙ,𝑓(𝑚) ≤ 𝜖, where 𝜖 is an a priori specified threshold. But even this condition is too strong, and cannot be 

fulfilled. Thus, we will usually as to have ℛℙ,𝑓(𝑚) ≤ 𝜖 with some probability 1 − 𝛿. Hence, we will try to be 

“probably approximately correct” (PAC), allowing to make a mistake with a probability 𝛿, again fixed a priori. 

 

The interpretation is that since we cannot learn (in the PAC sense) about all the functions 𝑚 we will then force 𝑚 

to belong to a particular class, noted ℳ. Let us suppose, to start with, that ℳ contains a finite number of possible 

models. We can then show that for all 𝜖 and 𝛿, for all ℙ and 𝑓, if we have enough observations (more precisely 

𝑛 ≥ 𝜖−1log[𝛿−1|ℳ|], then with a greater probability than 1 − 𝛿, then ℛℙ,𝑓(𝑚
⋆) ≤ 𝜖  where: 

𝑚⋆ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛
𝑚∈ℳ

{
1

𝑛
∑1

𝑛

𝑖=1

(𝑚(𝑥𝑖) ≠ 𝑦𝑖)} 

in other words 𝑚⋆ is a model in class ℳ that minimizes empirical risk. 

 

We can go a little further, staying in the case where 𝒴 = {−1,+1}. A ℳ class of classifiers will be called PAC-

learnable if there is a function 𝑛ℳ: [0,1]
2 → ℕ such that, for all 𝜖, 𝛿, ℙ and if it is assumed that the target 𝑓 also 

belongs to class ℳ, then using 𝑛 > 𝑛ℳ(𝜖, 𝛿) observations 𝑥𝑖 drawn from ℙ, labelled 𝑦𝑖  by 𝑓, then there exists 

𝑚 ∈ ℳ such that, with probability 1 − 𝛿, ℛℙ,𝑓(𝑚) ≤ 𝜖. Function 𝑛ℳ s then called “sample complexity to learn”. 

In particular, we have seen that if ℳ contains a finite number of classifiers, then ℳ is PAC-learnable with 

complexity 𝑛ℳ(𝜖, 𝛿) = 𝜖
−1log[𝛿−1|ℳ|]. 

 

Naturally, we would like to have a more general result, especially if ℳ is not finite. To do this, the 𝑉𝐶 dimension 

of Vapnik-Chervonenkis must be used, which is based on the idea of shattering points (for a binary classification). 

Consider 𝑘 points {𝑥1, ⋯ 𝑥𝑘}, and the set ℰ𝑘 = {(𝑚(𝑥1),⋯ ,𝑚(𝑥𝑘)) for 𝑚 ∈ ℳ)}. Observe that elements of ℰ𝑘 

belong to {−1,+1}𝑘. In other words, |ℰ𝑘| ≤ 2
𝑘. We will say that ℳ shatter all the points if all the combinations 

are possible, i. e. |ℰ𝑘| = 2
𝑘. Intuitively, the labels of the set of points do not provide enough information on target 

𝑓, because any situation is possible. The 𝑉𝐶 dimension of ℳ is then: 

𝑉𝐶(ℳ) = sup{𝑘 such that ℳ shatters {𝑥1, ⋯ 𝑥𝑘}} 
 

For example, if 𝒳 = ℝ𝑘, and consider separations by hyperplanes passing through the origin (we will say 

homogeneous), in the sense that4 𝑚w(𝑥) = 1±(𝑤
𝑇𝑥 ≥ 0). It can be shown that no set of 𝑘 + 1 points can be 

shattered by these two homogeneous spaces in ℝ𝑘, and therefore 𝑉𝐶(ℳ) = 𝑘. If we add a constant, in the sense 

that 𝑚w,𝑏(x) = 1±(𝑤
𝑇𝑥 + 𝑏 ≥ 0), we can show that no set of 𝑘 + 2 points can be sprayed by these two (non-

homogeneous) spaces in ℝ𝑘, and therefore 𝑉𝐶(ℳ) = 𝑘 + 1. In econometrics, 𝑘 + 1 was the trace of the hat 

matrix, or complexity (or dimension) of the model. 

 

From this dimension 𝑉𝐶, we deduce the so-called fundamental theorem of learning: if ℳ is a class of dimension 

𝑑 = 𝑉𝐶(ℳ), then there are positive constants 𝐶 and 𝐶 such as the sample complexity for ℳ to be PAC-learnable 

satistfies: 

 

𝐶𝜖−1(𝑑 + log[𝛿−1]) ≤ 𝑛ℳ(𝜖, 𝛿) ≤ 𝐶𝜖
−1(𝑑log[𝜖−1] + log[𝛿−1]) 

 

The link between the notion of learning (as defined in Vailiant (1984)) and the 𝑉𝐶 dimension was clearly 

established in Blumer et al. (1989). 

 

Nevertheless, while the work of Vladimir Vapnik and Alexey Chervonenkis is considered to be the foundation of 

statistical learning, Thomas Cover’s work in the 1960s and 1970s should also be mentioned, in particular Cover 

(1965) on the capacities of linear models, and Cover & Hart (1967) on learning in the context of the algorithm of 

the 𝑘-nearest neighbors. These studies have linked learning, information theory (with the textbook Cover & 

Thomas (1991)), complexity and statistics. Other authors have subsequently brought the two communities closer 

together, in terms of learning and statistics. For example, Halbert White proposed to see neural networks in a 

statistical context in White (1989), going so far as to state that “learning procedures used to train artificial neural 

                                                 
4 Where the indicator 1± does not take values 0 or 1 (like the classical 1 indicator function), but −1 and +1 (“negative” and 

“positive”, as in the decision testing framework). 
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networks are inherently statistical techniques. It follows that statistical theory can provide considerable insight 

into the properties, advantages, and disadvantages of different network learning methods”. This turning point in 

the late 1980s will anchor learning theory in a probabilistic context. 

 

Objective and Loss Function 

 

These choices (the objective and the loss function) are essential, and very dependent on the problem under 

consideration. Let us begin by describing a historically important model, Rosenblatt’s (1958) “perceptron”, 

introduced into classification problems, where  𝑦 ∈ {−1,+1}, inspired by McCulloch & Pitts (1943). We have 

data {(𝑦𝑖 , 𝑥𝑖)}, and we will iteratively build a set of 𝑚𝑘(⋅), models, where at each step, we will learn from the 

errors of the previous model. In the perceptron, a linear model is considered so that : 

𝑚(𝑥) = 1±(𝛽0 + 𝑥
𝑇𝛽 ≥ 0) = {

+1 if 𝛽0 + 𝑥
𝑇𝛽 ≥ 0

−1 if 𝛽0 + 𝑥
𝑇𝛽 < 0

 

 

Here β coefficients are often interpreted as “weights” assigned to each of the explanatory variables. We give 

ourselves initial weights (𝛽0
(0)
, 𝛽(0)), which we will update incorporating the prediction error made, between 𝑦𝑖  

and its prediction �̂�
𝑖
(𝑘)

 : 

�̂�
𝑖
(𝑘) = 𝑚(𝑘)(𝑥𝑖) = 1±(𝛽0

(𝑘)
+ 𝑥𝑇𝛽(𝑘) ≥ 0), 

 

with, in the case of the perceptron: 

𝛽𝑗
(𝑘+1)

= 𝛽𝑗
(𝑘)
+ 1(𝑦 ≠ �̂�(𝑘))𝑇𝑥𝑗 

 

Here ℓ(𝑦, 𝑦′) = 1(𝑦 ≠ 𝑦′) is a loss function, which will allow to give a price to an error made, by predicting 𝑦′ =
𝑚(𝑥) and observing 𝑦. For a regression problem, we can consider a quadratic error ℓ2, such that ℓ(𝑦,𝑚(𝑥)) =
(𝑦 − 𝑚(𝑥))2 or the absolute value ℓ1, with ℓ(𝑦,𝑚(𝑥)) = |𝑦 − 𝑚(𝑥)|. Here, for our classification problem, we 

used a mis-qualification indicator (we could discuss the symmetry of this loss function, suggesting that a false 

positive costs as much as a false negative). Once this loss function has been specified, we recognize in the problem 

previously described a gradient descent, and we see that we are trying to solve: 

𝑚⋆(x) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑚∈ℳ

{∑ℓ

𝑛

𝑖=1

(𝑦𝑖 , 𝑚(𝑥𝑖))} (6) 

 

for a predefined set of predictors ℳ. Here, the machine learning problem is mathematically formulated as an 

optimization problem, whose solution determines a set of model parameters (if the ℳ family is described by a set 

of parameters – which can be coordinates in a functional database). We can note ℳ0 the space of the hyperplanes 

of ℝ𝑝 in the sense that: 

 

𝑚 ∈ ℳ0 means 𝑚(𝑥) = 𝛽0 + 𝛽
𝑇𝑥 for some β ∈ ℝ𝑝 

 

generating the class of linear predictors. We will then have the estimator that minimizes the empirical risk. Some 

of the recent work in statistical learning aims to study the properties of the estimator �̂�⋆
, known as “oracle”, in a 

family of ℳ: 

�̂�⋆ = 𝑎𝑟𝑔𝑚𝑖𝑛
�̂�∈ℳ

{ℛ(�̂� ,𝑚)}. 

This estimator is, of course, impossible to obtain because it depends on 𝑚 the real model, obviously unknown. 

 

But let’s come back a little bit more to these loss functions. A loss function ℓ is a symmetric function ℝ𝑑 × ℝ𝑑 →
ℝ+, that satisfies the triangular inequality, and such that ℓ(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦. The associated norm ∥⋅∥ 
satisfies ℓ(𝑥, 𝑦) =∥ 𝑥 − 𝑦 ∥= ℓ(𝑥 − 𝑦, 0) (using the fact that ℓ(𝑥, 𝑦 + 𝑧) = ℓ(𝑥 − 𝑦, 𝑧) - we will review this 

fundamental property later). 

 

For a quadratic loss function, it should be noted that we can have a particular interpretation of this problem, since: 

𝑦 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑚∈ℝ

{∑
1

𝑛

𝑛

𝑖=1

[𝑦𝑖 −𝑚]
2} = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑚∈ℝ
{∑ℓ2

𝑛

𝑖=1

(𝑦𝑖 , 𝑚)}, 

where ℓ2 is the usual quadratic distance If we assume – as we did in econometrics – that there is an underlying 

probabilistic model, and observe that: 
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𝔼(𝑌) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑚∈ℝ

{‖𝑌 − 𝑚‖ℓ2
2 } = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑚∈ℝ

{𝔼([𝑌 − 𝑚]2)} = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑚∈ℝ

{𝔼[ℓ2(𝑌,𝑚)]} 

 

it should be noted that what we are trying to obtain here, by solving the problem (6) by taking the ℓ2 norm, is an 

approximation (in a given functional space, ℳ) of the conditional expectation x ↦ 𝔼[𝑌|𝑋 = 𝑥]. Another 

particularly interesting loss function is the loss ℓ1, ℓ1(𝑦,𝑚) = |𝑦 − 𝑚|. It should be recalled that: 

𝑚𝑒𝑑𝑖𝑎𝑛(𝑦) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑚∈ℝ

{∑ℓ1

𝑛

𝑖=1

(𝑦𝑖 , 𝑚)}. 

The optimization problem: 

�̂�⋆ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑚∈ℳ0

{∑|

𝑛

𝑖=1

𝑦𝑖 −𝑚(𝑥𝑖)|} 

is obtained in econometrics by assuming that the conditional law of 𝑌 follows a (shifted) Laplace law centered on 

𝑚(𝑥), and by maximizing the likelihood (log) (the sum of the absolute values of the errors corresponds to the log-

reasonableness of a Laplace law). It should also be noted that if the conditional law of 𝑌 is symmetrical with 

respect to 0, the median and the mean coincide if this loss function is rewritten: 

 

ℓ1(𝑦,𝑚) = |(𝑦 − 𝑚)(1/2 − 1𝑦≤𝑚)|, 

 

a generalization can be obtained for 𝜏 ∈ (0,1): 

�̂�𝜏
⋆ = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑚∈ℳ0

{∑ℓ𝜏
 q

𝑛

𝑖=1

(𝑦𝑖 , 𝑚(𝑥𝑖))}  with ℓ𝜏
 𝑞
(𝑥, 𝑦) = (𝑥 − 𝑦)(𝜏 − 1𝑥≤𝑦) 

 

is then the quantile regression of level 𝜏 (Koenker, 2003 ; Haultefœuille & Givord, 2014). Another loss function, 

introduced by Aigner et al. (1977) and analyzed in Waltrup et al. (2014), is the function associated with the notion 

of expectations:  

 

ℓ𝜏
 e(𝑥, 𝑦) = (𝑥 − 𝑦)2 ⋅ |𝜏 − 1𝑥≤𝑦| 

 

with 𝜏 ∈ [0,1]. We see the parallel with the quantile function: 

ℓ𝜏
 𝑞
(𝑥, 𝑦) = |𝑥 − 𝑦| ⋅ |𝜏 − 1𝑥≤𝑦| 

 

Koenker & Machado (1999) and Yu & Moyeed (2001) also noted a link between this condition and the search for 

maximum likelihood when 𝑌’s conditional law follows an asymmetric Laplace law. In connection with this 

approach, Gneiting (2011) introduced the notion of “ellicitable statistics” – or “ellicitable measurement” in its 

probabilistic (or distributional) version: a statistic 𝑇 will be said to be “ellicitable” if there is a loss function ℓ:ℝ ×
ℝ → ℝ+ such that: 

 

𝑇(𝑌) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥∈ℝ

{∫ℓ
ℝ

(𝑥, 𝑦)𝑑𝐹(𝑦)} = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥∈ℝ

{𝔼[ℓ(𝑥, 𝑌)] où 𝑌 ∼
ℒ
𝐹} 

 

The mean (mathematical expectation) is thus ellicitable by the quadratic distance, ℓ2, while the median is 

ellicitable by the distance ℓ1. According to Gneiting (2011), this property is essential for obtain predictions and 

forecasts. There may then be a strong link between measures associated with probabilistic models and loss 

functions. Finally, Bayesian statistics provide a direct link between the form of the a priori law and the loss 

function, as studied by Berger (1985) and Bernardo & Smith (2000). We will come back to the use of these 

different norms in the section on penalization. 

 

Boosting and Sequential Learning 

 

As we have seen before, modelling here is based on solving an optimization problem, and solving the problem 

described by equation (6) is all the more complex because the functional space ℳ is large. The idea of boosting, 

as introduced by Shapire & Freund (2012), is to learn, slowly, from the errors of the model, in an iterative way. In 

the first step, we estimate a model 𝑚1 for y, from 𝑋, which will give an error ε1. In the second step, we estimate a 

model 𝑚2 for ε1, from 𝑋, which will give an error 𝜀2, etc. We will then retain as a model, after 𝑘 iterations: 
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𝑚(𝑘)(⋅) = 𝑚1(⋅)
∼𝐲

+𝑚2(⋅)
∼𝛆1

+𝑚3(⋅)
∼𝛆2

+⋯+𝑚𝑘(⋅)
∼𝛆𝑘−1

= 𝑚(𝑘−1)(⋅) + 𝑚𝑘(⋅) (7) 

 

Here, the error 𝜀 is seen as the difference between 𝑦 and the model 𝑚(𝑥), but it can also be seen as the gradient 

associated with the quadratic loss function. Formally, ε can be seen as 𝛻ℓ in a more general context (here we find 

an interpretation that reminds us of residuals in generalized linear models). 

Equation (7) can be seen as a descent of the gradient, but written in a dual way. The problem will then be rewritten 

as an optimization problem:  

𝑚(𝑘) = 𝑚(𝑘−1) + 𝑎𝑟𝑔𝑚𝑖𝑛
ℎ∈ℋ

{∑ℓ

𝑛

𝑖=1

(𝑦𝑖 −𝑚
(𝑘−1)(x𝑖), ℎ(𝑥𝑖))} (8) 

 

where the trick is to consider a relatively simple space ℋ (we will speak of “weak learner”). Classically, functions 

in set ℋ are step-functions (which will be found in classification and regression trees) called “stumps”. To ensure 

that learning is indeed slow, it is not uncommon to use a shrinkage parameter, and instead of setting, for example, 

𝜀1 = 𝑦 −𝑚1(𝑥), we will set 𝜀1 = 𝑦 − 𝛼 ⋅ 𝑚1(𝑥) with 𝛼 ∈ [0,1]. It should be noted that it is because a non-linear 

space is used for ℋ and learning is slow, that this algorithm works well. In the case of the Gaussian linear model, 

remember that the residuals ε̂ = 𝑦 − 𝑋 �̂� are orthogonal to the explanatory variables, 𝑋, and it is then impossible 

to learn from our errors. The main difficulty is to stop in time, because after too many iterations, it is no longer the 

m function that is approximated, but the noise. This problem is called over-fitting. 

 

This presentation has the advantage of having a heuristic reminiscent of an econometric model, by iteratively 

modelling the residuals by a (very) simple model. But this is often not the presentation used in the learning 

literature, which places more emphasis on an optimization algorithm heuristic (and gradient approximation). The 

function is learned iteratively, starting from a constant value,  

𝑚(0) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑚∈ℝ

{∑ℓ

𝑛

𝑖=1

(𝑦𝑖 , 𝑚)} 

then we consider the following learning procedure: 

𝑚(𝑘) = 𝑚(𝑘−1) + 𝑎𝑟𝑔𝑚𝑖𝑛
ℎ∈ℋ

∑ℓ

𝑛

𝑖=1

(𝑦𝑖 , 𝑚
(𝑘−1)(𝑥𝑖) + ℎ(𝑥𝑖)) , (9) 

 

which can be written, if ℋ is a set of differentiable functions: 

𝑚(𝑘) = 𝑚(𝑘−1) − 𝛾𝑘∑𝛻𝑚(𝑘−1)

𝑛

𝑖=1

ℓ (𝑦𝑖 , 𝑚
(𝑘−1)(𝑥𝑖)) , (10) 

where : 

𝛾𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛 
𝛾

∑ℓ

𝑛

𝑖=1

(𝑦𝑖 , 𝑚
(𝑘−1)(x𝑖) − 𝛾𝛻𝑚(𝑘−1)ℓ(𝑦𝑖 , 𝑚

(𝑘−1)(x𝑖))). 

To better understand the relationship with the approach described above, at step 𝑘, pseudo-residuals are defined 

by setting  

𝑟𝑖,𝑘 = −
𝜕ℓ(𝑦𝑖 , 𝑚(𝑥𝑖))

𝜕𝑚(𝑥𝑖)
|
𝑚(x)=𝑚(𝑘−1)(𝑥)

 where 𝑖 = 1,⋯ , 𝑛. 

A simple model is then sought to explain these pseudo-residuals according to the explanatory variables x𝑖, i.e. 

𝑟𝑖,𝑘 = ℎ
⋆(x𝑖), where ℎ⋆ ∈ ℋ. In a second step, we look for an optimal multiplier by solving: 

𝛾𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛾∈ℝ

{∑ℓ

𝑛

𝑖=1

(𝑦𝑖 , 𝑚
(𝑘−1)(𝑥𝑖) + 𝛾ℎ

⋆(𝑥𝑖))} 

then update the model by setting 𝑚𝑘(𝑥) = 𝑚𝑘−1(𝑥) + 𝛾𝑘ℎ
⋆(𝑥). More formally, we move from equation (8) – 

which clearly shows that we are building a model on residuals – to equation (9) – which will then be translated as 

a gradient calculation problem – noting that ℓ(𝑦,𝑚 + ℎ) = ℓ(𝑦 − 𝑚, ℎ). Classically, class ℋ of functions consists 

in regression trees. It is also possible to use a form of penalty by setting 𝑚𝑘(𝑥) = 𝑚𝑘−1(𝑥) + 𝜈𝛾𝑘ℎ
⋆(𝑥), with 𝜈 ∈

(0,1). But let’s go back a little further – in our next post – on the importance of penalization before discussing the 

numerical aspects of optimization. 

 

Penalization and Variable Selection 
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One important concept in econometrics is Ockham’s razor – also known as the law of parsimony (lex parsimoniae) 

– which can be related to abductive reasoning. Akaike’s criterion was based on a penalty of likelihood taking into 

account the complexity of the model (the number of explanatory variables retained). If in econometrics, it is 

customary to maximize the likelihood (to build an asymptotically unbiased estimator), and to judge the quality of 

the ex-post model by penalizing the likelihood, the strategy here will be to penalize ex-ante in the objective 

function, even if it means building a biased estimator. Typically, we will build:  

(�̂�
0,𝜆
, �̂�
𝜆
) = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑ℓ

𝑛

𝑖=1

(𝑦𝑖 , 𝛽0 + 𝑥
𝑇𝛽) + 𝜆 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝛽)} , (11) 

where the penalty function will often be a standard ‖ ⋅ ‖ chosen a priori, and a penalty parameter 𝜆 (we find in a 

way the distinction between AIC and BIC if the penalty function is the complexity of the model – the number of 

explanatory variables retained). In the case of the ℓ2, standard, we find the ridge estimator, and for the ℓ1, standard, 

we find the lasso estimator (« Least Absolute Shrinkage and Selection Operator »)5. The penalty previously used 

involved the number of degrees of freedom of the model, so it may seem surprising to use ‖𝛽‖ℓ2  as in the ridge 

regression. However, we can envisage a Bayesian vision of this penalty. It should be recalled that in a Bayesian 

model: 

 

ℙ[𝜃|𝑦]⏟  
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

∝ ℙ[𝑦|𝜃]⏟  
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

⋅ ℙ[𝜃]⏟
𝑝𝑟𝑖𝑜𝑟

  or  logℙ[𝜃|𝑦] ∝ logℙ[𝑦|𝜃]⏟      
𝑙𝑜𝑔−𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

+ logℙ[𝜃]⏟
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

 

 

In a Gaussian linear model, if we assume that the a priori law of θ follows a centred Gaussian distribution, we find 

a penalty based on a quadratic form of the components of 𝜃. 

 

Before going back in detail to these two estimators, obtained using the ℓ1or ℓ2 norms, let us return for a moment 

to a very similar problem: the best choice of explanatory variables. Classically (and this will be even more true in 

large dimension), we can have a large number of explanatory variables, 𝑝, but most are just noise, in the sense that 

𝛽𝑗 = 0 for a large number of 𝑗’s. This perperty is called « sparsity ». Let 𝑠 be the number of (really) relevant 

covariates, 𝑠 = #𝒮 with 𝒮 = {𝑗 = 1,⋯ , 𝑝; 𝛽𝑗 ≠ 0}. If X𝒮  denotes the matrix composed of the relevant variables 

(in columns), then we assume that the real model is of the form 𝑦 = 𝑥𝒮
𝑇𝛽𝒮 + 𝜀. ntuitively, an interesting estimator 

would then be �̂�
𝒮
= [𝑥𝒮

𝑇𝑋𝒮]
−1𝑋𝒮𝑦, but this estimator is only theoretical because the set 𝒮 is unknown, here. This 

estimator can actually be seen as the oracle estimator mentioned above. One may then be tempted to solve: 

 

(�̂�
0,𝑠
, �̂�
𝑠
) = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑ℓ

𝑛

𝑖=1

(𝑦𝑖 , 𝛽0 + 𝑥
𝑇𝛽)} , subject to #𝒮 = 𝑠 

This problem was introduced by Foster & George (1994) using the ℓ0 notation. More precisely, let us define here 

the following three norms, where: 

‖𝑎‖ℓ0 =∑1

𝑑

𝑖=1

(𝑎𝑖 ≠ 0),   ‖𝑎‖ℓ1 =∑|

𝑑

𝑖=1

𝑎𝑖|   and   ‖𝑎‖ℓ2 = (∑𝑎𝑖
2

𝑑

𝑖=1

)

1/2

, for 𝑎 ∈ ℝ𝑑 . 

 

Table C1-I 

Constrained Optimization and Regularization 

 Contrained optimization Penalty  

Best 

subgroup 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽;‖𝛽‖ℓ0≤𝑠

{∑ℓ

𝑛

𝑖=1

(𝑦𝑖 , 𝛽0 + 𝑥
𝑇𝛽)} 𝑎𝑟𝑔𝑚𝑖𝑛

𝛽,𝜆
{∑ℓ

𝑛

𝑖=1

(𝑦𝑖 , 𝛽0 + 𝑥
𝑇𝛽) + 𝜆‖𝛽‖ℓ0} 

 

(ℓ0) 

Lasso 
𝑎𝑟𝑔𝑚𝑖𝑛
𝛽;‖𝛽‖ℓ1≤𝑠

{∑ℓ

𝑛

𝑖=1

(𝑦𝑖 , 𝛽0 + 𝑥
𝑇𝛽)} 𝑎𝑟𝑔𝑚𝑖𝑛

𝛽,𝜆
{∑ℓ

𝑛

𝑖=1

(𝑦𝑖 , 𝛽0 + 𝑥
𝑇𝛽) + 𝜆‖𝛽‖ℓ1} 

 

(ℓ1) 

Ridge 
𝑎𝑟𝑔𝑚𝑖𝑛
𝛽;‖𝛽‖ℓ2≤𝑠

{∑ℓ

𝑛

𝑖=1

(𝑦𝑖 , 𝛽0 + 𝑥
𝑇𝛽)} 𝑎𝑟𝑔𝑚𝑖𝑛

𝛽,𝜆
{∑ℓ

𝑛

𝑖=1

(𝑦𝑖 , 𝛽0 + 𝑥
𝑇𝛽) + 𝜆‖𝛽‖ℓ2} 

 

(ℓ2) 

 

Let us consider the optimization problems in Table C1-1. If we consider the classical problem where the quadratic 

norm is used for ℓ, the two problems of the equation (ℓ1) of Tableau C1-1 are equivalent, in the sense that, for any 

solution(𝛽⋆, 𝑠) to the left problem, there is 𝜆⋆ such that (𝛽⋆, 𝜆⋆) is the solution of the right problem; and vice versa. 

                                                 
5 Term « lasso » can be seen as a reference to Breiman (1995), which suggested to use a “garrote” for variable selection. 
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The result is also true for problems (ℓ2)6. These are indeed convex problems. On the other hand, the two problems 

(ℓ0) are not equivalent: if for (𝛽⋆, 𝜆⋆) solution of the right problem, there is a 𝑠⋆ such that 𝛽⋆ is solution of the left 

problem, the reverse is not true. More generally, if one wants to use a ℓ𝑝 norm, sparsity is obtained if 𝑝 ≤ 1 

whereas you need 𝑝 ≥ 1 to have the convexity of the optimization program. 

 

One may be tempted to resolve the penalized program (ℓ0) directly, as suggested by Foster & George (1994). 

Numerically, it is a complex combinatorial problem in large dimension (Natarajan, 1995, notes that it is a NP-

difficult problem), but it is possible to show that if 𝜆 ∼ 𝜎2log(𝑝), then: 

 

𝔼([x𝑇 β̂ − x𝑇β0]
2) ≤ 𝔼(x𝒮

𝑇 β̂
𝒮
− x𝑇β0]

2)⏟            
=𝜎2#𝒮

⋅ (4log𝑝 + 2 + 𝑜(1)). 

Observe that in this case 

β̂
𝜆,𝑗

sub
= {
0 if 𝑗 ∉ 𝒮𝜆

β̂
𝑗

 ols
 if 𝑗 ∈ 𝒮𝜆,

 

where 𝒮𝜆 refers to all non-zero coordinates when solving (ℓ0). 

 

Problem (ℓ2) s strictly convex if ℓ is the quadratic norm, in other words, the Ridge estimator is always well defined, 

with in addition an explicit form for the estimator: 

  

�̂�
𝜆

𝑟𝑖𝑑𝑔𝑒
= (𝑋𝑇𝑋 + 𝜆𝕀)−1𝑋𝑇𝑦 = (𝑋𝑇𝑋 + 𝜆𝕀)−1(𝑋𝑇𝑋) �̂�

 𝑜𝑙𝑠
 

 

Therefore, it can be deduced that: 

 

𝑏𝑖𝑎𝑠[�̂�
𝜆

𝑟𝑖𝑑𝑔𝑒
] = −𝜆[𝑋𝑇𝑋 + 𝜆𝕀]−1  �̂�

 𝑜𝑙𝑠
 and Var[�̂�

𝜆

𝑟𝑖𝑑𝑔𝑒
] = 𝜎2[𝑋𝑇𝑋 + 𝜆𝕀]−1𝑋𝑇𝑋[𝑋𝑇𝑋 + 𝜆𝕀]−1. 

 

With a matrix of orthonormal explanatory variables (i.e. 𝑋𝑇𝑋 = 𝕀), the expressions can be simplified, and a 

shrinkage can clearly be observed: 

 

𝑏𝑖𝑎𝑠[�̂�
𝜆

𝑟𝑖𝑑𝑔𝑒
] =

𝜆

1 + 𝜆
 �̂�
 𝑜𝑙𝑠
 and Var[�̂�

𝜆

𝑟𝑖𝑑𝑔𝑒
] =

𝜎2

(1 + 𝜆)2
𝕀. 

 

Observe further that Var[�̂�
𝜆

𝑟𝑖𝑑𝑔𝑒
] < Var[�̂�

 𝑜𝑙𝑠
]. And because: 

𝑚𝑠𝑒[�̂�
𝜆

𝑟𝑖𝑑𝑔𝑒
] =

𝑘𝜎2

(1 + 𝜆)2
+

𝜆2

(1 + 𝜆)2
β𝑇β 

 

we obtain an optimal value for𝜆: 𝜆⋆ = 𝑘𝜎2/𝛽𝑇𝛽.  

 

On the other hand, if ℓ is no longer the quadratic norm but the ℓ1 norm, the problem (ℓ1) is not always strictly 

convex, and in particular, the optimum is not always unique (for example if X𝑇X is singular). But if ℓ is strictly 

convex, then predictions 𝑋 �̂� will be unique. It should also be noted that two solutions are necessarily consistent 

in terms of sign of coefficients: it is not possible to have �̂�
𝑗
< 0 for one solution and �̂�

𝑗
> 0 for another. From a 

heuristic point of view, the program (ℓ1) is interesting because it allows to obtain in many cases a corner solution, 

which corresponds to a problem resolution of type (ℓ0) – as shown visually on Figure C1-II. 

 

Tibshirani & Wasserman (2016) goes back at length on the geometry of the solutions) but as Candès & Plan (2009) 

notes, under minimal assumptions guaranteeing that the predictors are not strongly correlated, the Lasso obtains a 

quadratic error almost as good as if we had an oracle providing perfect information on the set of 𝛽𝑗’s that are not 

zero. With some additional technical hypotheses, it can be shown that this estimator is “sparsistant” in the sense 

that the support of �̂�
𝜆

𝑙𝑎𝑠𝑠𝑜
 is that of 𝛽, in other words Lasso has made it possible to select variables (more 

discussions on this point can be obtained in Hastie et al., 2016). 

More generally, it can be shown that �̂�
𝜆

𝑙𝑎𝑠𝑠𝑜
 is a biased estimator, but may be of sufficiently low variance that the 

mean square error is lower than the one we had using least squares.  

                                                 
6 For (ℓ1), if there is a theoretical equivalence, numerical issues could be experience because of non-unicity of solutions. 
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Figure C1-II 

Penalty Based on Norms 𝓵𝟎, 𝓵𝟏 and 𝓵𝟐 (of 𝜷) Respectively (from Hastie et al., 2016) 

 

 
 

 

In-Sample, Out-of-Sample and Cross-Validation 

 

These techniques seem intellectually interesting, but we have not yet discussed the choice of the penalty parameter 

𝜆. But this problem is actually more general, because comparing two parameters β̂
𝜆1

 and β̂
𝜆2

is actually comparing 

two models. In particular, if we use a Lasso method, with different thresholds 𝜆 we compare models that do not 

have the same dimension. Previously, we have addressed the problem of model comparison from an econometric 

perspective (by penalizing overly complex models). In the learning literature, judging the quality of a model on 

the data used to construct it does not make it possible to know how the model will behave on new data. This is the 

so-called “generalization” problem. The traditional approach then consists in separating the sample (size 𝑛) into 

two parts: a part that will be used to train the model (the training database, in-sample, size 𝑚) and a part that will 

be used to test the model (the testing database, out-of-sample, size 𝑛 − 𝑚). The latter then makes it possible to 

measure a real predictive risk. Suppose that the data are generated by a linear model 𝑦𝑖 = 𝑥𝑖
𝑇𝛽0 + 𝜀𝑖 where 𝜀𝑖 are 

independent and centered law achievements. The empirical quadratic risk in-sample is here: 

 

1

𝑚
∑𝔼

𝑚

𝑖=1

([𝑥𝑖
𝑇 �̂� − 𝑥𝑖

𝑇𝛽0]
2) = 𝔼([𝑥𝑖

𝑇 �̂� − 𝑥𝑖
𝑇β0]

2) 

 

for any observation 𝑖. Assuming that residuals 𝜀 have a Gaussian distribution, then we can show that this risk is 

worth 𝜎2𝑡𝑟𝑎𝑐𝑒(Π𝒳)/𝑚 is 𝜎2𝑝/𝑚. On the other hand, the empirical out-of-sample quadratic risk is here: 

𝔼([𝑥𝑇 �̂� − 𝑥𝑇𝛽0]
2) 

 

where x is a new observation, independent of the others. It can be obtained that: 

 

𝔼([𝑥𝑇 �̂� − 𝑥𝑇𝛽0]
2|𝑥) = 𝜎2𝑥𝑇(𝑋𝑇𝑋)−1𝑥 

 

and by integrating with respect to 𝑥:  

 

𝔼([𝑥𝑇 �̂� − 𝑥𝑇𝛽0]
2) = 𝔼(𝔼([𝑥𝑇 �̂� − 𝑥𝑇𝛽0]

2|𝑥)) = 𝜎2𝑡𝑟𝑎𝑐𝑒(𝔼[𝑥𝑥𝑇]𝔼[(𝑋𝑇𝑋)−1]) 
 

The expression is then different from that obtained in-sample, and using the Groves & Rothenberg (1969) increase, 

we can show that: 

𝔼([𝑥𝑇 �̂� − 𝑥𝑇𝛽0]
2) ≥ 𝜎2

𝑝

𝑚
, 

which is pretty intuitive, when we start thinking about it. Except in some simple cases, there is no simple (explicit) 

formula. Note, however, that if 𝑋 ∼ 𝒩(0, 𝜎2𝕀), then 𝑥𝑇𝑥 follows a Wishart law, and it can be shown that   

𝔼([𝑥𝑇 �̂� − 𝑥𝑇𝛽0]
2) = 𝜎2

𝑝

𝑚 − 𝑝 − 1
 

If we now look at the empirical version: if �̂� is estimated on the first 𝑚 observations, 
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ℛ̂
IS
=∑[

𝑚

𝑖=1

𝑦𝑖 − 𝑥𝑖
𝑇 �̂�]2 and ℛ̂

𝑂𝑆
= ∑ [

𝑛

𝑖=𝑚+1

𝑦𝑖 − 𝑥𝑖
𝑇 �̂�]2 

and as Leeb (2008) noted, ℛ̂
IS
− ℛ̂

OS
≈ 2 ⋅ 𝜈 where 𝜈 represents the number of degrees of freedom, which is not 

unlike the penalty used in the Akaike test. 

 

Figure C1-IV shows the respective evolution of ℛ̂
IS

 and ℛ̂
𝑂𝑆

 according to the complexity of the model (number 

of degrees in a polynomial regression, number of nodes in splines, etc). The more complex the model, the more 

ℛ̂
IS

 will decrease (this is the red botted curve, below). But that’s not what we’re interested in here: we want a 

model that predicts well on new data (i. e. out-of-sample). As Figure C1-III shows, if the model is too simple, it 

does not predict well (as it does with in-sample data). But what we can see is that if the model is too complex, we 

are in a situation of “overlearning”: the model will start to model the noise.  

 

Figure C1-III 

Generalization, Under- and Over-Fitting 

 
 

Instead of splitting the database in two, with some of the data that will be used to calibrate the model and some to 

study its performance, it is also possible to use cross-validation. To present the general idea, we can go back to the 

“jackknife”, introduced by Quenouille (1949) (and formalized by Quenouille (1956) and Tukey (1958)) relatively 

used in statistics to reduce bias. Indeed, if we assume that {𝑦1, ⋯ , 𝑦𝑛} is a sample drawn according to a law 𝐹𝜃, 

and that we have an estimator 𝑇𝑛(𝑦) = 𝑇𝑛(𝑦1, ⋯ , 𝑦𝑛), , but that this estimator is biased, with 𝔼[𝑇𝑛(𝑌)] = 𝜃 +
𝑂(𝑛−1), it is possible to reduce the bias by considering: 

�̃�𝑛 (y) =
1

𝑛
∑𝑇𝑛−1

𝑛

𝑖=1

(y(𝑖)) where 𝑦(𝑖) = (𝑦1, ⋯ , 𝑦𝑖−1, 𝑦𝑖+1,⋯ , 𝑦𝑛). 

 

It can then be shown that 𝔼[�̃�𝑛 (𝑌)] = 𝜃 + 𝑂(𝑛
−2). The idea of cross-validation is based on the idea of building 

an estimator by removing an observation. Since we want to build a predictive model, we will compare the forecast 

obtained with the estimated model, and the missing observation: 

ℛ̂
 CV
=
1

𝑛
∑ℓ

𝑛

𝑖=1

(𝑦𝑖 , �̂�(𝑖) (𝑥𝑖)) 

We will speak here of the “leave-one-out” (loocv) method. 

 

This technique reminds us of the traditional method used to find the optimal parameter in exponential smoothing 

methods for time series. In simple smoothing, we will construct a forecast from a time series as �̂�
𝑡+1𝑡

= 𝛼 ⋅

�̂�
𝑡𝑡−1
+ (1 − 𝛼) ⋅ 𝑦𝑡, where 𝛼 ∈ [0,1], and we will consider as “optimal”: 

𝛼⋆ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛼∈[0,1]

{∑ℓ

𝑇

𝑡=2

( �̂�
𝑡𝑡−1
, 𝑦𝑡)}, 

as described in Hyndman et al. (2009). 
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The main problem with the leave-one-out method is that it requires calibration of n models, which can be 

problematic in large dimensions. An alternative method is cross validation over 𝑘-blocks (called « 𝑘-fold cross 

validation ») which consists in using a partition of {1,⋯ , 𝑛} in 𝑘 groups (or blocks) of the same size, ℐ1, ⋯ , ℐ𝑘, 

and let us note ℐ𝑗 = {1,⋯ , 𝑛} ∖ ℐ𝑗. By noting �̂�(𝑗) built on the sample ℐ𝑗, we then set: 

ℛ̂
𝑘− CV

=
1

𝑘
∑ℛ𝑗

𝑘

𝑗=1

 where ℛ𝑗 =
𝑘

𝑛
∑ℓ

𝑖∈ℐ𝑗

(𝑦𝑖 , �̂�(𝑗) (x𝑖)). 

Standard cross-validation, where only one observation is removed each time (“leave-one-out”), is a special case, 

with 𝑘 = 𝑛. Using 𝑘 = 10 has a double advantage over 𝑘 = 𝑛 : (1) the number of estimates to be made is much 

smaller, 10 rather than 𝑛 ; (2) the samples used for estimation are less similar and therefore less correlated to each 

other, which tends to avoid excess variance, as recalled by James et al. (2013). 

 

Another alternative is to use boosted samples. Let ℐ𝑏 be a sample of size 𝑛 obtained by drawing with replacement 

in {1,⋯ , 𝑛} to know which observations(𝑦𝑖 , x𝑖) will be kept in the learning population (at each draw). Note ℐ𝑏 =

{1,⋯ , 𝑛} ∖ ℐ𝑏. If �̂�(𝑏) is built on sample ℐ𝑏, we then set: 

ℛ̂
B
=
1

𝐵
∑ℛ𝑏

𝐵

𝑏=1

 where ℛ𝑏 =
𝑛𝑏
𝑛
∑ ℓ

𝑖∈ℐ
𝑏

(𝑦𝑖 , �̂�(𝑏) (𝑥𝑖), 

where 𝑛𝑏 is the number of observations that have not been kept in ℐ𝑏. It should be noted that with this technique, 

on average 𝑒−1 ∼ 36.7% of the observations do not appear in the boosted sample, and we find an order of 

magnitude of the proportions used when creating a calibration sample, and a test sample. In fact, as Stone (1977) 

had shown, the minimization of 𝐴𝐼𝐶 is to be compared to the cross-validation criterion, and Shao (1997) showed 

that the minimization of 𝐵𝐼𝐶 corresponds to 𝑘-fold cross-validation, with 𝑘 = 𝑛/log𝑛. 
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