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Abstract

When we want to circulate the results of a survey on small populations, particularly if we
are dealing with small geographical areas, the low sample size matching these populations can
lead to estimates that are not accurate enough. The classical sampling theory does not provide a
satisfactory solution to this problem and specific estimation techniques must therefore be used,
based on using auxiliary information and on models of varying complexity. All these models are a
formal link between the variable studied and auxiliary variables. The simplest form is a linear link
but there are other non-linear models (Poisson model, logistics model). Most of the models isolate
local area-specific effects. Correlations between these effects can be introduced, all the stronger
given that the areas are geographically close. This spatial correlation is then likely to improve the
quality of localised estimates.
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This chapter is devoted to a general introduction to the issue known as the "small-area estima-
tion", with particular attention to considering spatial correlation in the models.

12.1 Setting up the model

12.1.1 Background and objectives
Survey statisticians have a particular interest in estimating unknown θ parameters, defined in a

finite and generally large population. Most parameters are totals or immediate derivatives of totals
such as means or proportions. More rarely, we find non-linear functions that can still be expressed as
total functions (ratios, variances in the population, correlation or regression coefficients). Depending
on the survey topic, we may also want to estimate highly non-linear parameters, such as quantiles
or inequality indicators, which are not written as total functions.

The parameters are defined using one (or more) variable(s) of interest and are formally stated
using expressions generally involving all individuals in population U . We will designate Y as the
variable of interest, which will subsequently be considered as unique. The individuals of U are
identified by index i, and if parameter θ is a total T then T = ∑i∈U Yi.

When individual value Yi for each individual i of U is not available, we can estimate T by
sampling, i.e. from information Yi obtained from a responding sample, designated s, included in U .
The sample is usually drawn from a complex sampling design, for example combining stratification,
unequal probability sampling and several sub-samples. Some parameters of interest are not defined
for the whole population U but on a sub-population, designated d. Such a sub-population is called
a domain (or an area), and we then have to deal with an area estimate. In this case, the parameter of
interest θ may be the total over the area, i.e. Td = ∑i∈d Yi, which must be estimated from collected
data. The classical sampling theory assigns each sampled unit i a sampling weight wi, a positive
real coefficient that depends on the sampling method and how non-responses are handled, which
"expands" the value of the variable of interest Yi. To estimate a defined total T over the complete
population U , the estimator takes a linear form T̂ = ∑i∈s wiYi. To estimate a total over an area d, we
simply restrict the sum to the elements of d without modifying their weighting, i.e. T̂d = ∑i∈s∩d wiYi.
If parameter θ is a mean over d, now designated Ȳd (including proportions, which are means of
Boolean variables), we estimate the size Nd of the area using N̂d = ∑i∈s∩d wi (a size is a total of
constant individual values equal to 1) and we form ratio ˆ̄Yd = T̂d/N̂d . But if we know Nd , we can

also use the alternative estimate ˆ̄̂Yd = T̂d/Nd .

In all cases, sampling leads to a specific error of estimators T̂d and ˆ̄Yd , summarised by means of
two indicators respectively called bias and sampling variance. Consider the case of ˆ̄Yd . The bias
means the difference between the expected value of ˆ̄Yd , i.e. the expected "on average" estimate
given the uncertainty that leads to the creation of s, and the Ȳd parameter, while sampling variance
measures the sensitivity of the estimate ˆ̄Yd to responding sample s. A precise sampling design
results in a low bias and a low variance. The estimators derived from the sampling theory and used
by survey statisticians are generally bias-free or have negligible bias. The sampling variance is a
decreasing function of nd , where nd is the size of the responding sample matching area d, i.e. size
of s∩d. When nd is small enough that the quality targets for estimate ˆ̄Yd are not reached, there is a
small area estimation problem.

To address this difficulty, when it is no longer possible to increase the value of size s, designated
n, we have to create a new theoretical context to make the final estimate of parameter θ (total Td or
mean Ȳd) less sensitive to responding sample s (or s∩d, which is equivalent). This is done using
a modelling technique. It means putting oneself within a hypothetical framework that simplifies
reality (this is the general definition of a model). The usual approach is to consider that Yi is
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essentially explained by a set of known individual variables Xi for each unit i of the population
while involving a few δ a priori unknown quantities - parameters of the model. It will be enough
to estimate these quantities δ to be able to deduce any unknown value Yi (corresponding to cases
i 6∈ s), and therefore ultimately the value of parameter θ .

The use of modelling essentially requires auxiliary information to be available. Of course, we
are thinking of variables known at individual level over the entire population U . Let’s assume
that the auxiliary information about individual i consist in p individual variables, designated
Xi,1,Xi,2, ...,Xi,p, and start from the principle that there is a "sufficiently reliable" link between
such values and the variable of interest Yi. This link is by construction considered valid when
applied to the entire population U , without knowing anything other than Xi,1,Xi,2, ...,Xi,p. It must
remain valid if we are limited to the responding sample s, which means that the information
provided by belonging to the responding sample should not lead the statistician to change the
formal expression of this relationship (so-called "uninformative" sampling design). In an ideal
world where everything is simple, there would be a certain function f such that for any individual
i of U we have Yi = f (Xi,1,Xi,2, ...,Xi,p;δ ) where δ is a vector parameter unknown at this stage,
known as a parameter of the model. In this perfect context, the functional form of the f function is
fully known but it is nonetheless configured by δ . If, using information collected during the survey,
we manage to estimate the δ parameter satisfactorily, we will be able to predict the values Yi of all
individuals i not sampled (or sampled but not responding) and therefore predict θ .

The traditional framework of sampling statistics is that the sampling theory is not based on any
modelling and considers that the variable of interest Y is not random (it is therefore deterministic).
It is the sample selection procedure and the non-response mechanism that introduce uncertainty
and this uncertainty allows any estimator, such as mean estimator Ȳd , to be considered as a random
variable. However, if some mathematical modelling describe Y , since the reality is not that of
an ideal and simple world, it would not be reasonable to assume that there is equality between
Yi value and any value of the type f (Xi,1,Xi,2, ...,Xi,p;δ ), because the relationship between Yi and
Xi,1,Xi,2, ...,Xi,p would be too restricted and therefore not credible. Therefore, function f must be
considered as including a random component Ui, the first characteristic of which is to be guided by
chance. We should now abandon the traditional environment of the sampling theory and consider
that the Y variables are random variables, such as Yi = f (Xi,1,Xi,2, ...,Xi,p,Ui;δ ).

12.1.2 Standard individual linear model
The structure of the model therefore uses specific and explicit uncertainties that have no relation

to sampling uncertainty. In certain circumstances, it is customary to introduce an individual random
variable Ui which is zero on average and thus linked to Yi, for all i of U (Equation 12.1) :

Yi = β0 +β1Xi,1 +β2Xi,2 + ...+βpXi,p +Ui (12.1)

Auxiliary variables Xi,1,Xi,2, ...,Xi,p, which are perfectly deterministic, are called "fixed effects".
The uncertainty of the model relating to Yi values should not be confused with the sampling
uncertainty that determines the sample composition s. At this stage, the special features of the
context of small area estimation are revealed. As population U is partitioned into D areas, we
consider that if i belongs to area d, uncertainty Ui - zero on average - is composed of an effect
(random) specific to area d, designated τd , and an individual (random) residual designated ei. We
therefore have:

Ui = τd + ei. (12.2)
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In the simplest approach, the two components τd and ei are assumed to be independent, the τd
are mutually independent, just as the ei are mutually independent. The expected value and variance
associated with the model’s uncertainty will be designated ε and ν , so the simplest assumptions
supporting this model are:

— for expected values, ε(τd) = 0 and ε(ei) = 0;
— for variances, ν(τd) = σ2

τ and ν(ei) = σ2
e .

Furthermore, all possible covariances involving these elementary components are zero. So,
overall ε(Ui) = 0 and ν(Ui) = σ2

τ +σ2
e . The format of this model makes it possible to create a

correlation between the variables of interest associated with units of the same area since ∀i ∈U ,
∀ j ∈U , j 6= i. If i ∈ d and j 6∈ d then cov(Yi,Yj) = cov(Ui,U j) = 0 and if i ∈ d and j ∈ d then
cov(Yi,Yj) = cov(Ui,U j) = σ2

τ . Thus, the variances-covariances matrix of the vector of the Yi,
where i covers U , has the form of one diagonal matrix per block, as each block is associated with
an area and can be described using a diagonal including everywhere σ2

τ +σ2
e while all the other

elements of the block take the constant value σ2
τ .

Due to assumptions covering the moments of random components, such a model can only
strictly be applied to quantitative and continuous variables Y - which in particular excludes any
qualitative variable of interest (and therefore parameters defined as proportions). Random effect
τd is a local effect interpreted as being the component of the variable of interest explained by
belonging to the area beyond the information contained in individual variables Xi,1,Xi,2, ...,Xi,p.
The areas are often geographical areas and τd intends to reflect the purely explanatory part due to
the geographical location of the unit. Assessing the true explanatory part of the location over a given
area, and even defining a geographical effect, is a rather philosophical question. Indeed, because
it is an easy and practical explanation, one can always consider a significant residual effect that
would be due to inadequate consideration of the truly explanatory individual auxiliary variables as
a geographical effect. In other words, if there are geographical elements that explain Y , they should
ideally be translated in one way or another into fixed effects vector Xi,1,Xi,2, ...,Xi,p. Therefore, a
priori, we have to see local effect τd as an "interference" effect and seek to minimise its importance.
The smaller parameter σ2

τ , i.e. the weaker τd numerical values, the more the explanatory nature
will be based on fixed effects Xi,1,Xi,2, ...,Xi,p and therefore the better the model. As the covariance
structure is complex, we say that the model belongs to the family of general linear models.

With such a model, the expected value of random variable Yi is a linear function of the β

parameters. The largest explanatory component of Yi consist in non-random effects Xi, j (fixed
effects) however the residual component τd attributed exclusively to the area is random (random
effect). For these reasons, we are talking about linear mixed model.

If we use the designations in section 12.1.1, we confirm that Yi = f (Xi,1,Xi,2, ...,Xi,p,Ui;δ ),
where vectorial parameter δ brings together all the unknown quantities appearing in the model,
namely δ = (β0,β1,β2, ...,βp,σ

2
τ ,σ

2
e ). It has a dimension p + 3, distinguishing p + 1 actual

parameters associated with explanatory fixed effects and two real parameters associated with
the variances-covariances structure attached to the model.

12.1.3 Individual linear model with spatial correlation

The standard linear mixed model expresses the assumption of zero correlation between un-
certainties Ui associated with individuals belonging to two separate areas. This situation is not
necessarily credible, because there is no reason why the limits of geographical zoning making up
the areas should be a barrier that suddenly stops any propagation of the measured phenomena. In
general, there is a form of natural spatial continuity of the behaviours of localised individuals and
two geographically-close individuals on the ground are more likely to display similar Y values
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than two distant individuals. From this viewpoint, a relationship between the geographical effects
characterising nearby areas seems quite natural.

From a technical viewpoint, we can try to reflect this situation by introducing a correlation that
only considers the distance between areas. The analytical form of the correlation is free, provided
it decreases when distance increases. In this spirit, we can rely on a model that exactly keeps the
expressions 12.1 and 12.2 but that ensures ∀i ∈ d, ∀ j ∈ d′, if i 6= j:

cov(Yi,Yj) = cov(Ui,U j) = cov(τd ,τd′) = σ
2
τ exp

(
− 1

ρ
dist(d,d′)

)
(12.3)

where dist(d,d′) is a defined distance between areas d and d′. For example, we can take the
normal Euclidean distance calculated from the coordinates of the centroids of the two areas involved.
Coefficient ρ is a scale parameter that allows better adjustment of the model. The more the distance
influences covariance, the closer ρ will be to zero. In the particular case where d = d′, and when
i 6= j, then cov(Yi,Yj) = cov(τd ,τd) = σ2

τ exp(0) = σ2
τ . If i = j, the variance of the individual effect

is added, i.e. cov(Yi,Yj) = cov(Ui,U j) = σ2
τ +σ2

e . This time, the variances-covariances matrix is a
full matrix, without zeros. Nonetheless we can consider, as an interesting variant, that the distance
becomes infinite when it exceeds a certain threshold. This allows many zeros to be reintroduced
into the matrix, so facilitating subsequent digital processing (especially by saving random access
memory). Under such circumstances, there are slightly more model parameters since new parameter
ρ must be taken into account, so δ = (β0,β1,β2, ...,βp,ρ,σ

2
τ ,σ

2
e ).

Another approach is to introduce a simple relationship between local effects τd of the different
areas, ensuring that this relationship is all the stronger as the areas are closer together. Thus, we
can consider that the local effect associated with a given area is "almost" a linear combination of
local effects of the areas surrounding it, with a linking intensity that diminishes as we move away
from the given area. The intensity of the link between the effects τd is reflected by two elements,
on the one hand a system of coefficients αd,d′

1 that govern the relative influence of the different
areas distinguished d′ over a given area d, on the other hand a parameter ρ between -1 and 1 which
governs the absolute value of the linking intensity. For all i, we state: ∑

D
d′=1,d′6=d αd,d′ = 1. The

proposed relationship between random effects is τd ≈ ρ ∑
D
d′=1,d′6=d αd,d′τd ′. In matrix writing, this

becomes:


τ1
τ2
...

τD

 = ρ.


0 α1,2 . . . α1,D

α2,1 0 . . . α2,D
...

. . . 0
...

αD,1 . . . . . . 0




τ1
τ2
...

τD

 +


u1
u2
...

uD

 (12.4)

by introducing an uncertainty vector ud that follows a Gaussian distribution with variance σ2
u ID.

This is known as the SAR model (Simultaneous AutoRegressive model).

Arbitration between the latter method and the former one is not obvious a priori, which is why
the only advice to be offered at this stage is to test both methods and then use the available quality
assessment tools, particularly those mentioned in part 12.3.

1. Parameters αd,d′ are the weightings wd,d′ of weighting matrix W used in the previous chapters. In this chapter,
w means sampling weighting.
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The introduction of a spatial correlation in the basic linear mixed model does not change any of
the restrictive use conditions. Such a model can only be used to estimate θ parameters built from a
quantitative and continuous variable of interest. Moreover, it loses much of its benefit if the areas
are geographically large because the distance considered is measured between the centroids of the
areas.

In practice, to limit the number of non-zero coefficients in the variance-covariance matrix
of local effects (and thus speed up the calculations and/or insufficient memory problems), we
completely neutralise influence αd,d′ of d′ areas located beyond a certain distance of d, or even
possibly not in the immediate vicinity of reference area d. Nonetheless, it is difficult to avoid the
problems posed by "edge effects" that arise when an area is on the edge of a larger territory, because
all its neighbours cannot be taken into account. For example, this is almost systematically true for
the border territories of states.

12.1.4 How to deal with qualitative variables using a generalised linear mixed individual
model
The logistic model

The parameters for counting any sub-population are based on individual qualitative variables.
Let us assume that we want to estimate the total number of individuals θ confirming a given
property Γ - such as "being a woman" or "being a farmer under 50". If we define individual variable
Yi = 1 when i confirms Γ and otherwise Yi = 0, it is easy to confirm that θ = ∑i∈U Yi. Random
variable Y defined in this way is a dummy variable that quantifies an initially-qualitative individual
piece of information. By dividing θ by size U , we get the proportion of individuals in the population
who confirm property Γ. Unfortunately, model 12.1 is not at all appropriate for this type of variable.
We work around the difficulty by opting for a modelling fully compatible with the dummy variables
where Bernoulli distribution will provide the distribution of Yi. This is a distribution that loads
the value 1 with a probability Pi and value 0 with a probability 1−Pi. We can therefore consider
that for any individual i from the overall population U , variable Yi is a random variable that obeys
Bernoulli distribution B(1,Pi). The core of the model follows as we will link the Pi parameter to
the individual characteristics of i summarised by auxiliary variables Xi,1,Xi,2, ...,Xi,p and we will
introduce a local random effect τd . The functional form that links Pi to Xi,1,Xi,2, ...,Xi,p and to τd
must be compatible with the constraint Pi ∈ [0,1]. There are various options, but the most common
one is to state, for all i in d:

log
(

Pi

1−Pi

)
= β0 +β1Xi,1 +β2Xi,2 + ...+βpXi,p + τd (12.5)

We are talking about a logistic model. The expected value of random variable Yi is Pi, which
is obviously not a linear function of the β parameters (unlike in 12.1). For this reason, we say
that the model represented by Equation 12.5 is a generalised linear mixed model. The class of
models taking the form in 12.5 distinguishes between models where local effects τd are mutually
independent, as in 12.2, and models with spatial correlation, as in 12.3 or 12.4.

The Poisson model
Qualitative information is sometimes aggregated when handling statistical units. If we take the

previous example, in the case where the units are households and no longer physical individuals,
for each household i we have the total number of individuals Yi confirming property Γ (the number
of women in the household, or the number of farmers under the age of 50 in the household). This
variable is no longer a dummy variable but a variable that can take any integer value (in practice
this value has always an upper bound). Under these conditions, the Poisson distribution is a fairly
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simple natural distribution that can be associated with Yi. It has a single real parameter λi (strictly
positive) that will be made to depend on unit i through individual characteristics Xi,1,Xi,2, ...,Xi,p

and a local random effect τd . The λi parameter is often transformed using a simple function before
being linked to explanatory factors. In practice, the logarithm function is mainly used, meaning
that the complete - generalised linear mixed - model is expressed as follows:

Yi ∼ Poisson(λi)

log(λi) = β0 +β1Xi,1 +β2Xi,2 + ...+βpXi,p + τd .
(12.6)

Once again, local random effects τd can be considered as mutually independent, as in 12.2, or
spatially correlated, as in 12.3 or 12.4.

12.1.5 Extension to models defined at area level
The Fay and Herriot model

Taking sampling into account, we can produce estimators of any parameter, particularly totals Td
(or means Ȳd) defined at area level d. These estimators are constructed with the individual sampling
weights wi (themselves a function of the sampling method used). They only use information about
area d, which is why they are called direct estimators. It is possible to construct a model based on
these estimators, designated T̂d for totals and ˆ̄Yd for means. The statistical unit modelled is then no
longer the individual but the area. The aim is to link the available information T̂d or ˆ̄Yd to a set of
explanatory variables, these being adapted to the level handled. Of course, they must characterise
the areas and no longer the individuals. Local effects τd retain their nature and interpretation, just
as in Equation 12.2.

A famous model is the so-called Fay and Herriot model, part of the family of linear mixed
models. If the explanatory variables selected at domain level are designated Xd,1,Xd,2, ...,Xd,p, the
most basic version of the model is written:

Ȳd = β0 +β1Xd,1 +β2Xd,2 + ...+βpXd,p + τd . (12.7)

The variable explained here is the true mean in area d. Since this value is unknown, a step must
be added to replace it with an estimate. At this stage, estimate ˆ̄Yd made from the survey is certainly
not good quality since sample s∩d is small, nonetheless it exists and can be linked to the true value
by introducing an error term errd according to

ˆ̄Yd = Ȳd + errd . (12.8)

Variable errd is the sampling error. This last equation has nothing to do with a model, it is
simply the definition of sampling error. Generally, estimator ˆ̄Yd is weighted so as to be unbiased
or have negligible bias (if there was a calibration, for example, and however if we consider that
the non-response was correctly handled) so that the sampling error has expected value zero when
taking sampling uncertainty into account, i.e. E(errd) = 0. The variance of the error depends on
sampling but we know it varies as the inverse of nd . From now on, we will designate this variance
ψd . Combining the two previous equations leads to the operational formula:

ˆ̄Yd = β0 +β1Xd,1 +β2Xd,2 + ...+βpXd,p + τd + errd . (12.9)

As we saw with the individual models, we can make an assumption of independence between
local effects τd or instead propose spatial correlation, structured as in equations 12.3 or 12.4.
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As assumptions on the expected value and variance of effects τd are strictly speaking only
compatible with true means Ȳd that have continuous distributions, it is needless to say that the
individual variable of interest Yi collected for individuals should be quantitative and continuous.
Given that, if the variable of interest Yi is qualitative and if area d has a large enough size Nd , we
can consider - sometimes a little boldly! - than true mean Ȳd may a priori take a large enough
number of values for this set to be considered as continuous, i.e. without "hole". Size Nd is the
essential parameter. For example, consider Yi the indicative variable characterising the "woman"
condition. Mean Ȳd is then the proportion of women in the population of the area. If Nd = 10, this
mean can take values k/10, where k is an integer between 0 and 10, which is a long way from
creating a "continuous" situation. If Nd = 10000, the mean can take values k/10 000, where k is
an integer between 0 and 10 000, which makes the assumption of continuity much more plausible.
This is why we can conclude that model 12.9 is acceptable for estimating proportions (qualitative
variables of interest) when areas d are not too small.

The Poisson model
Although the Fay and Herriot model adapts well to qualitative variables, i.e. parameters that are

defined as proportions by area of individuals confirming a property Γ (similar to a sub-population Γ)
or as headcount by area of these same individuals, under certain circumstances it may be preferable
to have a model more specifically adapted to the counts. Designate NΓ,d as the total number of
individuals in the area d belonging to sub-population Γ. The sample is used to form the unbiased
(or nearly) estimator N̂Γ,d = ∑i∈s∩d∩Γ wi. This estimator only uses area-related information, so it is
a direct estimator, and it is poor quality since sample s∩d is small. Nonetheless, it is a calculable
random variable for which the distribution can be modelled using a Poisson distribution. This
distribution, which is dependent on a single real parameter λd , a function of the area, is particularly
suitable for counts. We can show that λd is the expected value of N̂Γ,d and it should therefore be
numerically quite close to this estimate. At this stage, this is a first assumption and not a property
that would arise from the sampling theory. Nonetheless, the risk taken remains small because
the asymptotic behaviour of direct estimators is close to a Gauss distribution, which the Poisson
distribution itself is close to if its parameter is large enough.

The core of the model comes from the following. We generally consider that the logarithm of
the λd parameter is written in this way

log(λd) = β0 +β1Xd,1 +β2Xd,2 + ...+βpXd,p + τd (12.10)

using the designations in the previous sections. Random variable τd keeps the same interpreta-
tion. The aim is to distinguish the effect of the location of statistical units beyond what fixed effects
Xd,1,Xd,2, ...,Xd,p are capable of causing. The assumptions about correlations between local effects
τd are identical to those for the models already discussed. More precisely, either we consider that
these effects are mutually independent, which is simpler but perhaps sometimes inconsistent with
the reality in the field, or we introduce spatial correlations, for example by using expressions 12.3
or 12.4. In both cases, it is a generalised linear mixed model.

12.2 Forming the "small area" estimator
Defining the model to be used is only a first step in the process. At this stage, we still only

see the benefit of the model qualitatively, which reduces the scale of the problem by considerably
simplifying reality. Indeed, it is much easier to make estimates in an environment where all the
relevant information is assumed to be explained by a few well-known variables and by a few
parameters rather than working in an undefined system that would consequently depend on an
infinite number of uncontrolled components. . . , as assumed by classical sampling theory!
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The next step is to choose the estimation strategy - we should also now talk about prediction
since the parameter of interest has become a random variable following modelling.

12.2.1 BLUP estimation strategy: the standard individual model

In this section, we only consider linear models. In this context, several strategies for estimat-
ing/predicting the parameter of interest can be used but we now discuss what is probably the most
common, the Best Linear Unbiased Predictor (BLUP) strategy. We consider the case where the
parameter is mean Ȳd . Its predictor is generally a function of the data collected, i.e. Yi where i
describes the overall responding sample s. Above all, the statistician seeks a linear predictor of type
∑i∈s aiYi where ai are real unbiased coefficients, i.e. its expected value equals that of Ȳd . Finally, the
statistician seeks to minimise the mean square error which is the expected value of the square of the
difference between the predictor and the value Ȳd it has to predict. The solution to this mathematical
problem is the BLUP estimator (or predictor), also called the Henderson estimator in the literature.
We will designate it ˜̄Y H

d .

In the specific case of the standard individual linear mixed model (see section 12.1.2), when the
sampling fraction is negligible, we confirm that the BLUP estimator is written:

˜̄Y H
d = γd [ȳd +(X̄d− x̄d)

T
β̃ ]+ (1− γd)X̄T

d β̃ (12.11)

All vectors are column vectors, the transposed vector being identified by exponent T . By
designating D the total number of areas of interest, by designating Xi = (Xi,1,Xi,2, ...,Xi,p)

T the
vector of auxiliary variables, β = (β0,β1,β2, ...,βp)

T the vector of the model parameters associated
with these variables, x̄d = 1

nd
∑i∈s∩d Xi, ȳd = 1

nd
∑i∈s∩d Yi and X̄d = 1

Nd
∑

Nd
i=1 Xi, we have:

γd =
σ2

τ

σ2
τ +

σ2
e

nd

(12.12)

β̃ =

(
D

∑
d=1

(
∑

i∈s∩d
XiXT

i − γdnd x̄d x̄T
d

))−1

.

(
D

∑
d=1

(
∑

i∈s∩d
XiYi− γdnd x̄d ȳd

))
. (12.13)

The coefficients vector β̃ does not have a familiar expression here, but we can confirm that it is
the classical and well-known estimator called "generalised least squares", frequently encountered
in the linear regression model theory. It optimally estimates the vector of unknown parameters β of
the model.

It is important to note that we need to know the true means by area X̄d . In practice, this means
that individual variables Xi are available in a certain comprehensive file covering the scope of
the survey (which does not mean that these individual values are accessible to the statistician
responsible for the estimate, who perhaps only has X̄d). However, this file may not be the sampling
database and the Xi information used to calculate β̃ may come from the survey collection file, in
exactly the same way as Yi. In this case, which is common in practice, it should be ensured that
variable X derives from the same concepts in both sources (comprehensive file and collection file).
For example, to calculate β̃ from a labour force survey where X represents the employment status
collected in the survey and to form ˜̄Y H

d using X̄d representing the employment status declared in the
census would be very hazardous.
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Formally, Henderson’s estimator consist in two elements that are combined using real coefficient
γd . The first element - located in the square brackets of Equation 12.11 - is a circumstance estimator
that is a little complicated to interpret but that has the same statistical performance as ȳd , the
estimator constructed from sub-sample s∩d: it has a sampling variance as a decreasing function
of nd , so a priori large. Because this characteristic is associated with the direct estimators, and
because at the same time the presence of coefficient β̃ - formed from the complete sample - does
not allow it to be qualified strictly as a direct estimator, we will talk about a pseudo-direct estimator.
The second element is an estimator constructed by multiplying regression coefficient β̃ by the true
mean of auxiliary variable X̄d , which intuitively should give a value close to the true mean of the
variable of interest if the model is appropriate. This estimator X̄T

d β̃ is called a synthetic estimator.
Its statistical properties are totally dependent on those of β̃ since mean X̄d is not random. We can
see for ourselves that β̃ is made up of terms involving the entire responding sample s and not
just the s∩ d part. By its nature, this makes it very stable, in other words weakly dependent on
responding sample s. If we consider only the sampling uncertainty, we can therefore say that the
synthetic component offers a low sampling variance. The flipside to this stability is the existence of
a sampling bias, which may be numerically strong if the model is inappropriate.

Coefficient γd , which is always between 0 and 1, is a remarkable coefficient because it optimally
weights (remember that it minimises the MSE) the two separate components, which have completely
opposed behaviours in terms of both bias and sampling variance. In this, we say that ˜̄Y H

d is a
composite estimator (or mixed estimator). The BLUP strategy therefore leads to an expression of
γd that gives priority to the most efficient of the two components. We’ll take the case where σ2

τ is
small, which corresponds to small local effects τd , i.e. to an efficient model, since it carries the true
explanatory character on controlled auxiliary variables Xi and not on the "catch-all" residual term
τd . Under such circumstances, we tend to trust the model and build the final estimator based as
much as possible on the model, i.e. the synthetic estimator. This is actually what happens since γd
is small. Now let’s take the case where the responding sample size nd is large. Such a context gives
confidence in the pseudo-direct estimator, which doesn’t (or scarcely) uses the model and therefore
by construction that is unlikely to be hindered by the model lacking relevance (the pseudo-direct
estimator has weak bias, and in this case low variance since nd is large). This is what we conclude
since γd is large, close to 1.

We add that, with this theory, we can easily predict each local effect τd . After simple but
nonetheless tedious calculations, we get:

τ̃d = γd

(
ȳd− x̄d β̃

)
(12.14)

which allows the Henderson estimator to be written in a more intuitive form:

˜̄Y H
d = X̄T

d β̃ + τ̃d . (12.15)

There is still one step to be completed to reach the operational stage. Indeed, the BLUP
estimator ˜̄Y H

d has a complex expression that at this stage depends on certain components of the
vector of the parameters for model δ introduced at 12.1.2. Indeed, applying the BLUP strategy
made it possible to produce estimators β̃ of β that have reduced the scale of the problem which
means the vector of initial parameters δ is now limited to variance components, i.e. two real values
σ2

τ and σ2
e . They will be summarised by vector Σ = (σ2

τ ,σ
2
e ). In fact, what we call - commonly but

incorrectly - estimator ˜̄Y H
d is not one since this expression is not calculable and we should therefore

strictly designate it ˜̄Y H
d (Σ) and talk about a "pseudo estimator". As components of Σ are unknown,

they will have to be estimated using the data collected. Once parameter Σ has been estimated by
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Σ̂, we will substitute Σ̂ with Σ in ˜̄Y H
d (Σ) to arrive at a new expression, i.e. ˜̄Y H

d (Σ̂), which this time
deserves the name of estimator since it can be calculated. We gives the estimator/predictor obtained
in this way the name Empirical Best Linear Unbiased Predictor (EBLUP).

We frequently estimate Σ by the maximum likelihood method. We also have a variant called
restricted maximum likelihood, which can be recommended as it reduces the bias of estimators
when sample sizes are modest. Nonetheless this approach imposes an additional assumption on the
distribution of random variables τd and ei, which is almost systematically considered as variables
following a Gauss distribution. There are no analytical expressions giving σ̂2

τ and σ̂2
e , but numerical

algorithms are able to produce estimates matching the theory. Based on these estimates, we get

γ̂d =
σ̂2

τ

σ̂2
τ +

σ̂2
e

nd

then:

β̂ =

(
D

∑
d=1

(
∑

i∈s∩d
XiXT

i − γ̂dnd x̄d x̄T
d

))−1( D

∑
d=1

(
∑

i∈s∩d
XiYi− γ̂dnd x̄d ȳd

))
(12.16)

and finally the EBLUP estimator:

ˆ̄Y H
d = γ̂d [ȳd +(X̄d− x̄d)

T
β̂ ]+ (1− γ̂d)X̄T

d β̂ . (12.17)

Note that we can avoid any assumption relating to the distribution of Yi by using a "method
of moments", but conversely it proves theoretically less effective if the distribution of random
variables τd and ei is indeed Gaussian.

12.2.2 Application to the individual linear model with spatial correlation
The BLUP strategy, with its natural extension EBLUP, is applied in exactly the same way when

spatial correlations between local effects are introduced. The difference with the standard linear
model lies solely in the mathematical expressions of the various estimators, which are obviously
much more complicated, but the principles do not change. Detailing the formal expression of the
Henderson estimator in the presence of spatial correlations can only reasonably be done by using
matrix-based notation, which is burdensome and has no added educational value.

The BLUP (or EBLUP) estimator remains a combination of a direct estimator and a synthetic
estimator, with an optimal weighting calculated taking the context into account, depending on the
confidence that can be given to the model and the responding sample size nd . The coefficient σ2

τ

introduced into Equation 12.3 retains an essential role, but the calculations must now be done also
taking the additional coefficient ρ into account, which adjusts the intensity of spatial correlation.
The model parameter to be estimated is therefore Σ = (ρ,σ2

τ ,σ
2
e ).

The algorithms for calculating maximum likelihood (restricted, if applicable) adapt to the
introduction of an additional parameter, and they produce an estimate of ρ , σ2

τ and σ2
e . The

complexity of the variances-covariances structure does not seem to allow methods for estimating Σ

other than maximum likelihood or restricted maximum likelihood.

12.2.3 Application to the Fay and Herriot model
The Fay and Herriot model is very important as, in practice, it is widely used. In many cases, it

fits well and produces satisfactory estimates, which are preferable to direct estimates. Although
it involves a higher degree of aggregation than in the previous models, the BLUP strategy is also
implemented within this model. In the expression of Henderson’s optimum estimator with the
standard model, the σ2

e terms have obviously disappeared but on the other hand we find the values
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of true sampling variances by area ψd . It is important to note that in the standard theory, true
sampling variances are assumed to be known. This is obviously not the case in reality, and in fine
we have to replace theoretical expressions ψd by estimators ψ̂d obtained by applying traditional
methods to calculate sampling variance. At this stage, it is recommended to finish by smoothing
the ψ̂d values. This operation protects against including abnormally weak or abnormally strong ψ̂d
estimates, thus avoiding a highly adverse impact on the quality of final estimates by area. We end
up at

˜̄Y H
d = γd

ˆ̄Yd +(1− γd)X̄T
d β̃ (12.18)

with

γd =
σ2

τ

σ2
τ + ψ̂d

β̃ =

[
D

∑
d=1

X̄d .X̄T
d

σ2
τ + ψ̂d

]−1

.

[
D

∑
d=1

X̄d .
ˆ̄Yd

σ2
τ + ψ̂d

]
.

(12.19)

Estimator ˜̄Y H
d retains a composite form and the BLUP strategy produces the ideal γd weighting,

shared between direct estimate ˆ̄Yd , which is independent of the model but unstable, and synthetic
estimate X̄T

d β̃ that is totally dependent on the model but, conversely, fairly insensitive to the
composition of the responding sample. In rare cases, when estimating a proportion, estimate ˜̄Y H

d
may fall outside the interval [0,1]. In this case, the initial model must be adapted.

If spatial correlations are introduced, the above expressions change as a result - by becoming
considerably more complicated - but none of the main principles are altered. In all cases, with or
without spatial correlations, the software is able to produce estimator σ2

τ using maximum likelihood
(restricted if necessary), from which we immediately deduce γ̂d and β̂ , then the final EBLUP
estimator ˆ̄Y H

d . Note that in the absence of spatial correlation, there are other methods for estimating
parameter σ2

τ besides maximum likelihood.

12.2.4 Strategy for non-linear models
The world of non-linear models is technically much more complicated than that of linear

models. In particular, the BLUP strategy is not directly suited to this context because there is no
satisfactory mathematical solution. Nonetheless, it remains a basic technique and that is why one
way to deal with non-linear models, such as the logistic model or the Poisson model, is to replace
them with approximate models that have a linear structure. What an approximate model is refers to
a complicated but nonetheless operational theory. The BLUP strategy is applied by starting from
the approximate linear model.

The initial model may or may not use spatial correlations. The developments presented in the
preceding sections are then applied to the approximate linear model.

However, the most compelling approach is to use a strategy better suited to this non-linear
context, such as the Empirical Bayes strategy, which produces optimal estimates, or the Hierarchical
Bayes strategy, which corresponds to the classical Bayesian approach.

12.3 The quality of estimators
The model approach will obviously result in making the estimate dependent on the choice of the

model and will therefore raise the question of the relevance of the model used. Indeed, simplification
has a cost in terms of quality and one may question how correctly this model represents reality.
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What are we talking about?
In terms of assessing the quality of small area estimations, it is more necessary than ever to

specify the concept of quality. Indeed, the context suffers from a very specific complication due
to the coexistence of different kinds of uncertainties, on the one hand, the sampling uncertainty
that decides on the composition of the sample, and on the other hand, the uncertainty of the model
which handles the variable of interest as a random variable. Quality can be assessed with or without
taking the model uncertainty into account.

If the modelling does not include any uncertainty, one is dealing with the survey statistician’s
classical approach placed in finite population and handling with deterministic individual variables.
From this viewpoint, the situation is extremely simple because all the "small area" estimators
presented up to now are biased. This is the natural consequence of the failure to take sampling
weightings into account (when sampling is not at equal probabilities in all cases), or only partial
consideration of these weightings. For example, in the individual standard linear model, the
weighting reflecting sampling is always missing. In the Fay and Herriot model, it is certainly
found in the direct component ˆ̄Yd but not at all in the synthetic part X̄T

d β̂ . On the other hand, the
model provides a decisive advantage in terms of sampling variance because the β parameters that
are estimated use the entire responding sample and hence have a weak sampling variance. The
estimated local random effect τ̂d is unstable but if the model is well suited, it will be numerically
small and its variance will therefore have limited influence. The Henderson estimator should
ultimately have limited sampling variance and a priori less than for the direct estimator if the model
has good explanatory power.

When taking model uncertainty into account, if the model is linear by construction, the BLUP
estimator is unbiased. Switching to EBLUP only incurs negligible bias. If the model is not linear,
the context is much more complicated, but modest bias is expected.

12.3.1 An iterative process
Quality assessment can be designed using a cyclical mechanism (Figure 12.1).
Having, on the one hand, certain selection criteria for explanatory variables, and on the other,

having a set of auxiliary variables X potentially explanatory for Y , we adjust a model. At this
stage, we have statistical tools to assess the quality of this adjustment. Combined with a prediction
strategy, this model produces a theoretical estimator ˜̄YD. This estimator depends on parameters
that contribute to defining the model (at least parameter σ2

τ , σ2
e if applicable and ρ if there is a

spatial correlation). These parameters are estimated using an ad hoc method. At the end of the
cycle, we assess the quality of the final predictor (bias, MSE; see sections 12.3.3 and 12.3.4). If it
is not acceptable, a new cycle is initiated by re-examining the relevance of the model, or even the
relevance of the prediction strategy or the estimation of the model parameters. Quality assessment
also involves checking the relevance of the model’s distribution assumptions, if necessary. This is
why we will confirm the Gaussian nature of estimated local effects τ̂d when a maximum likelihood
(whether restricted of not) technique has been used.

12.3.2 The problem of bias
Survey statisticians are sometimes reluctant to use a model-dependent estimator (although it is

essential to handle non-response). Their main fear is of substantial bias if we confine ourselves
to sampling uncertainty. This risk is inevitable since the model simplifies, and therefore distorts,
reality. The important thing is not to escape the bias but to obtain limited bias that is more than
offset by the gain in terms of variance. Unless we are working on artificial populations, calculations
of bias due to sampling cannot be done, but two simple tools can be used to assess the situation,
however without providing evidence.
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Figure 12.1 – Diagram of the iterative process for assessing the quality of estimators
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The first tool is purely graphical and consist in constructing a point cloud where each point
represents one of the D areas handled. One of the axes plots the direct estimate (therefore obtained
without a model), the other axis plots the "small area" estimate (therefore from a model). If the
resulting point cloud is not symmetrical around straight line y = x (first bisector), there is a strong
suspicion of bias due to sampling. Nonetheless, there is no inevitability (remember the situation,
obviously idealised, of a model reflecting a reality in which all means by area are equal). The
converse situation is more convincing in the sense that if the point cloud is symmetrical, there will
probably be no significant bias due to sampling. Most often, in practice, we see that scatter points
form an angle with the first bisector that, when projected onto the axis representing the "small
area" estimate, is smaller than the projection onto the axis representing the direct estimate. This
phenomenon is called shrinkage, and it is therefore rather an indication of bias due to sampling. It
reflects a form of essentially excessive concentration of estimates. It arises mechanically from the
simplifying model, which has a normalising effect and therefore more or less tends to standardise
estimates by area. We stress that this graphical approach offers no evidence but only creates
suspicions. In practice, because it cannot accurately reflect reality, any model inevitably creates a
theoretical bias due to sampling and the possible symmetry of the point cloud only indicates the
probable weakness of this bias.

Figure 12.2 – Example of relationship between direct estimates and small area estimates

The second technique is even simpler and more intuitive as it involves summarising estimates
of totals T̂ H

d obtained on D small areas and comparing the result with the direct estimate of the total
T̂ covering the whole population that results from classical sampling theory. In fact, the latter is
by construction unbiased (the uncertainty here is exclusively sampling uncertainty). If there is a
bias due to the model and this bias is somewhat systematic, a discrepancy will be seen between the
two values. On the other hand, a bias without a systematic component cannot be detected since
compensation may occur during summation.

It is customary to use the above-mentioned difference in order to increase quality. Indeed, if
T̂ H

d is the "small area" estimator of true total Td in area d, if T̂ is the unbiased direct estimator
from the overall responding sample s representing the whole population U , we very often adopt the
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following final estimate:

ˆ̂T H
d = T̂ H

d
T̂

∑
D
d=1 T̂ H

d
(12.20)

which makes it possible to calibrate the estimate of the total in U on T̂ . This operation is called
benchmarking and helps to limit the bias of ˆ̂T H

d while ensuring consistent distribution.
Furthermore, it is always interesting to map the mean estimates by area ˆ̄Y H

d , which provides
a visual check on the consistency of the estimation system as a whole. Normally, two areas with
similar and related characteristics on a map should correspond to two similar estimated means ˆ̄Y H

d
(in practice, the colours representing their respective values should be in the same range).

12.3.3 Mean square error

In an environment where bias is possible, probable, or even inevitable, the correct error concept
is that of mean square error (MSE). This indicator designates the expected value of the square of the
difference between the estimator and the parameter. Taking into account both sampling uncertainty
and model uncertainty, the theoretical framework offered by the model makes it possible to obtain
the expression for MSE and then estimate it without or almost without bias. The expression for MSE
and its estimation are very complicated, even with the linear model, and the calculation is therefore
entrusted to a software package. Nonetheless, without spatial correlation, we can confirm, if there is
a large number of areas D, that the numerically more important term in estimating the MSE of ˆ̄Y H

d is
γ̂dψ̂d for the Fay and Herriot model, and γ̂d

σ̂e
2

nd
for the standard individual linear model. Regarding

all these error calculations, the results obtained essentially assume that the model is specified in
a way that perfectly matches reality (the model can be qualified as "exact"). This is certainly not
strictly true! Introducing spatial correlation obviously creates an additional technical difficulty,
but general theory makes it possible to succeed, which does not mean that currently available
information technology tools are able to use it. Note that under certain particularly favourable
circumstances, we have an external source that can provide the true value of the parameter (e.g.
after a census). This makes it possible to assess the estimation error made directly.

12.4 Implementation with R

� Example 12.1 — Dissemination of census on squares. In 2021, the European Union Statisti-
cal Office EUROSTAT wishes to produce statistics (gender, age range, activity, etc.) covering the
entire population of each Member State in one-by-one kilometre squares. In addition, in France,
INSEE aims to disseminate data from the Population Census using squares whose side could
measure some hundred meters. Since 2004, the French census has been carried out by sampling in
the municipalities with more than 10,000 inhabitants 2. Therefore, the targeted area contains too
few observations to obtain good direct estimators of the parameters of interest. This is why small
area estimation is an appropriate statistical technique for using this type of data.

Introducing a spatial correlation in this context makes it possible to reflect the phenomenon of
natural continuity of the socio-demographic characteristics of individuals populating geographically
contiguous areas. Indeed, moving from any square to neighbouring squares, one cannot reasonably
assume there is independence between the behaviours of the statistical units – households or
individuals – which formed it. �

2. The census is complete (exhaustive) in municipalities of fewer than 10,000 inhabitants
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The sae package in R is used to calculate small area estimates at "area" and "individual" levels,
in the case of models respectively not taking and taking into account spatial autocorrelation. This
package, which was implemented by Molina and Marhuenda, was described in The R Journal
(Molina et al. 2015).

The main functions that have been used to handle data from the French census, using a model
developed at area level, are from the sae package. They are eblupFH(), eblupSFH(), mseFH()
and mseSFH().

To produce estimates using a model at individual level, we used functions eblupBHF() and
pbmseBHF() from the sae package, as well as function corrHLfit() from the spaMM package.

Area level modelling: eblupFH() and mseFH() base functions
The first estimates are based on the Fay and Herriot model without spatial autocorrelation.

Function eblupFH() provides as output:
i) Fay and Herriot estimates for each area;

ii) an estimate of variance σ2
τ of the random effect specific to the areas.

In addition, function mseFH() produces the calculation of mean square errors associated with
each estimate (see section 12.3.3).

The arguments for these functions are the same. The standard syntax is as follows:

mod_FH <- eblupFH(formula = Y ~ X1+...+Xp, vardir = varech, method = ,
maxiter = m, precision = e, B = 0, data = )

First, the formula parameter specifies the variable of interest Y as well as the explanatory
variables selected X1, ...,Xp. The numerical values of all these variables must be contained in a
table that associates one line with each area, specified in the argument data. The γ̂d parameters
involved in the Henderson estimators are calculated using (estimated) sampling variances per area
ψ̂d , which are available in a variable specified in the argument vardir.

The estimate of the sole variance parameter of the model is obtained using an ad hoc technique.
In practice, we use an iterative method that should converge towards value σ2

τ . The maxiter
and precision parameters are technical parameters (defined either by the user or by default)
that govern this iterative process. The algorithm calculates an estimate of σ2

τ at each stage of
iteration. The role of the precision parameter is as follows. As soon as the difference between
two consecutive values is less than this (e in our example), the algorithm stops. Otherwise, as
long as the maximum number of iterations maxiter is not reached, iterations continue. The
output indicates whether or not the algorithm converges. The method must also be specified. We
can choose from three methods, including the maximum likelihood method and the restricted
maximum likelihood method (respectively method = "ML" and method = "REML"). The third
method (method = "FH") is a "method of moments".

The reader’s attention is drawn to the need not to add dummy variables identifying the areas
to the regressors. Indeed, as the constant is already a part of one of the standard regressors, this
practice would lead to create a non-invertible matrix. The following command therefore leads to a
failure:

mod_FH <- eblupFH(formula = Y ~ X1+...+Xp+as.factor(Carreau) , vardir =
varech, method = , maxiter = m, precision = e, B = 0, data = )
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Spatial correlation at area level: the eblupSFH() and mseSFH() functions
The software estimates a SAR model (see section 12.1.3) of the type

τ = ρ.A.τ +u (12.21)

The parameters of these functions are the same as for the previous functions, except that the
proximity matrix A (coefficient matrix αi, j; see section 12.1.3) must also be specified. The R
command is as follows:

mod_SFH <- eblupSFH(formula = Y ~ X1+...+Xp, vardir = varech, method = ,
maxiter = m, precision = e, proxmat = A, B = 0, data = )

The proximity matrix is described by the proxmat parameter. It has standardised lines in that
the sum of the elements of each line always equals 1.

A similar iterative process to that for use without spatial correlation makes it possible to
calculate:

i) Fay and Herriot estimates for each area;
ii) an estimate of the variance of the random effect specific to areas;

iii) an estimate of the spatial autocorrelation parameter ρ .

Modelling at individual level, without spatial correlation: functions eblupBHF() and pbm-
seBHF()

Using individual level modelling, the eblupBHF() function from the sae package allows direct
estimates and "small area" estimates to be calculated without spatial correlation. The syntax is as
follows:

mod_BHF <- eblupBHF(formula = Y ~ X1+...+Xp, dom = ,
meanxpop = , popnsize = Popn, data = adr_est)

It uses the following configuration — formula for the formal expression of the model, dom
to designate the variable identifying the areas, popnsize for the size of the population Nd in each
area, meanxpop for the means of explanatory variables X̄d calculated in the whole population of the
area. The data parameter designates the data table.

The pbmseBHF() function estimates the errors (MSE) of "small area" estimators using a
bootstrap technique. The parameters of this function are the same as for the previous function, to
which the number of re-samplings of the bootstrap defined by the B parameter is added (B=1000
for example).

mse_BHF <- pbmseBHF(formula = Y ~ X1+...+Xp, dom = ,
meanxpop = , popnsize = , B = 1000, data = )

Taking spatial correlation into account in the individual model
The spaMM package can be used to take spatial correlation into account. It can manage several

types of models, in particular the Poisson model (see section 12.1.4). Function corrHLfit()
handles the Poisson model at the individual level with spatial correlation.

library(spaMM)
mod_spa <- corrHLfit(formula = Y ~ X1+...+Xp+Matern(1|x+y),
HLmethod = "REML", family = "poisson", ranFix = list(nu=0.5), data = )

For configuring this function, formula designates the formal expression of the model. The
Matern(1|x+y) component, which is specific to the function used, takes into account the coordinates
x and y of the areas (here, the centres of the squares), which should therefore be contained in the
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data table, in order to calculate the distances used in the spatial correlation function. Furthermore,
HLmethod specifies the method for estimating variance and spatial correlation parameters (here,
restricted maximum likelihood), family chooses the distribution of the variable of interest (here,
a Poisson distribution). The functional form of the spatial correlation can be selected from a
configured family of complicated functions called Matérn functions. Parameter ranFix specifies
the configuration of this family of functions. If we indicate list(nu=0.5), we get the exponential
form of Equation 12.3, which is the expression traditionally used - except that the estimated
parameter is 1

ρ
and not directly ρ . The data parameter designates the data table.

As output, we obtain, among other things, the estimated coefficients of the model, including
the coefficient ρ involved in the exponential spatial correlation (in fact, the reverse if we refer to
expression 12.3), optimal predictions τ̂d of random local effects, and the estimated variance of
random effect σ̂2

τ .

Conclusion
The small area estimate is based on the use of stochastic models. It is the counterpart to a certain

shortage of information collected using the sample dividing the area when it is small. In order to
limit inaccuracy, unsurprisingly, we have to make assumptions covering the entire population and
compensating for the lack of information obtained at local level. Models explicitly involve local
geographical effects, the interpretation of which is delicate, in that we can always consider it as
a last resort to conceal inadequate consideration of explanatory fixed effects of the phenomenon
studied. Basically, the first question is knowing to what extent there is a purely geographical effect.
Moreover, these models, whatever they are, always create bias in relation to sampling uncertainty.
The main aim is to limit its extent, rather than measure sampling variance, which becomes a
secondary aim for the sampling statistician. Of course, we have statistical tools to assess the quality
of the adjustment to a model, but this does not guarantee the selected model is suitable for the
particular situation of a given area, which may be very specific without the statistician being aware
of it. There is no reliable estimate for sampling bias, and we currently have only a few qualitative
tools available, which are convincing to varying degrees and which only lead to an assessment
of an overall situation. In general, the theory of linear models (Linear Mixed Models or LMM)
is much simpler than that traditionally used (Generalised Linear Mixed Models or GLMM) for
non-linear models, which are still really difficult to access. The presence of spatial correlation
always complicates the context and then raises the question of the availability of the computer code
to make the estimates. The development of R is promising and, in the future, we should move
towards extending the range of models accepting spatial correlation.
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