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Abstract – On the face of it, econometrics and machine learning share a common goal: to build 
a predictive model, for a variable of interest, using explanatory variables (or features). However, 
the two fields have developed in parallel, thus creating two different cultures. Econometrics set 
out to build probabilistic models designed to describe economic phenomena, while machine 
learning uses algorithms capable of learning from their mistakes, generally for classification 
purposes (sounds, images, etc.). Yet in recent years, learning models have been found to be more 
effective than traditional econometric methods (the price to pay being lower explanatory power) 
and are, above all, capable of handling much larger datasets. Given this, econometricians need to 
understand what the two cultures are, what differentiates them and, above all, what they have in 
common in order to draw on tools developed by the statistical learning community with a view 
to incorporating them into econometric models.

Codes JEL / JEL Classification : C18, C52, C55
Keywords: learning, Big Data, econometrics, modelling, least squares

Pour citer cet article: Charpentier, A., Flachaire, E. & Ly, A. (2018). Econometrics and Machine Learning. Economie et Statistique / Economics and Statistics, 505‑506, pp. 147–169. 
https://doi.org/10.24187/ecostat.2018.505d.1970

* University of Rennes 1 & CREM (arthur.charpentier@univ‑rennes1.fr)
** Aix‑Marseille University, AMSE, CNRS & EHESS (emmanuel.flachaire@univ‑amu.fr)
*** University of Paris‑Est (antoine.ly.pro@gmail.com)

Reminder:

The opinions and analyses 
in this article  
are those of the author(s) 
and do not  
necessarily reflect  
their institution’s  
or Insee’s views.



 ECONOMIE ET STATISTIQUE / ECONOMICS AND STATISTICS N° 505-506, 2018148

by contrast, nonparametric models are often 
built based almost exclusively on data (i.e. 
no distribution hypothesis), and the meta‑ 
parameters used (tree‑depth, penalty parame‑
ter, etc.) are optimised by cross‑validation.1

Beyond the foundations, while the (often 
asymptotic) properties of θ (viewed as a ran‑
dom variable, thanks to the underlying sto‑
chastic representation) have been extensively 
studied in econometrics, statistical learning 
focuses to a greater extent on the properties 
of the optimal m ⋅( ) based on a criterion that 
remains to be defined, or even simply m xi

 ( ) 
for observations i deemed to be of interest for 
example in a test population. The problem 
of the choice of model is also viewed from a 
somewhat different perspective. Following 
Goodhart’s law (“When a measure becomes a 
target, it ceases to be a good measure”), the 
goodness‑of‑fit of a model is penalised after 
the fact in econometrics by its complexity 
in the validation or selection phase, while in 
statistical learning it is the objective function 
which takes account of the penalty.

From High Dimension to Big Data

In this paper, a variable will be a vector of 
n, such that by concatenating the variables, 
they can be stored in a matrix X , of size n p× , 
with n and p being potentially large.2 The fact 
that n is large is not a problem in itself. Many 
theorems in econometrics and statistics are 
obtained when n → ∞. By contrast, the fact 
that p is large is problematic, particularly if 
p n> .

Portnoy (1988) showed that the maximum 
likelihood estimator retains the asymptotic 
normality property if p remains small in 
relation to n (p n2 0/ →  where n p, → ∞). 
Indeed, it is not uncommon to speak of high 
dimension when p n> . Another important 
concept is the idea of “sparsity”, which is 
based not on the dimension p but on the actual 
dimension, in other words the number of truly 

1. The term “classification” will be used when   is a set of classes, typi‑
cally a binary classification,  = { }0 1, , corresponding to the outcome of an 
indicator variable. The term is less dated than “discrimination” and more 
general than the determination of a “score” (often an intermediate step). It 
should not be confused with unsupervised classification (such as “ascend‑
ing hierarchical classification”), which involves the creation of homogene‑
ous classes based on a similarity measure (in this case, the term “creation 
or construction of classes” or “clusters” is sometimes used).
2. Extensions are possible with MRI‑type images as predictive variables, 
or climate data with maps as predictive variables. It is possible fall back on 
the typical case of data in the form of vectors by using the Tucker decom‑
position (Kolda & Bader, 2009).

The earliest use of quantitative techniques 
in economics probably dates back to the 

sixteenth century (Morgan, 1990). However, 
it was not until the twentieth century that the 
term “econometrics” was first used, giving 
birth to the Econometric Society in 1933. 
Machine learning techniques are more recent. 
It was Arthur Samuel, widely regarded as the 
father of the first self‑learning programme, 
who first coined the term “machine learning”, 
which he defined as “a field of study that gives 
a computer the ability without being explic‑
itly programmed” (Samuel, 1959). Among the 
earliest techniques are Hebb’s cell assembly 
theory (Hebb, 1949) (which later gave birth 
to the “perceptron” in the 1950s, and then to  
neural networks), with Widrow and Hoff (1960) 
demonstrating, around fifteen years later, the 
links with least‑squares methods, the SVM 
(support vector machine) and, more recently, 
boosting methods. While the two communities 
have developed in parallel, big data require 
links to be built between the two approaches 
by bridging the “two cultures” referred to by 
Breiman (2001a), contrasting mathematical 
statistics, which may be likened to traditional 
econometrics (Aldrich, 2010), with compu‑
tational statistics and machine learning more 
generally.

Econometrics and supervised statistical 
learning techniques are similar, while also 
being very different. To start with, the two 
appear similar, with both using a database 
(or data table), i.e. observations y xi i,( ){ },  
with i n= 1, ,

, xi
p∈ ⊂   and yi ∈ . If 

yi is qualitative, we speak of a classification 
problem,1 and, otherwise, of a regression prob‑
lem. The two approaches also share common 
ground at the other end since, in both cases, 
the aim is to build a “model”, i.e. a function 
m :   which will be interpreted as a 
prediction.

However, there are significant differences in 
between. Historically, econometric models 
have been based on economic theory, gene‑
rally with parametric models. Traditional sta‑
tistical inference methods (such as maximum 
likelihood and the method of moments) are 
thus used to estimate the values of a vector of 
parameters θ , in a parametric model mθ ⋅( ), by 
a value θ. As in statistics, unbiased estimators 
are important since a lower bound on the vari‑
ance can be obtained (Cramér‑Rao bound). 
Asymptotic theory plays an important role 
(Taylor expansions, law of large numbers and 
central limit theorem). In statistical learning, 
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important variables. It is thus possible to have 
p n>  while having convergent estimators.

The high dimension can be frightening because 
of the curse of dimensionality (Bellman, 1957). 
The volume of the unit sphere, in dimension 
p, tends towards 0 when p → ∞. In such 
cases, the space is said to be “parsimonious” 
– i.e. the likelihood of finding a point close 
to another becomes increasingly small (we 
may even speak of a “sparse” space). While 
the idea of reducing the dimension by using 
a principal component analysis may seem 
attractive, the analysis suffers from a number 
of flaws in high dimension. The solution often 
revolves around the selection of variables 
(which raises the problem of multiple tests or 
computational time).

To use the terminology of Bühlmann & van 
de Geer (2011), the problems highlighted 
here correspond to those encountered in high 
dimension, an essentially statistical prob‑
lem. From a computational perspective, we 
may go a little further, with truly Big Data. 
In the foregoing, the data were stored in a 
matrix X , of size n p× . There can be issues 
with storing such a matrix or even with using 
a matrix widely used in econometrics, X XT

(n n× ). The first‑order condition of the lin‑
ear model is associated with the solution to 
X X yT β −( ) = 0. In reasonable dimension, 
the Gram‑Schmidt decomposition is used. In 
high dimension, the numerical descent and gra‑
dient methods may be used, where the gradient 
is approximated by subsampling (Zinkevich 
et al., 2010). This computational dimension is 
often overlooked, despite the fact that it has 
been the basis of a significant number of meth‑
odological advances in econometrics.

Nonparametric and Computational Statistics

The purpose of this paper is to explain the 
major differences between econometrics and 
statistical learning, which correspond to the 
cultures alluded to by Breiman (2001a) in 
referring, in the context of statistical model‑
ling, to the data modelling culture (based on 
a stochastic model, such as logistic regression 
or a Cox model) and the algorithmic model‑
ling culture (based on the implementation of 
an algorithm, such as random forests or sup‑
port vector machines; for a complete list, 
see Shalev‑Shwartz & Ben‑David, 2014). 
However, the boundary between the two 
is blurred. At the intersection, we find, for 

example, nonparametric econometrics, which 
is based on a probabilistic model (like econo‑
metrics) while focusing to a greater extent on 
algorithms and their performance rather than 
on asymptotic theorems.

Some Machine Learning Tools

Neural Networks

Neural networks are semiparametric models. 
Nevertheless, this family of models can be 
approached in the same way as nonparametric 
models: the structure of neural networks (pre‑
sented below) can be modified to extend the 
class of functions used to approximate a var‑
iable of interest. More specifically, Cybenko 
(1989) showed that the set of neural functions 
is dense in the space of continuous functions 
on a compact space. In other words, we have 
a theoretical framework which guarantees 
a form of universal approximation. It also 
requires defining a neuron and emphasises the 
existence of a sufficient number of neurons 
to approximate any continuous function on 
a compact domain. Thus, a continuous phe‑
nomenon can be approximated by a sequence 
of neurons: this sequence is referred to as a  
“single‑layer neural network”. While the uni‑
versal approximation theorem was demon‑
strated in 1989, the first functional artificial 
neuron was introduced by Franck Rosenblatt 
in the mid‑twentieth century in Rosenblatt 
(1958). Referred to now as “basic neuron”, 
this neuron is known as “Perceptron”. In its 
earliest uses, it was used to determine the gen‑
der of an individual presented in a photo. It 
introduced the first mathematical representa‑
tion of a biological neuron:

 - The synapses transmitting the information to 
the cell are represented by a real vector. The 
dimension of the input vector of the neuron 
(which is none other than a function) corre‑
sponds biologically to the number of synaptic 
connections;

 - Each signal transmitted by a synapse is 
then analysed by the cell. Mathematically, the 
schema is expressed by weighting the different 
components of the input vector;

 - Depending on the information acquired, the 
neuron decides whether or not to resend a sig‑
nal. The phenomenon is replicated by introduc‑
ing an activation function. The output signal 
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is modelled by a real number computed as an 
image by the activation function of the weighted 
input vector.

Thus, an artificial neuron is a semiparametric 
model. The choice of activation function is left 
to the user. A basic neuron may then be for‑
mally defined by:

1.  An input space  , generally k  with k ∈*;

2.  An output space  , generally  or a finite 
set (typically 0 1,{ }, although here we prefer 
− +{ }1 1, );

3.  A vector of parameters w p∈ ;

4.  An activation function φ : → . Ideally, 
this function should be monotonic, derivable 
and bounded (here, “saturating”) to ensure cer‑
tain convergence properties.

This last function φ is reminiscent of logistic 
or probit transformations, which are popular 
in econometrics (which are cumulative distri‑
bution functions, of value in 0 1,[ ], ideal when 
  is the set 0 1,{ }). For neural networks, pref‑
erence is given to the hyperbolic tangent, the 
arctangent function or the sigmoid functions 
for classification problems on  = − +{ }1 1,  
(the latter evoke the logistic transformation 
performed by econometricians). The term neu‑
ron is used to refer to any application fw of   
in   defined by:

y f x x xT= ( ) = ( ) ∀ ∈w wφ , 

For the perceptron, introduced by Rosenblatt 
(1958), a basic neuron is assimilated to the 
function:

y f x x xT= ( ) = ( ) ∀ ∈w signe w , 

According to this formalisation, many statis‑
tical models, such as logistic regressions, may 
be viewed as neurons. Any GLM (Generalised 
Linear Model) could be interpreted as an arti‑
ficial neuron where the activation function φ 
is none other than the inverse of the canonical 
link function. If g denotes the link function of 
the GLM, w the vector of parameters, y the 
variable to be explained and x the vector of 
explanatory variables of the same dimension 
as w:

g Y X x w xT( [ | ]) = =

We return to neural modelling by taking  
φ = −g 1. However, the chief difference 

between GLMs and the neural model is that 
the latter requires no distribution hypothesis 
on Y X|  (here there is no need to introduce 
a probabilistic model). Furthermore, when 
the number of neurons per layer increases, 
convergence is not necessarily guaranteed if 
the activation function does not verify cer‑
tain properties (which is not the case for the 
majority of the canonical link functions of 
GLMs). However, neural network theory 
imposes additional mathematical constraints 
on the function g (detailed in Cybenko, 1989). 
Thus, for example, a logistic regression may 
be viewed as a neuron, whereas generalised 
linear regressions do not verify all the neces‑
sary hypotheses.

To extend the analogy with the functioning 
of the nervous system, it is then possible to 
connect different neurons. We speak of a lay‑
ered neural network structure. Each layer of 
neurons receives the same observation vector 
every time. To revert to a more econometric 
analogy, we might imagine an intermediate 
step, for example by not performing a regres‑
sion on the raw variables x but a smaller set 
of orthogonal variables obtained based on a 
principal component analysis. Consider A as 
the matrix associated with this linear transfor‑
mation, with A of size k p×  if we wish to use 
the p first components. Take z as the trans‑
formation of x, where z A xT=  (z A xj j

T= ). 
One generalisation of the above model may be 
to posit:

y f x w z w A xT T T= ( ) = ( ) = ( ) ∀ ∈φ φ , x 

where w p∈ . Here we have a linear transfor‑
mation (by considering a principal component 
analysis), although we can imagine a generali‑
sation with nonlinear transformations:

y f x F x xT
A= ( ) = ( )( ) ∀ ∈φ w , 

where F  is a function  k p→ . It is the 
two‑layer neural network. More generally, in 
order to formalise the construction, the follow‑
ing notations are introduced:

• K ∈*: number of layers;

• ∀ ∈{ }k K1, , pk represents the number of 
neurons in the layer k;

• ∀ ∈{ }k K1, , Wk denotes the matrix of the 
parameters associated with the layer k. More 
specifically, Wk is a matrix p pk k× −1 and for 
any ∈{ }1, pk , wk l

pk
, ∈ − 1  denotes the weight 
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vector associated with the basic neuron l  of the 
layer k;

• W W WK= { }1,..,  denotes the set of parameters 
associated with the neural network;

• FW
k p p
k

k k: − →1  denotes the transfer func‑
tion associated with the layer k. For the purpose 
of simplification, we may also write F k �;

• y k
pk ∈  will represent the image vector of 

the layer k K∈{ }1, , �
;

• F F F FW
K= = 

1 will denote the 
transfer function associated with the global  
network. In this respect, if x ∈ , we may note 
y F xW
 = ( ).

Diagram 1 provides an illustration of the 
notations presented here.3 Each circle repre‑
sents a basic neuron. Each rectangle encom‑
passing several circles represents a layer. The 
first layer taking as “input” the observations 
x ∈ , is referred to as the input layer, while 

the output layer denotes the layer providing 
as “output” the prediction y∈ . The other 
layers are commonly known as hidden layers. 
A multilayer neural network is, therefore, a 
semiparametric model whose parameters are 
the set of components of the matrices Wk for 
any integer k  of 1, , K{ }. Each activation 
function associated with each neuron (each 
circle of Diagram I) is to be determined by 
the user.3

Once the model parameters to be calibrated 
have been identified (here, the reals forming 
the matrices Wk for each layer k K∈{ }1, ,

), it 
is necessary to define a loss function  . Indeed, 
it is worth recalling that the aim of supervised 
learning on a learning basis of n ∈* couples 

y xi i,( )∈ ×   is to minimise the empirical 
risk (see Online complements – see the link at 
the end of the article):

 n W
i

n

i W iF
n

y F x( ) = ( )( )
=
∑1

1

,

3. See: http://intelligenceartificielle.org.

Diagram 1
Example of Notations Associated with the Multilayer Neural Networks

Inputs

First layer Second layer Third layer

Hidden
layers

Outputs

http://intelligenceartificielle.org
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To illustrate this point, let us consider the 
following example, which will also serve to 
illustrate the approach adopted. Let us assume 
that we are observing a phenomenon  through  
observations yi ∈ −[ ]1 1, . The aim is to explain 
this phenomenon based on the independant 
variables x which are assumed to have actual 
values. The “universal approximation theo‑
rem” tells us that a single‑layer neural network 
should enable the phenomenon to be modelled 
(subject to it being continuous). However, the 
theorem provides no indication of convergence 
speed. The user retains control of the choice 
of structure, which may be a simple neuron 
whose activation function is the hyperbolic 
tangent function:

y w w x1 0 1= +( )tanh

where the parameters w w0 1,  are to be opti‑
mised in order to minimise the empirical risk 
over the learning data.

Based on the universal approximation theo‑
rem, by adding several neurons, the error is 
expected to reduce. However, since the func‑
tion to be estimated is not known, it can only 
be observed through the sample. Mechanically, 
learning‑based error decreases when parame‑
ters are added. Error analysis by means of a 
test enables our ability to generalise to be 
assessed (Box 1).

A second model, which uses several neurons, 
may thus be considered. For example:

y w w w x w w w x

w w w x
a b

c

2 0 1 2 3

4 5

= +( ) + +( )
+ +( )

tanh tanh

tanh

where the parameters w w0 5,..,  and w w wa b c, ,  
are the parameters to be optimised. Calibrating 
a neural network thus amounts to reiterating 
these structural modification steps until the 
risk is minimised on a test basis.

For a fixed neural network structure (i.e. fixed 
number of layers, number of neurons per layer 
and activation functions), the programme there‑
fore amounts to determining the set of parame‑
ters W W WK

* ,...,= ( )1  in such a way that:

W
n

y F x
W W W i

n

i W i
K

*

,...,
, .∈ ( )( )






=( ) =

∑argmin
1

1
1



This formula underlines the importance of 
the choice of function . This loss function 
quantifies the average error of our model FW  
based on learning. A priori,  can be chosen 
arbitrarily. However, from the point of view of 
working out an optimisation programme, sub‑
differentiable and convex cost functions are 
preferable for guaranteeing the convergence of 
the optimisation algorithms. In addition to the 
quadratic loss function 



 

2
2( ) ), (y y y y= − , tra‑

ditional loss functions include the hinge func‑
tion − = −

 ( ) ), ( ,y y yymax 0 1  – and the logistic 
function − = − −





( ) ),y y e yylog(1 .

Neural networks were used very early on in 
economics and finance, notably on corporate 
defaults (Tam & Kiang, 1992; Altman et al., 
1994) and, more recently, credit rating (Blanco 
et al., 2013; Khashman, 2011). However, 
structures such as those presented above are 
generally limited. Deep learning is more par‑
ticularly characteristic of more complex neural 
networks (sometimes more than ten layers with 
hundreds of neurons per layer). Today, these 

Box 1 – Learning and Test Samples

In the literature on learning, assessing the quality of a 
model based on the data used to build it says nothing 
about how the model will behave with new data. This 
is what is known as the “generalisation” problem. The 
traditional approach thus involves splitting the sample 
(of size n) in two: one part to train the model (the learn‑
ing base, in‑sample, of size m) and another to test it 
(the test base, out‑of‑sample, of size n m− ). The lat‑
ter allows for the measurement of a real predictive risk 
Let us suppose that the data are generated by a linear 
model y xi i

T
i= +β ε0  where the εi are realisations of 

independent centred distributions. The in‑sample empir‑
ical quadratic risk is:
1

1
0 0

22

m
x x x x

i

m

i
T

i
T

i
T

i
T

=
∑ − = −( ) ( )   β β β β 

for any observation i. If the residuals ε  are Gaussian, 
this risk equals σ 2 p m/ , where � p is the size of the vec‑
tors xi. By contrast, the out‑of‑sample empirical quad‑
ratic risk is:

 xT β β −( ) xT
0

2

Where x is a new observation, which is independent of 
the others. We may note that:

 x x x x X X xT T T Tβ β σ −( ) = 
−

0

2
2 1| ( )

and by integrating in relation to x: 

  
 

x x x x x

xx

T T T T

T

β β β β

σ

 − = − ( )( )
=

 ( )
[ ]

0

2

0

2

2

|
trace X XT[[ ]( )−1

➔
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structures are very popular in signal analysis 
(image, text, sound) because they are capable, 
based on a very large quantity of observations, 
of extracting information which humans are 
incapable of perceiving and to deal with non‑
linear problems (LeCun et al., 2015).

Information extraction can, for example, be 
performed through convolution. As an unsu‑
pervised procedure, it has produced excellent 
results in image analysis. In technical terms, 
this may be seen as a kernel‑based transfor‑
mation (as used in SVM techniques; see next 
section). While an image may be viewed as 
a matrix, with each coordinate representing 
a pixel, a convolution amounts to applying a  
transformation to a point (or area) of this 
matrix, thereby producing a new datum. The 

procedure can thus be repeated by applying 
different transformations (hence the notion 
of convolutional layers). The final vector 
obtained can then be fed into a neural model. 
More generally, a convolutional layer may be 
seen as a filter allowing the initial datum to be 
transformed.

One intuitive explanation for deep learning, 
and particularly deep networks, being so pow‑
erful for describing complex relationships 
in data is their construction around a simple 
functional approximation and the use of a form 
of hierarchy (Lin et al., 2016). Nevertheless, 
deep learning models are more difficult to use 
since they require a significant degree of empi‑
rical judgement. While open‑source libraries  
(Keras, Torch, etc.) currently allow more 

The expression is then different from that obtained 
in‑sample, and by drawing on Groves & Rothenberg 
(1969), we can show that:

 x x p
m

T Tβ β σ −  ≥( )0

2
2

Except for certain simple cases, there is no simple for‑
mula. We may note, however, that if x ∼ ( ) 0 2,σ  , 
then x xT  follows a Wishart distribution, and:

 x x p
m p

T Tβ β σ −











=
− −0

2
2

1
Let us now consider the empirical version: if β is esti‑
mated on the m first observations,

�
IS

 = −
= +
∑

i m

m

i i
Ty x

1

2[ ]β  and �
OS

 = −
= +
∑

i m

n

i i
Ty x

1

2[ ]β

and as noted by Leeb (2008),   

IS OS
− ≈ ⋅2 ν  where 

ν  represents the number of degrees of freedom. Figure 
A shows the respective evolution of 

IS and 
OS 

according to the complexity of the model (number of 
degrees in a polynomial regression, number of nodes 
in splines, etc.). 

IS always decreases with complex‑
ity (light curve). However, 

IS is non‑monotonic (dark 
curve). If the model is too simple, it is a poor predictor, 
but if it is too complex, “over‑learning” arises: it starts to  
model noise.

Box 1 (contd.)

Figure A
Generalisation and Over‑Learning

low

learning
error

validation
error

high

Model complexity
 

low

underfitting overfitting

high

Model complexity

“optimal”
parameter

Reading note: The light curve represents the in‑sample empirical risk on the learning sample, while the dark curve represents the out‑of‑sample risk 
on the test sample.
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readily for parallel computations by using, for 
example, GPUs (Graphical Processor Units), 
the user is still required to determine the struc‑
ture of the most appropriate neural network.

Support Vector Machines

As noted above, in machine learning classi‑
fication problems (as in signal processing), 
observations in the set − +{ }� , �1 1  are prefera‑
ble (rather than 0 1,{ } in econometrics). With 
this notation, Cortes & Vapnik (1995) laid 
the theoretical foundations of support vector 
machine (SVM) models, an alternative to the 
then very popular neural networks. The ini‑
tial idea of SVM methods involves finding a 
separating hyperplane dividing space into two 
sets of points as homogeneously as possible 
(i.e. containing identical labels). In dimension 
two, the algorithm involves determining a line 
separating the space into two areas that are as 
homogeneous as possible. Since it is a problem 
which may sometimes have an infinite num‑
ber of solutions (there may be an infinity of 
lines separating the space into two distinct and 
homogeneous areas), an additional constraint 
is generally added: the separating hyperplane 
must be located as far as possible from the 
two homogeneous subsets which it generates 
(Diagram 2). In such cases, we speak of mar‑
gin. The algorithm thus described is a soft‑ or 
hard‑margin linear SVM.

If a plane can be entirely characterised by a 
directional vector w orthogonal to the latter 
and a constant b, applying an SVM algorithm 
to a set of n∈* points xi of  p labelled by 
yi ∈ −{ }1 1,  thus amounts to solving a con‑
strained optimisation programme similar to a 
lasso problem (quadratic deviation under lin‑
ear constraint; see Online complements – link 
at the end of the article). In particular, we are 
led to solving the following:

w
w w

 ,
, ,

b w w w
b b

T( ) = { } = { }argmin argmin 

2

under constraints

∀ ∈{ }i n1, ,
, ω

ω

T
i i

T
i i

x b y
x b y

+ ≥ + = +
+ ≤ − = −




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� �
1 1
1 1
� when �
� when �

The constraint can be loosened by allowing 
a point in a subset not to have the same label 
as the majority of the points in the subset 
provided it is not too far from the boundary. 
These are known as soft‑margin linear SVMs. 
Heuristically, and indeed in practice, we cannot 

have y w x bi
T

i +( ) − ≥1 0  for any i n∈{ }1, ,
; 

we loosen by introducing positive variables ξ  
such that:

ω ξ
ξ

T
i i i

i i

x b y
b y

+ ≥ + − = +
+ ≤ − + = −




� �
� �
1 1
1 1

� lorsque�
É x � lorsque�T

i
 (1)

with ξi ≥ 0 . A misclassification occurs if 
ξi >1, and a penalty is then applied as a price 
to pay for each error. The aim then is to solve a 
quadratic problem:

min 1
2

1 1 1ω ωT TC+





>ξ

under constraint (1), which can be efficiently 
solved numerically by coordinate descent.

If the points cannot be separated, another 
possibility is to transfer them into a higher 
dimension in such a way that the data become 
linearly separable. Finding the right transfor‑
mation separating the data is, however, very 
difficult. One mathematical trick for elegantly 
solving this problem involves defining the 
transformations T ⋅( ) and the scalar products 
using a kernel K x x T x T x1 2 1 2, ,( ) = ( ) ( ) . 
One of the most common choices for a kernel 
function is the radial basis function (Gaussian 
kernel) K x x x x1 2 1 2

2,( ) = − −( )exp . However, 
no rules have so far been devised for choos‑
ing the “best” kernel. This technique is based 
on distance minimisation and does not predict 
the probability of being positive or negative, 
although a probabilistic interpretation is none‑
theless possible (Grandvalet et al., 2005).

Trees, Bagging and Random Forests

Classification trees were introduced by 
Breiman et al. (1984) and then by Quinlan 
(1986). We speak of CART, or Classification 

Diagram 2
Illustration of a Margin SVM

Sources: Vert (2017). 
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and Regression Tree. The idea is to divide 
(based on the notion of branching) the input 
data consecutively until an allocation criterion 
(in relation to the target variable) is reached, 
based on a pre‑defined rule.

The intuition: entropy H x( ) is associated with 
the amount of disorder in the data x in relation 
to the modalities of the classification variable 
y, and each partition aims to reduce this disor‑
der. The probabilistic interpretation is to create 
groups that are as homogeneous as possible by 
reducing the variance of each group (intra‑group 
variance), or in an equivalent manner by creat‑
ing two groups that are as different as possible 
by increasing the variance between the groups 
(inter‑group variance). At each stage, the par‑
tition providing the most significant reduction 
of disorder (or of variance) is chosen. The 
complete decision tree is developed by repeat‑
ing this procedure across all the sub‑groups, 
where each step results in a new partition into 2 
branches, which subdivides the dataset into 2. 
Lastly, a decision about when to put an end to 
the creation of new branches is made by carry‑
ing out the final allocations (leaf nodes). There 
are several options. One option is to build a tree 
until all leaves are pure, i.e. composed of a sin‑
gle observation. Another option is to define a 
stopping rule linked to the size or decomposi‑
tion of the leaves. Examples of stopping rules 
can be of minimum size (at least 5 elements 
per leaf) or minimum entropy. We speak of the 
pruning of the tree: the tree is allowed to grow, 
and then certain branches are cut a posteriori 
(which is different from introducing a stopping 
criterion a priori to the growth process of the 
tree – for example by imposing a minimum 
size on the leaves, or other criteria discussed in 
Breiman et al., 1984).

At a given node, formed of n0 observations 
x yi i,( ) with i ∈0, we cut into two branches 

(one on the left and one on the right), thus parti‑
tioning 0 into g and d. Let I  be the criterion 
of interest, such as the entropy of the node:

I y n p p p
n

y
i

i0 0 0 0 0
0

1

0

( ) = − =
∈
∑log � where�


or the variance of the node:

I y n p p p
n

y
i

i0 0 0 0 0
0

1 1

0

( ) = −( ) =
∈
∑� where�


the latter also being the Gini impurity index.

The left and right branches are partitioned if the 
gain I y I y I yd0( ) − ( ) + ( ) g  is sufficiently 

significant. In the construction of the trees, the 
aim is to determine the partition that provides 
the greatest possible gain. This combinato‑
rial problem being complex, Breiman et al. 
(1984) proposed a partition according to one 
of the variables, with  g = ∈ <{ : },i x sk i0  
and  d = ∈ >{ : },i x sk i0 , for a variable k and 
a threshold s (if the variable is continuous; oth‑
erwise, groupings of modalities are considered 
for qualitative variables).

The decision trees thus described are simple 
to obtain and easy to interpret (as shown by 
Diagram 3 on the data of the Titanic4), although 
they are not robust, and their predictive power 
is often very limited, particularly if the tree 
is very deep. One obvious idea is to develop 
a set of more or less independent tree mod‑
els which, together, predict better than a sin‑
gle‑tree model. The bootstrap method will be 
used, by sampling (with replacement) n obser‑
vations among x yi i,( ){ }. Each sample thus 
generated can be used to estimate a new classi‑
fication tree, thus forming a forest of trees. It is 
the aggregation of all these trees that gives the 
prediction. The overall result is less sensitive 
than the initial sample and often gives better 
prediction results. These techniques, known as 
bagging (short for bootstrap aggregating), are 
similar to bootstrap techniques in regression 
(for example to construct confidence tubes in 
a functional regression).4

4. This dataset, which contains information on all the passengers and 
crew members on the Titanic, with the variable  indicating whether the per‑
son survived, has been widely used to illustrate classification techniques, 
see https://www.kaggle.com/c/titanic/data.

Diagram 3
Illustration of a Decision Tree Used to Predict the 
Survival Rate of a Passenger on the Titanic

man? 
yes no

age > 9.5? 

death survival

yes no

yes no

survival

death sibsp > 2.5? 

Reading note: A woman (man: no) had a 73% chance of survival, with 
women representing 36% of the population. 

https://www.kaggle.com/c/titanic/data
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Bagging involves generating random samples 
by sampling with replacement from the origi‑
nal sample, as with the bootstrap method. 
Random forests are based on the same princi‑
ple as bagging, but during the construction of a 
classification tree, at each branch, a subset of m 
covariates is drawn randomly. In other words, 
each branch of a tree is not based on the same 
set of covariates. This helps to increase the 
variability between the trees and, ultimately, 
to obtain a forest composed of less correlated 
trees.

Choice of Classification Model

Given a model m ⋅( ) approximating 
[ | ]Y X x= , and a threshold s ∈[ ]0 1, , let us posit:

y m x s
m x s
m x s

s


( )
[ ]= ( ) > =

( ) >
( ) ≤






1

1
0
� si �
� si �

The confusion matrix is then the contingency 
table associated with the countings N Nu v=  ,  
with:

N y u y vu v
s

n

i

s

j,
( )

,( )

=

= = =( )∑
1

1 

for u v, ,( )∈{ }0 1 . Table 1 presents such a 
matrix, with the name of each of the compo‑
nents: TP for true positives, corresponding to 
the 1 predicted in 1, TN for true negatives, cor‑
responding to the 0 predicted in 0, FP for false 
positives, corresponding to 0 predicted in 1, 
and FN for false negatives, corresponding to 1 
predicted in 0.

Several quantities are derived from this table. 
Sensitivity is the probability of predicting 
1 in the population of 1, or the true positive 
rate. Specificity is the probability of predict‑
ing 0 in the population of 0 or the true nega‑
tive rate. However, the true negative rate will 
be of greater interest, i.e. the probability of 
predicting 1 in the population of 0. The rep‑
resentation of these two values when s  var‑
ies gives the ROC curve (receiver operating  
characteristic):

ROC FP
FP VN

VP
VP FNs

s

s s

s

s s

s

=
+ +











= −

,

,sensitivity specificit1 yys s( ) ∈[ ]pour 0 1,

This curve is presented in the next section, 
based on real data. The two values widely used 
in machine learning are the index κ , which 
compares observed and expected accuracy 
using a random model (Landis & Koch, 1977), 
and the AUC, corresponding to the area under 

the ROC curve. For the first index, once s  is 
chosen, let N ⊥ be the contingency table corres‑
ponding to independent cases (defined based 
on N  in the chi‑square independence test. We 
then posit:

total precision TP TN
n

� = +

whereas:

random precision
TN FP TP FN TP FP TN FN

n

� =
+[ ]⋅ +[ ]+ +[ ]⋅ +[ ]

2

We may then define:

κ = −
−

total precision random precision
random precision

� �
�1

Traditionally, s  will be set at 0.5, as in naive 
Bayesian classification, although other values 
may be retained, in particular if the two errors 
are not symmetrical. There are compromises 
between simple and complex models meas‑
ured by the number of parameters (or degrees 
of freedom more generally) in terms of perfor‑
mance and cost. Simple models are generally 
easier to compute, but can also lead to poorer 
goodness‑of‑fit (with high bias, for example). 
By contrast, complex models can provide a 
more accurate goodness‑of‑fit, but also risk 
being more costly in terms of computation. 
Furthermore, they go beyond the data or have 
greater variance and, just as with overly sim‑
ple models, present significant test errors. As 
noted above, in machine learning, the optimal 
model complexity is determined using the 
bias‑variance compromise.

From Classification to Regression

Historically, machine learning methods have 
focused on classification problems (with 
possibly more than 2 modalities5), with rel‑
atively little interest being shown in cases 

5. For example, in the case of letter or number recognition.

Table 1
Confusion Matrix, or Contingency Table for a Given 
Threshold s

y = 0 y = 1

ŷs = 0 VNs FNs VNs + FNs

ŷs = 1 FPs VPs FPs + VPs

VNs + FPs FNs + VPs n
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where the variable of interest y is continuous. 
Nevertheless, a number of techniques can be 
adapted, such as trees and random forests, 
boosting and neural networks.

In the case of regression trees, Morgan  
& Sonquist (1963) proposed the AID method, 
based on the variance decomposition formula 
with an algorithm similar to the algorithm of 
the CART method described above. In a clas‑
sification context, we would calculate, at each 
node (in the case of the Gini impurity index by 
adding on the left leaf { },x sk i <  and the right 
leaf { },x sk i > :

I y y y y
i x s

g g
i x s

d d
k i k i

= −( ) + −( )
< >

∑ ∑
: :, ,

1 1

where yg  and yd  denote the frequencies of 1 
in the left and right leaf, respectively. In the 
case of a regression tree, we use:

I y y y y
i x s

i
i x sk i k i

g i d= − + −
< >

∑ ∑
: :, ,

( ) ( )2 2

corresponding to the (weighted) sum of 
intra‑group variance. The optimal distribution 
is the distribution with the highest intra‑group 
variance (the aim is for the leaves to be as 
homogeneous as possible).

In the context of random forests, a majority 
criterion is often used in classification (the 
predicted class is the majority class in a leaf), 
whereas for regression the predictions across 
all the trees are averaged. In a regression con‑
text (y continuous variable), the idea is to 
create a succession of models based on the 
boosting method (Box 2), which, in this case, 
takes the form:

m x m x

y m x h x

k k

k
i

n

i
k

h

( ) −( )

=

−( )

( ) = ( )
+ − ( ) + ( )





∈

∑

1

1

1 2α argmin


( ) 


where αk is a shrinkage parameter and where the 
second term corresponds to a regression tree, on 
the residuals, y m xi

k
i− ( )−( )1 . However, there 

are other techniques which allow for sequential 
learning. In an additive model (GAM), the aim 
is look for a notation in the form:

m x m x m x m x
j

p

j j p p( ) = ( ) = ( ) + + ( )
=

∑
1

1 1 

The idea of projection pursuit is based on a 
decomposition of the linear combinations and 
not of the explanatory variables. Let us con‑
sider a model:

m x g x g x g x
j

k

j j
T T

k k
T( ) = ( ) = ( ) + + ( )

=
∑

1
1 1ω ω ω

As with additive models, the functions 
g gk1, ,

 are to be estimated, as are the direc‑
tions ω ω1, , k . This notation is relatively gen‑
eral and allows for interactions and cross effects 
to be considered (which is something that could 
not be done with additive models, which do not 
take into account nonlinearities). For exam‑
ple, in dimension 2, a multiplicative effect 
m x x x x1 2 1 2,( ) = ⋅  is expressed as follows:

m x x x x x x x x
1 2 1 2

1 2
2

1 2
2

4 4
, ( ) ( )( ) = ⋅ = + − −

in other words g x x1
2 4( ) = / , g x x2

2 4( ) = − / ,  
ω1 1 1= ( ), T  and ω2 1 1= −( ), T. In the simple 
version, with k = 1, with a quadratic loss 
function, we may use a Taylor expansion to 
approximate [ ]y g xi

T
i− ( )ω 2, and construct an 

Box 2 – Slow Learning by Boosting

The idea of boosting, introduced by Shapire & Freund 
(2012), is to learn slowly from the errors of the model, in 
an iterative manner. In the first stage, a model m1 is esti‑
mated for y, based on X , giving error ε1. In the second 
stage, a model m2  is estimated for ε1, based on X , 
giving error ε2, etc. After k iterations, the model is then 
selected:
m m m m m

m m

k
k
k

k

y

( )

−

−( )

⋅( ) = ⋅( )+ ⋅( )+ ⋅( )+ + ⋅( )

= ⋅( ) +

∼ ∼ ∼ ∼
1 2

1
3

2 1

1

ε ε ε


kk ⋅( )

 (2)

Here, the error ε is seen as the difference between 
y and model m x( ) , but it may also be seen as the 
gradient associated with the quadratic loss function. 

Equation (2) may be seen as a gradient descent, but 
expressed dualistically. The problem will then be recast 
as an optimisation problem:

m m y m x h xk k

i

n

i
k

i i
h

( ) −( )

=

−( )= + − ( ) ( )( )





∈

∑1

1

1argmin


 ,  (3)

where the space   is relatively simple (in such cases 
we speak of a weak learner). Traditionally, the functions 
  are staircase functions (found in classification and 
regression trees) known as stumps. To ensure that lear‑
ning is slow, it is not uncommon for a shrinkage para‑
meter to be used, and rather than positing, for example, 
ε1 1= − ( )y m x , ε α1 1= − ⋅ ( )y m x  is posited, with 
α ∈[ ]0 1, .
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iterative algorithm in the standard way. If we 
have an initial value ω0 , let us note that:

i
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corresponding to approximation in the general‑
ised linear models on the function g ⋅( )  which 
was the link function (assumed to be known). 
We recognise a weighted least squares prob‑
lem. The difficulty here is that the functions 
g j ⋅( )  are unknown.

Applications

Big Data have required the development of 
estimation techniques capable of overcoming 
the limitations of parametric models, which 
are seen as too restrictive, and of traditional 
nonparametric models, whose estimation can 
be difficult in the presence of a large number 
of variables. Statistical learning, or machine 
learning, provides new nonparametric estima‑
tion methods, which perform well in a general 
context and in the presence of a large num‑
ber of variables.6 However, greater flexibility 
comes at the cost of a sometimes significant 
lack of interpretation.

In practice, one important issue is to determine 
the best model. The answer to this question 
depends on the underlying problem. If the rela‑
tionship between the variables is approximated 
by a linear model, a correctly specified para‑
metric model should perform well. By contrast, 
if the parametric model is not correctly speci‑
fied, since the relationship is highly nonlinear 
and/or involves significant cross effects, then 
the statistical methods derived from machine 
learning should perform better.

The correct specification of a regression model 
is a common hypothesis, but one that is seldom 
verified and justified. In the following applica‑
tions, we show how statistical methods derived 
from machine learning can be used to justify 
the correct specification of a parametric regres‑
sion model or to detect a misspecification.

Sales of Child Car Seats (Classification)

Here, we will be drawing on an example used 
in James et al. (2013). The dataset contains the 

sales of child car seats at 400 stores (sales), as 
well as several variables, including the qua‑
lity of the shelving location (shelveloc, equal 
to “poor”, “average” and “good”) and price 
(price).67 A binary dependent variable is arti‑
ficially created to describe high or low sales 
(high = “yes” if sales > 8 and “no” if not). In 
this application, the aim is to identify the deter‑
minants of a good volume of sales. We begin 
by considering a latent linear regression model:

y x GT = + + ∼ ( )γ β ε ε, , ,0 1  (4)

where x is composed of k explanatory varia‑
bles, β is a vector of k unknown parameters 
and ε  is an i.i.d. error term with a distribu‑
tion function G with zero expectation and unit 
variance. The dependent variable y∗ is not 
observed, with only y, with:

y
y
y
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>
≤





1
0
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
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ξ
ξ

 (5)

The probability of y being equal to 1 may then 
be expressed as follows:

 Y G xT=( ) = +( )1 0β β  (6)

where β γ ξ0 = − .8 This model is estimated by 
maximum likelihood by selecting a parametric 
distribution G. If it is assumed that G is the 
normal distribution, it is a probit model; if it is 
assumed that G is the logistic distribution, it is 
a logit model. In a logit/probit model, there are 
two possible sources of misspecification:

 - The linear relationship β β0 + xT  is misspec‑
ified;

 - The parametric distribution used G is incorrect.

In the event of misspecification, of whatever 
kind, the estimation is no longer valid. The 
most flexible model is the following:

 Y X x G h x= =[ ] = ( )( )1|  (7)

where h is an unknown function and G an 
unknown distribution function. The bagging, 
random forest and boosting methods can be 

6. See, among others, Hastie et al. (2009) and James et al. (2013).
7. It is the Carseats dataset from the ISLR library.
8.    [ ]Y Y x xT T= =] [ > =] [ + + > =] [ > − −1  ξ γ β ε ξ ε ξ γ β    
which can ultimately be written as [ ]ε γ ξ β< − + xT . Given γ ξ β− = 0, 
we obtain  Y G xT=[ ] = +1 0( )β β . In general, it is assumed that the 
variance of the error term is equal to σ 2, in which case the parameters 
of model (6) are β σ0 /  and β σ/ , which means that the parameters of 
latent model (4) are not identifiable and are estimated to within one scale 
parameter.
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used to estimate this general model without 
making a preliminary choice about the func‑
tion h and the distribution G. The estimation of 
the logit/probit model nevertheless performs 
better if h and G are correctly specified.

Model (6) is estimated using the logistic dis‑
tribution for G, while model (7) is estimated 
with the bagging, random forest and boosting 
methods. A 10‑fold cross‑validation analysis is 
performed (Box 3). The individual probabili‑
ties of the out‑of‑sample data, i.e. of each of 
the folds not used for the estimation, are used 
to assess the quality of the classification.

Figure I shows the ROC curve and the area 
under the curve (AUC) for the logit, bagging, 
random forest and boosting estimations. The 
ROC curve is a graph that simultaneously rep‑
resents the quality of the prediction in the two 
classes, for different values of the threshold 
used to classify the individuals (the term is 
“cutoff”). One obvious way of classifying indi‑
viduals is to assign them to the class for which 
they have the highest estimated probability. In 
the case of a binary variable, this amounts to 
predicting the class for which the estimated 
probability is higher than 0.5. However, a dif‑
ferent threshold could be used. For example, 

in Figure I, a point on the ROC curve of the 
logit model indicates that by using a thresh‑
old of 0.5, the correct prediction rate for the 
answer “no” is 90.7% (specificity), while the 
correct prediction rate for the answer “yes” is 
86% (sensitivity). Another point indicates that 
by using 0.285, the correct prediction rate for 
the answer “no” is 86% (specificity), while the 
correct prediction rate for the answer “yes” 
is 92.7% (sensitivity). As described above, 
an ideal classification model would have an 
ROC curve of the form Γ. The best model is 
the model whose curve is above the others. 
One criterion commonly used to select the 
best model is the criterion with the largest area 
under the ROC curve (AUC). The advantage 
of such a criterion is that it is easy to compare 
and does not depend on the choice of classifi‑
cation threshold.

In our example, the ROC curve of the logit 
model is above the other curves and has the 
largest area under the curve (AUC = 0.9544). 
These results indicate that this model provides 
the best classification predictions. Since it no 
other model performs better, this finding sug‑
gests that the linear logit model is correctly 
specified and that there is no need to use a 
more general and more complex model.

Figure I
Sales of Car Seats: ROC Curves and Areas Under the Curve (AUC)
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Sources: Simulated data on 400 points of sale of baby car seats with the data set “Carseats” from James et al. (2013),  
https://CRAN.R‑project.org/package=ISLR

https://CRAN.R-project.org/package=ISLR
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Purchase of Caravan Insurance 
(Classification)

Here, we will be drawing on an example used 
in James et al. (2013). The dataset contains 85 
variables on the demographic characteristics 
of 5,822 individuals.9 The dependent variable 
(purchase) indicates whether the individual 
has purchased caravan insurance; it is a binary 
variable, corresponding to “yes” or “no”. In 
the dataset, only 6% of the individuals took 
out such insurance. The classes are therefore 
highly imbalanced.

Model (6) is estimated using the logistic distri‑
bution function, while model (7) is estimated 
by the bagging, random forest and boosting 
methods (the tuning parameters are those used 
by James et al. (2013), n.trees = 1,000 and 
shrinkage = 0.01). A 10‑fold cross‑validation 
analysis is performed. The individual probabil‑
ities of the out‑of‑sample data, i.e. of each of 
the pieces not used for the estimation, are used 
to assess the quality of the classification.

Figure II shows the ROC curve and the area 
under the curve (AUC) for the logit, bagging, 
random forest and boosting estimations. The 
curve of the boosting model is above the other 
curves and has the largest area under the curve 
(AUC = 0.7691). These results indicate that 
boosting provides the best classification pre‑
dictions. Compared to the previous example, 
the curves are relatively far from the L shape, 
which suggests that the classification will not 
be as good.

It is important to consider the results of a 
standard classification, i.e. with a classification 

threshold of 0.5, which is often used by default 
in software (the prediction of the answer of 
individual i  is “no” if the estimated probabi‑
lity of the individual answering “no” is higher 
than 0.5; if not, it is “yes”). The left side of 
Table 2 shows the correct classifications with 
this threshold (threshold of 0.5) for the dif‑
ferent methods. With the best model and the 
standard threshold (boosting and threshold 
of 0.5), the “no” answers are 99.87% correct 
while the “yes” answers are all wrong. This 
equates to using a model which predicts that 
no one buys caravan insurance. For analysts, 
choosing such a model is absurd since their 
main focus is precisely the 6% of individuals 
who purchased such insurance. This result is 
explained by the presence of highly imba‑
lanced classes. Indeed, by predicting that no 
one buys insurance, the error rate is “only” 
6%. However, these are errors which result in 
not explaining anything.9

Several methods can be used to overcome this 
problem, linked to highly imbalanced classes 
(Kuhn & Johnson, 2013, Chapter 16). One sim‑
ple solution is to use a different classification 
threshold. The ROC curve presents the results 
according to several classification thresholds, 
where the perfect classification is illustrated 
by the couple (specificity, sensitivity) = (1,1), 
i.e. by the upper‑left corner of the graph. The 
classification threshold corresponding to the 
point on the ROC curve closest to this corner is 
selected as the optimal classification threshold. 
The right side of Table 2 shows the correct clas‑
sification rates with the optimal thresholds for 
the different methods (the optimal thresholds 

9. It is the Caravan dataset from the ISLR library under R.

Box 3 – K‑Fold Cross Validation

Cross‑validation is based on the idea of building an esti‑
mator by removing an observation. Since the aim is to 
build a predictive model, the prediction obtained from 
the estimated model will be compared with the missing 
observation:

 



� CV
= ( )( )

=
∑1

1n
y m x

i

n

i i i, ( )

The main problem of this method (known as the 
leave‑one‑out method) is that it requires calibrating 
n models, which can be problematic in high dimen‑
sion. An alternative method is k‑fold cross‑validation,  
which involves using a partition of 1, , n{ } in  

k groups (or folds) of the same size,  1, , k (let 
  j jn= { }1, , ). With m j

 ( ) built on the sample  j , 
we then posit:
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Using k = 5 10,  presents two advantages compared 
to k n=  (corresponding to the leave‑one‑out method):  
(1) the number of estimations to be performed is far too 
low, i.e. 5 or 10 rather than n; (2) the samples used for 
the estimation are less similar and, therefore, less cor‑
related with each other, which tends to avoid excessive 
variance (James et al., 2013).
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of the logit, bagging, random forest and boost‑
ing methods are 0.0655, 0.0365, 0.0395 and 
0.0596, respectively). With boosting and an 
optimal threshold, the “no” answers are 68.6% 
correct, while the “yes” answers are 73.85% 
correct. The aim of the analysis being to cor‑
rectly predict the individuals likely to buy cara‑
van insurance (“yes” class) and to distinguish 
them sufficiently from the others (“no” class), 
the optimal threshold performs far better than 
the standard threshold (0.5). With a logit model 
and an optimal threshold, the correct classifica‑
tion rate for the “no” class is 72.78%, while the 
rate for the “yes” class is 63.51%. Compared 
to boosting, the logit model is slightly better at 

predicting the “no” class, but is significantly 
worse at predicting the “yes” class.

Personal Loan Defaults (Classification)

Consider the German database of per‑
sonal loans, used in Nisbet et al. (2001) and 
Tufféry (2001), with 1,000 observations and 
19 explanatory variables, including 12 quali‑
tative variables: by disjuncting them (by cre‑
ating an indicator variable for each modality), 
we obtain 48 potential explanatory variables. 
A recurring question in modelling is to deter‑
mine which variables merit being used. The 

Figure II
Purchase of Insurance: ROC Curves and Areas Under the Curve (AUC)
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Sources: Experimental dataset “Caravan” on the consumption of caravan insurance, James et al. (2013).  
https://CRAN.R‑project.org/package=ISLR

Table 2
Purchase of Insurance: Sensitivity to the Choice of Classification Threshold

Threshold of 0.5 Optimal Thresholds

Specificity Sensitivity Specificity Sensitivity

Logit 0.9967 0.0057 0.7278 0.6351

Bagging 0.9779 0.0661 0.6443 0.7069

Random Forest 0.9892 0.0316 0.6345 0.6954

Boosting 0.9987 0.0000 0.6860 0.7385
Sources: Experimental dataset “Caravan” on the consumption of caravan insurance, James et al. (2013).  
https://CRAN.R‑project.org/package=ISLR

https://CRAN.R-project.org/package=ISLR
https://CRAN.R-project.org/package=ISLR
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most obvious solution for an econometrician 
may be a stepwise method (with running 
through all possible combinations of vari‑
ables being, on the face of it, too complex 
in high, forward or backward dimension). 
The set of variables in a backward approach 
is shown in the first column of Table 3 (see 
Box 4 for the principles governing penalisa‑
tion and the choice of explanatory variables). 
The table provides a comparison with two 
other approaches: first, the lasso method, by 
suitably penalising the norm 

1  of the vector 
of parameters β  (last column). We note that 
the first two variables considered as null (for a 
sufficiently large λ) are the first two to emerge 
from a backward procedure. One last method 
has been proposed by Breiman (2001b), using 
all of the trees created when building a ran‑
dom tree: the importance of the variable xk  in 
a forest of T  trees is given by:

Importance x
T

p j jk
t

n

j N
t

t k

( ) = ( ) ( )
= ∈
∑ ∑1

1 ,

∆

where Nt k,  denotes the set of nodes of the tree 
t using the variable xk  as a separation variable, 
p jt ( )  denotes the proportion of observations 
in a node j, and ∆ j( ) is the index variation at 
the node j (between the preceding node, the 
left leaf and the right leaf). The central column 
of Table 3 shows the variables by decreasing 
order of importance when the index used is the 
Gini impurity index.

With the stepwise approach and the lasso 
method, we remain with linear logistic models.  
In the case of random forests (and trees),  
interactions between variables can be taken 
into account when 2 variables are present. For 
example, the variable residence_since ranks 
very high among the predictive variables (third 
most important variable).

Wage Determinants (Regression)

The Mincer wage equation (Mincer, 1974; 
Lemieux, 2006) has traditionally been used 

Table 3
Credit: Choice of Variables, Sequential Sorting, Based on a Stepwise Approach, by Importance Function in 
a Random Forest and by Lasso

Stepwise AIC Random Forest Gini Lasso
checking_statusA14 1112.1730 checking_statusA14 30.818197 checking_statusA14
credit_amount(4e+03,Inf] 1090.3467 installment_rate 20.786313 credit_amount(4e+03,Inf]
credit_historyA34 1071.8062 residence_since 19.853029 credit_historyA34
installment_rate 1056.3428 duration(15,36] 11.377471 duration(36,Inf]
purposeA41 1044.1580 credit_historyA34 10.966407 credit_historyA31
savingsA65 1033.7521 credit_amount 10.964186 savingsA65
purposeA43 1023.4673 existing_credits 10.482961 housingA152
housingA152 1015.3619 other_payment_plansA143 10.469886 duration(15,36]
other_payment_plansA143 1008.8532 telephoneA192 10.217750 purposeA41
personal_statusA93 1001.6574 Age 10.071736 installment_rate
savingsA64 996.0108 savingsA65 9.547362 property_magnitudeA124
other_partiesA103 991.0377 checking_statusA12 9.502445 age(25,Inf]
checking_statusA13 985.9720 housingA152 8.757095 checking_statusA13
checking_statusA12 982.9530 jobA173 8.734460 purposeA43
employmentA74 980.2228 personal_statusA93 8.715932 other_partiesA103
age(25,Inf] 977.9145 property_magnitudeA123 8.634527 employmentA72
purposeA42 975.2365 personal_statusA92 8.438480 savingsA64
duration(15,36] 972.5094 purposeA43 8.362432 employmentA74
duration(36,Inf] 966.7004 employmentA73 8.225416 purposeA46
purposeA49 965.1470 employmentA75 8.089682 personal_statusA93
purposeA410 963.2713 duration(36,Inf] 8.029945 personal_statusA92
credit_historyA31 962.1370 purposeA42 8.025749 savingsA63

purposeA48 961.1567 property_magnitudeA122 7.908813 telephoneA192
Sources: Dataset “Credit” of the casdataset library of R, loans to households in Germany (Nisbet et al., 2001; Tufféry, 2001). http://cas.uqam.ca/
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to explain (individual) wages according to the 
individual’s education, experience and gender:

log wage( ) =
+ + + + +β β β β β ε0 1 2 3

2
4ed feexp exp  (9)

where ed is the level of education, exp is the 
level of professional experience and fe is a 
dummy variable equal to 1 if the individual is 
a woman. According to human capital theory, 
the expected wage increases with experience, 
at an increasingly slow rate, until it reaches a 
threshold before decreasing. The introduction 
of the square of exp enables such a relationship 
to be taken into account. The presence of var‑
iable fe allows for any wage gap between men 
and women to be measured.

Model (9) establishes a linear relationship 
between wage and level of education and a 
quadratic relationship between wage and pro‑
fessional experience. These relationships may 
seem too restrictive. Several studies have 
shown, in particular, that wages do not fall 
after a certain age and that a quadratic rela‑
tionship or a higher‑degree polynomial is more 
appropriate (Murphy & Welch, 1990; Bazen 
& Charni, 2017).

Model (9) also establishes that the wage gap 
between men and women is independent of 
the level of education and experience. It is too 
restrictive if, for example, the average wage gap 
between men and women is low for unskilled 
jobs and high for skilled jobs, or low among  
early‑career workers and high among late career 
workers (interaction effects). The most flexible 
model is the fully nonparametric model:

log wage exp( ) = ( ) +m ed fe,� ,� ε  (10)

where m ⋅( ) is a random function. It has the 
advantage of being able to take into account 
any nonlinear relationships and complex inter‑
actions between the variables. However, its 
significant flexibility is at the cost of a more 
difficult interpretation of the model. Indeed, a 
4‑dimensional graph would be needed to rep‑
resent the function m. One solution is to repre‑
sent the function m in 3 dimensions by fixing 
the value of one of the variables, although the 
represented function may differ significantly 
with a different fixed value.

We will use data from a survey by the US 
Census Bureau carried out in May 1985 drawn 
from Berndt (1990) and available under R.10 The 
two models are estimated and a 10‑fold cross‑ 
validation analysis is used to select the best 
approach. Parametric model (9) is estimated by 
ordinary least squares (OLS). Fully nonpara‑
metric model (10) is estimated by the method of 
splines since it includes few variables and also by 
the bagging, random forest and boosting methods.

The results of the 10‑fold cross‑validation are 
presented in Table 4. The best model is the 
model that minimises the criterion 

10− � CV. The 
results show that model (9) is at least as effec‑
tive as model (10), which suggests that para‑
metric model (9) is correctly specified.

Determinants of House Prices in Boston 
(Regression)

Here, we will be drawing on one of the exam‑
ples used in James et al. (2013), whose data 

10. It is the CPS1985 dataset from the AER library.

Box 4 – Penalisation and Methods for the Choice of Explanatory Variables

To select relevant explanatory variables in economet‑
rics, we may use criteria ex post relating to the quality 
of the model penalising the complexity, in practice the 
number of explanatory variables (such as R2 adjusted or 
the Akaike criterion – AIC – see the online complement). 
In the forward method, we start with a regression on the 
constant before adding one variable at a time, retaining 
the variable that most improves the model according 
to the chosen criterion, until adding a variable reduces 
the quality of the model. In the backward method, we 
start with a regression on all the variables before adding 
one variable at a time, removing the variable that most 
improves the quality of the model, until removing a varia‑
ble reduces the quality of the model. Stepwise methods 

introduce ensemble methods to limit the number of tests.

The machine learning strategy involves penalising 
ex‑ante in the objective function, even at the risk of con‑
structing a biased estimator. Typically, the following is 
built:

β β β β

λ β

λ λ
 

0
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where the penalisation function will often be a norm ⋅  
chosen a priori, and a penalisation parameter λ.
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are available under R. The dataset contains 
the median values of house prices (medv) in 
n = 506 neighbourhoods around Boston along 
with 13 other variables, including the average 
number of rooms per house (rm), the ave‑
rage age of houses (age) and the percentage 
of households with a low economic status 
(lstat).11

Consider the following linear regression 
model:

medv xT= + +α β ε  (11)

where x = [chas,nox,age,tax,indus,rad,dis,lstat, 
crim,black,rm,zn,ptratio] is a vector in dimen‑
sion 13 and β  is a vector of 13 parameters. 
This model specifies a linear relationship 
between the value of houses and each of the 
explanatory variables. The most flexible model 
is the fully nonparametric model:

medv m x= ( ) + ε . (12)

The estimation of this model by the Kernel 
method or the method of splines can be prob‑
lematic since the number of variables is rela‑
tively high (there are 13 variables here) or, at 
least, too high to consider estimating a surface 
in dimension 13. We estimate the two models 
and use a 10‑fold cross‑validation analysis to 
select the best approach. Parametric model 
(11) is estimated by ordinary least squares 

(OLS) and fully nonparametric model (12) is 
estimated using three different methods: bag‑
ging, random  forest and boosting (here we use 
the default values used in James et al., 2013, 
pp. 328–331).11

Table 5 shows the results of the 10‑fold 
cross‑validation. Based on the in‑sample results 
(on the learning data), the bagging and random 
forest methods are found to be vastly more 
effective than the OLS estimation of linear  
model (11), the criterion 

10− � CV going from 
21.782 to 1.867 and 1.849. The out‑of‑sample 
results (on data other than those used to esti‑
mate the model) tend in the same direction, 
although the difference is less significant, with 
the criterion 

10− � CV going from 24.082 to 9.59 
and 9.407. These results illustrate a common 
phenomenon with nonlinear methods such 
as bagging and random forest, which can be 
highly effective in predicting the data used in 
the estimation, but less effective at predict‑
ing out‑of‑sample data. This explains why the 
selection of the best estimation is typically 
based on an out‑of‑sample analysis.

The difference between the estimation of 
models (11) and (12) is significant. Such a 
difference suggests that the linear model is 
mis specified and that nonlinear relationships 

11. It is the Boston dataset from the MASS library. For a complete descrip‑
tion of the data, see: https://stat.ethz.ch/R‑manual/R‑devel/library/MASS/
html/Boston.html.

Table 5
House Prices in Boston ‑ Fold Cross Validation Analysis (K = 10): Performance of the Estimation of Linear 
Model (11) and Fully Nonparametric Model (12)


10− � CV Model (11) Model (12)

OLS Splines Random forests Boosting

In‑sample 21.782 1.867 1.849 7.012

Out‑of‑sample 24.082 9.590 9.407 11.789
Coverage: Districts of the Boston metropolitan area.
Sources: James et al. (2013), Boston data set from the MASS library. https://stat.ethz.ch/R‑manual/Rdevel/library/MASS/html/Boston.html

Table 4
Wage: Fold Cross Validation Analysis (K = 10): Performance of the Estimation of Linear Model (9) and Fully 
Nonparametric Model (10)


10− � CV Model (9) Model (10)

OLS Splines Bagging Random forests Boosting

Out‑of‑sample 0.2006 0.2004 0.2762 0.2160 0.2173
Source: Population census, USA, 1985, Berndt (1990). Dataset CPS1985 from AER Library. https://rdrr.io/cran/AER/man/CPS1985.html

https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/Boston.html
https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/Boston.html
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and/or interaction effects are present in the 
relationship between house prices and the 
explanatory variables x. This requires looking 
for a better parametric specification. Based on 
parametric model (11), and in order to take 
into account any potential nonlinearities, the 
following generalised additive model (GAM) 
may be considered:

medv m x m x m x= ( ) + ( ) +…+ ( ) +1 1 2 2 13 13 ε (13)

where m m m1 2 13, ,…  are unknown functions. 
The advantage of this model is that it allows 
for any nonlinear relationship between the 
dependent variable and each of the explana‑
tory variables to be considered. Furthermore, 
it does not suffer from the curse of dimen‑
sionality problem since each of the functions 
is of dimension 1 and it is easily interpret‑
able. However, it does not take into account 
any potential interaction effects. The estima‑
tion of generalised additive model (13) by the 
method of splines, as part of a 10‑fold cross‑ 
validation analysis, gives value 

10
13 643

−
=

� CV
. .  

Compared to parametric model (11), there is a 
significant gain (13.643 vs. 24.082). However, 
the difference with the fully nonparametric 
model (12) remains substantial (13.643 vs 
9.590, 9.407, 11.789). Such a difference sug‑
gests that taking into account individual rela‑
tionships which may be highly nonlinear is not 
sufficient and that interaction effects between 
variables are present. The simplest interaction 
variables among the pairs of variables (x xi j× ) 
could be included in the model, but that would 
imply adding a significant number of variables 
to the original model (78 in this case), which 
would have an impact on the quality of the 
estimation of the model. In any case, as things 
stand, what can be said is that the linear model 
is misspecified and that there are potentially 
significant interaction effects in the relation‑
ship between medv and X , the identification of 
such effects remaining a delicate matter.

To go further, the tools developed in statistical 
learning may be of great use. For example, the 
random forest estimation technique involves 
measures of the significance of each of the vari‑
ables in the estimation of the model. Table 6 
shows these measurements in relation to model 
(12), estimated on the whole sample. The results 
suggest that the variables rm and lstat are the 
most significant variables to explain house 
price variations medv. This finding suggests 
enriching the initial relationship by adding the 
interaction effects linked to these two variables 
only, which are the most significant.

The generalised additive model including the 
interaction variables is estimated on the whole 
sample:
medv m x m x rm x

lstat x

= + + +

+ +

( ) ( ) ( )
( )

1 1 13 13 :

:

γ

δ ε  (14)

where rm x:( ) represents the interaction var‑
iables of rm with all the other variables of 
x and lstat x:( ) represents the lstat interac‑
tion variables with all the other variables of 
x.12 Analysis of the results of this estimation 
suggests that functions mi

  are linear for all 
variables except for the DIS variable, whose 
estimated relationship is shown in Figure III. 
This variable measures the average distance 
from five employment centres within the 
region. The effect appears to decrease more 
rapidly with distance when the latter is not very  
significant. Beyond a certain distance (beyond 
2, in log), the effect is reduced and continues 
to decrease, albeit at a slower rate. This non‑
linear relationship can be approximated by a  
piecewise linear regression by considering 
a node.

12. We have (rm:x)=[rm × chas, rm × nox, rm × age, rm × tax, rm × indus,  
rm × rad, rm × dis, rm × lstat, rm × crim, rm × black, rm × zn, rm × ptratio]  
and (lstat:x)=[ lstat × chas, lstat × nox, lstat × age, lstat × tax, lstat × indus,  
lstat × rad, lstat × dis, lstat × crim, lstat × black, lstat × zn, lstat × ptratio].

Table 6
House Prices: Measures of the Importance of Each 
Variable in the Random Forest Estimation of Model 
(12), by Considering the Whole Sample

% IncMSE IncNodePurity

rm 61.35 18 345.41

istat 36.20 15 618.22

dis 29.37 2601.72

nox 24.91 1034.71

age 17.86 554.50

ptratio 17.43 626.58

tax 16.60 611.37

crim 16.26 1701.73

indus 9.45 237.35

black 8.72 457.58

rad 4.53 166.72

zn 3.10 35.73

chas 0.87 39.05
Coverage: Districts of the Boston metropolitan area.
Sources: James et al. (2013), Boston data set from the MASS library. 
https://stat.ethz.ch/R‑manual/Rdevel/library/MASS/html/Boston.html
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Lastly, the above analysis suggests considering 
the following linear model:

medv x dis rm x

lstat x

T= + + − + + ( )
+ ( ) +

α β θ γ

δ ε

( ) :

:

2

 (15)

where ( )dis − 2  is equal to the value of its 
argument if the latter is positive, and to 0 if it 
is not. Compared to the original linear model, 
this model includes a piecewise linear relation‑
ship with the DIS variable, as well as interac‑
tion effects between rm, lstat and each of the 
other variables of x.

Table 7 shows the results of the 10‑fold cross 
validation of the estimation of parametric 
models (11) and (15), estimated by ordinary 

least squares (OLS), and of the generalised 
additive model (14) estimated by splines. It 
shows that the addition of interaction varia‑
bles and of the piecewise linear relationship 
in model (15) produces far better results than 
the initial model (11): the criterion 

10− � CV is 
divided by more than two, going from 24.082 
to 11.759. By comparing these results with 
the results of Table 5, we also find that par‑
ametric model (15), estimated by OLS, is as 
effective as general model (12) estimated by 
boosting (

10
11 789

−
=

CV
. ). The difference with 

the bagging and random forest methods is not 
very significant (

10
9 59 9 407

−
=

CV
. , . ). Lastly, the 

bagging, random forest and boosting methods 
served to highlight the misspecification of the 
original parametric model and then to find a far 
more effective parametric model by taking into 

Table 7
House Prices in Boston ‑ Fold Cross Validation Analysis (K = 10): Performance of the Estimation of Linear 
Models (11) and (15) and of Model (14) Including the Interaction Effects and With a Piecewise Nonlinearity


10− � CV Model (11) Model (14) Model (15)

OLS Splines OLS

Out‑of‑sample 24.082 13.643 11.759
Coverage: Districts of the Boston metropolitan area.
Sources: James et al. (2013), Boston data set from the MASS library. https://stat.ethz.ch/R‑manual/Rdevel/library/MASS/html/Boston.html

Figure III
Estimation of the Relationship m7 (x7) in the Generalised Additive Model (14), where x7 = dis.
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Note: Estimation of the m7 (x7) relationship for the dis variable in the generalized additive model; the dotted lines correspond to the 95%  
confidence intervals.
Coverage: Districts of the Boston metropolitan area.
Sources: James et al. (2013), Boston data set from the MASS library. https://stat.ethz.ch/R‑manual/R‑devel/library/MASS/html/Boston.html

https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/Boston.html
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account the effects of appropriate nonlineari‑
ties and interactions.

*  * 
*

While the two cultures (or two communities) of 
econometrics and machine learning have devel‑
oped in parallel, the number of links between 
the two is constantly increasing. Whereas 
Varian (2014) outlined the significant contribu‑
tions of econometrics to the machine learning 
community, our aim here was to present con‑
cepts and tools developed over time by that 
very community and which may be of use to 
econometricians, in a context of ever increas‑
ing data volumes. The probabilistic foundations 
of econometrics are without doubt its key asset, 
allowing not only for model interpretability, 
but also for the quantification of uncertainty. 
Nevertheless, the predictive performance of 
machine learning models is of value insofar as 

they allow for the identification of a misspeci‑
fied econometric model. In the same way that 
nonparametric techniques provide a point of 
reference for assessing the relevance of a par‑
ametric model, machine learning tools help to 
improve an econometric model by detecting a 
nonlinear effect or an overlooked cross effect.

An illustration of the potential interactions 
between the two communities can be found, 
for example, in Belloni et al. (2010, 2012), 
in the context of the choice of instrument in a 
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