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Abstract

Spatial econometrics requires comprehensive data on a territory, which in principle prohibits the
use of survey data. This chapter presents the pitfalls in estimating spatial autoregressive models
(SAR) on sampled data and assesses potential corrections offered by the empirical literature. We
identify two sources of bias: (i) a "size effect" resulting from the distortion of the spatial weighting
matrix and (ii) a "sparsity effect" resulting from the omission of units spatially correlated with the
units observed. Both effects tend to underestimate the magnitude of spatial correlations. However,
the bias is lower in the case of a cluster survey and when the sample is large enough. Two types of
methods are offered by the empirical literature to sidestep these pitfalls: imputing missing values
(linear regression, hot deck) and aggregating data on a higher scale. These potential solutions are
efficient under very restrictive conditions, part of the difficulty being the reconstruction of complex
information based on few observations. The last part of the chapter illustrates this issue with the
estimation of production externalities between plants of the manufacturing sector located in the
French department of Bouches-du-Rhône.
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R Prior reading of Chapters 2: “Codifying the neighbourhood structure”, 3: “Spatial autocorre-
lation indices” and 6 “Spatial econometrics: common models” is recommended.

Introduction

Recent developments in spatial econometrics and geolocation have made it possible to analyse
spatial phenomena at very local scales. Concepts derived from spatial econometrics analysis
are used in an increasingly diverse range of fields such as geostatistics, economics and network
analysis. However, the application of these spatial analysis methods requires comprehensive data,
which is not always accessible (due in particular to non-response, excessively lengthy collection
time, . . . ) and cannot easily be processed within the limited time available. The extension of spatial
econometrics to survey data would make it possible to take full advantage of a detailed piece of
information to produce a fine-grained metric of the incidence of spatial correlations on econometric
estimates 1.

In this chapter, we discuss recent developments in the application of spatial estimation methods
when a part of the data set is missing, particularly in the case of survey data. We show that estimating
spatial econometric models on survey data underestimates spatial correlations, in particular when
data is collected according to simple random sampling and when the sample is small. Ignoring
missing observations is never an appropriate solution, but other potential correction methods such
as imputing missing data or switching to a coarser scale through data aggregation may be efficient
under very restrictive assumptions. We will not be addressing the possibility of a spatial survey,
which is particularly complex in the case of social data 2. Neither will we develop the case of
unknown location.

Why does spatial econometrics require comprehensive data? Traditional econometrics is
based on the hypothesis of mutual independence between observations. Estimating a model on a
data subset may affect the power of statistical testing but, in the absence of a selection problem,
estimators remain unbiased and efficient. In contrast, in spatial econometrics models, observations
are considered to be correlated with each other: each unit is influenced by its neighbours. Removing
some observations amounts to omitting their links with nearby units, which biases the spatial
correlation parameter as well as spatial effects. We show that this bias minimises the value of the
spatial correlation parameter, since some neighbourhood links are no longer taken into account in
the estimate.

Conceptually, spatial econometrics differs from traditional econometrics because of the assump-
tions about the data generating process. In traditional econometrics, observations are considered as
a representative random sample of a population and are interchangeable. Spatial analysis conceives
of them as the sole completion of a spatial process, each observation being necessary to estimate the
underlying process 3. Spatial econometrics has been developed within the framework of Cliff et al.
1972, characterised by exhaustive and perfect information on spatial units and by the absence of
missing data (Arbia et al. 2016). In practice, these conditions are almost never met.Therefore, direct
application of spatial estimation techniques to sampled data can significantly affect the results.

The estimation of spatial models on survey data induces several issues. First, estimates are
disrupted by a "size effect". The existence of m missing data in a population of size n gives
rise to a weighting matrix of size (n−m)× (n−m) instead of the effective weighting matrix of
size n× n. This dimension reduction skews in turn the estimated spatial correlation parameter
(Arbia et al. 2016). Second, estimation on an incomplete data set implies that interconnections

1. Pinkse et al. 2010 refer to this prospect as "the future of spatial econometrics".
2. On these questions, readers are invited to refer to Chapter 10 "Spatial sampling".
3. In this sense, spatial analysis is similar to time series, where the observed dataset is derived from a stochastic

process.
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between observed and missing units will be overlooked, which induces a measurement error on the
neighbourhood (regressor WY ) and biases estimated parameters. We compare the consequences of
both effects estimating SAR models on different samples drawn from a population which has been
simulated according to the exact same SAR specification. We show that beyond the "size effect",
the "sparsity effect" has significant consequences.

While a number of corrections have been proposed, none of them are adequate to the current
framework 4. When the location of individuals is known, imputation is generally preferred (Rubin
1976; Little 1988; Little et al. 2002). However, naive imputation, for example through linear
models, is not efficient to provide unbiased estimates (Belotti et al. 2017a). To get around this
problem, Kelejian et al. 2010 develop estimators when only an incomplete subset of a population is
available. Wang et al. 2013a suggest an imputation method through two-stage least squares, in a
setting where the values of the dependent variable are randomly missing. In the same framework,
LeSage et al. 2004 rely on the EM algorithm (Dempster et al. 1977). First, step "E" (expected)
assigns a value to the missing data, conditionally on observables and parameters of the spatial
model. Then step "M" (maximisation) determines the value of these parameters by likelihood
maximisation. By iteration, this procedure makes it possible to draw from an estimated model all
the information available to impute missing values. More recent work by Boehmke et al. 2015
extends this procedure to the case of missing observations (unknown dependent and independent
variables).

Recent empirical papers illustrate the importance of these corrections. In a hedonic price model,
LeSage et al. 2004 rely on the EM algorithm to predict the value of unsold housing. In a network
model with space autocorrelation, Liu et al. 2017 show that the detection of a peer effect requires
taking the sampling process into account. Yet, such complex imputation methods based on an
estimated model (model-based) are still rarely applied. When some data is missing, the solution
generally chosen is to remove the corresponding observations from the field of the estimation. The
risk is that an attenuation bias in the spatial correlation may be generated. Some estimations are
limited to a subset, in particular, a specific region or group, leading to a potential "size effect" as
well as an underestimation of correlations at the edge of the considered area (Kelejian et al. 2010).
Lastly, while most applications are performed on aggregated data to benefit from comprehensive
data on a larger scale, this solution can induce positional errors 5 (Arbia et al. 2016) as well as
an ecological bias (Anselin 2002b). We discuss the impact of these various methods on spatial
estimates.

The issue of missing values in a framework where observations are correlated has been high-
lighted by other fields of statistics related to spatial econometrics: time series, geostatistics and
network econometrics. Time series and geostatistics are similar to continuous spatial data process-
ing. The issue of missing data was addressed very early in the field of time series (Chow et al. 1976,
Ferreiro 1987). Jones 1980; Harvey et al. 1984 recommend using a Kalman filter to concurrently
estimate a model and impute values. Geostatistic analysis corrects incomplete data sets either up-
stream using spatial sampling methods, or by predicting the value of a continuous spatial variable in
an unknown position (spatial interpolation or kriging, see Chapter 5: "Geostatistics"). Longitudinal
approaches combining kriging with the Kalman filter have also been developed (Mardia et al. 1998).

4. In particular, these methods vary according to the underlying assumptions on missing data. Depending on the
value and/or location of the observations, the dependent and/or independent variables are affected and depending on
whether the likelihood of a piece of data going missing depends on the correlations with observable and/or unobserv-
able data. The literature on the incidence of missing data thus establishes a distinction between Missing at Random
(MAR), Missing Completely at Random (MCAR) and Missing Not at random (MNAR). cf Rubin 1976, Huisman
2014

5. Arbia et al. 2016 develop this concept to refer to cases where the position of an observation (X,Y) is not known
precisely. For example, lack of precision in measurement, metric blurred for confidentiality reasons, missing ad-
dresses.
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However, continuous data methods cannot be transposed straightforwardly into economic and social
analysis, where data is fundamentally discrete. Furthermore, the use of such spatial survey tech-
niques would contradict fundamental principles of social data collection, such as equi-weighting
and the use of deterministic sampling bases. Network econometrics focuses on the issue of missing
observations (Burt 1987; Stork et al. 1992; Kossinets 2006). Estimation of spatial autocorrelation
on a sample of a network is gaining momentum with the growing use of social networks (Zhou et al.
2017). However, practical solutions remain rare. As in spatial econometrics, the main difficulty
is to reconstruct information on unobserved units based on observed data, without knowing the
effect of the former on the latter (Koskinen et al. 2010). In particular, Huisman 2014 does not
come out clearly in favour of any traditional imputation strategy and remains very cautious about
extensions of imputation methods to network data. Solutions based on sampling methods have also
been proposed in order to collect data on populations of interest (Gile et al. 2010).

This chapter focuses on two questions: which biases are generated by the estimation of spatial
econometric models on survey data? What are the consequences of classic solutions aimed at
correcting missing data (data deletion, imputation, aggregation)? These questions have been
addressed by Arbia et al. 2016, who proceed by simulation and observe a stronger incidence of
missing data when these are grouped in clusters, in which case all local phenomena may be lost.
However, they consider cases where missing data accounts for at most 25% of the population,
which is very low compared to survey data, where they generally reach more than 90% of the
population.

Section 11.1 highlights the bias resulting from the application of spatial methods to a non-
exhaustive sample and discusses its magnitude depending on the percentage of observations sampled
and the sampling method. Section 11.2 shows the consequences of some usual solutions: shifting
to a higher level by aggregation and the imputation of missing values. Section 11.3 illustrates
these biases through the estimation of production externalities between industries of the French
department of Bouches-du-Rhône.

11.1 First approach by simulation
In this section, we show that the estimation of a spatial autoregressive model (SAR) on sample

data is biased. In order to do that, we proceed through Monte Carlo simulations. First, we simulate
a spatial data set across a geographic area so that units are correlated according to a given value
of the spatial correlation parameter. Second, we draw samples from this data set and estimate the
value of the spatial correlation parameter for each one of them.

11.1.1 Simulation of a SAR
The geographical space chosen is a map of Europe 6, detailed at the administrative level NUTS3

(the lowest level in the NUTS hierarchy defined by Eurostat, which corresponds to small areas where
specific studies can be carried out, such as the French departments) from which the furthest islands
and Iceland have been removed in order to maintain a homogeneous and compact geographical
space. From the shapefile of Europe, we build a neighbourhood matrix W based on distance, so
that the weight associated with two neighbouring units decreases according to the square of the
distance and is cancelled when this distance exceeds a limit threshold. Residuals and an explanatory
variable are drawn from Gaussians: ε ∼N (0,1) and X ∼N (5,2), making it possible to ultimately
simulate a variable Y following a SAR model (Spatial Auto-Regressive):

Y = (1−ρW)−1 Xβ +(1−ρW)−1
ε (11.1)

6. This card is shared on the site: http://ec.europa.eu/eurostat/fr/web/gisco/geodata/
reference-data/administrative-units-statistical-units.

http://ec.europa.eu/eurostat/fr/web/gisco/geodata/reference-data/administrative-units-statistical-units
http://ec.europa.eu/eurostat/fr/web/gisco/geodata/reference-data/administrative-units-statistical-units
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with β = 1 and ρ = 0.5, reference parameters which we try to find by estimating the exact same
SAR model on samples. Data from simulated variables Y is shown in Figure 11.1. The presence of
concentrated coloured areas is characteristic of the positive spatial autocorrelation resulting from
the data-generating process.

Figure 11.1 – Y simulated using a SAR model
Copyright: EuroGeographics for administrative boundaries

Table 11.1 shows the results of the estimation of a SAR model across all NUTS3 zones in
Europe. They confirm the validity of this simulation, since the estimated parameters β and ρ are
very close to the values initially calibrated.

β ρ Direct Indirect Total

0.989 0.494 1.043 0.860 1.902

Table 11.1 – Parameters estimated by SAR across all zones

Box 11.1.1 — Simulation of a SAR with with R. To simulate a SAR in R, the most important
step is formatting its neighbourhood matrix W:

D <- nb2listw(W, style="W", zero.policy=TRUE)

Once the neighbourhood matrix is in the format listw, 1− ρW must be inverted using the
following function, of which ρ is one of the parameters:

InvD <- invIrW(D,rho)

Note: this step may be time-consuming. Then, all we need to do is simulate our variable Y :

Y <- (InvD %*% X) + (InvD %*% eps)
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11.1.2 Sampling procedures
The challenge lies in examining the capacity of spatial models to correctly estimate ρ and β on

samples drawn from this simulated data. In particular, we discuss the effect that sampling some of
these areas may have on the estimation of the underlying model.

A survey consist in randomly selecting, using a procedure referred to as a sampling plan, a
set of n units within a population of N, where n is often much smaller than N in order to limit the
costs of collecting information. Survey theory states that estimates made using the sample extend
without bias to the total population, but are more precise when the sample size increases and when
the sampling plan is suited to the estimated variable. To explore questions around surveys, it is
advised that readers refer to Ardilly 1994, Tillé 2001 or Cochran 2007.

In the rest of this section, we present a number of conventional sampling techniques and how
they can be applied within the framework of the European NUTS3. However, we can already make
a number of general hypotheses and comments, following the ideas developed in Goulard et al.
2013 regarding the new French population census. On the one hand, the effect should obviously not
be the same according to size n of the selected sample. With just under a dozen zones, the initial
spatial structure will not be able to be reconstructed, while sampling 95% or even 99% of the zones
should make it easily recoverable. On the other hand, the question of the sampling method will
also need to be addressed. Is the spatial dimension taken into account in the method? We can refer
to Chapter 10 "Spatial sampling" to delve deeper into these issues.

Simple random sampling
Simple random sampling consists in drawing independently and without replacement a number

n of marbles from a large bowl N. Under such conditions, all individuals have the same chance of
being selected in the sample. Where one individual has been selected in a sample, this reduces the
likelihood that others will also be included. In our case, n areas are selected in an entirely random
manner. Figure 11.2 shows an example of a sample.

Figure 11.2 – A sample drawn according to simple random sampling (n = 500)
Copyright: EuroGeographics for administrative boundaries

Poisson sampling
Poisson (or Bernoullian) sampling consists in flipping a coin to determine, based on heads or

tails, whether each individual should be included in the population. Under such conditions, all
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individuals have the same chance of being selected in the sample. While an individual’s being
selected for a sample does not affect the likelihood that the others will be included, the sample size
is not set beforehand. In our case, each zone has a likelihood p of being retained in the sample. The
resulting sample size is then pN in expected terms.

Cluster sampling

Cluster (or areolar) sampling consists in selecting groups of individuals together. Individuals
always have the same chance of being selected in the sample. However, the selection of an individual
within a sample has a strong impact on the likelihood that the others will also be included, as
individuals of the same cluster are always selected together. Here, the process consists in combining
NUTS3 zones into different clusters, then making random selection of some of these clusters. The
main interest is to limit collection costs, at the expense of a loss in precision due to intra-cluster
homogeneity.

Figure 11.3 – Division of Europe into clusters
Copyright: EuroGeographics for administrative boundaries

It would be possible to use the different NUTS1 or NUTS2 levels as clusters. However, they
are large in size and do not all include the same number of NUTS3. The problem is that large
clusters limit the number of possible simulations. In contrast, clusters with different numbers
of zones introduce either an issue of different sampling weights between individuals, which we
do not wish to address here (see Davezies et al. 2009 for a discussion on the use of sampling
weights in econometrics), or a problem of variable sample size, which may result in effects that are
too complex to analyse. We therefore form clusters of the same size while maintaining a certain
geographical consistency. As the weighting matrix is based on geographical distance, we give
preference to the least-extensive clusters possible.

In order to obtain the same-size clusters, the number of clusters must be a divisor of the number
of NUTS3 zones. In order to limit the size of the clusters, we bring together the 1,445 NUTS3
zones into 85 clusters of 17 zones each. For this purpose, we use an algorithm to build the clusters.
From the area furthest away from the centre of the map, we aggregate the areas closest to it until
we reach 17. As the clusters are built one by one, the most remote NUTS3 zones will already be
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assigned to the construction of the previous clusters, and the algorithm will continue with more
central zones. The resulting clusters are shown in Figure 11.3.

Stratified sampling
In a stratified sampling, n units are also drawn. The difference is that n1 units are drawn from a

first stratum, n2 from a second, etc. nH in a Hth, where n = n1+n2+ . . .+nH . To perform stratified
sampling, it is important that the H strata be well defined, firstly, and that the allocation (n1, . . . ,nH)
be well-selected, secondly. A classical allocation is Neyman’s allocation, the property of which is
to minimise the variance of the estimator of the total of a variable of interest (see, for example Tillé
2001). The formula is as follows:

nh = n
NhSh

∑
H
i=1 NiSi

(11.2)

with n the size of the total sample, Nh the size of the stratum h and Sh the dispersion of the variable
of interest within the stratum h. In some cases, when the behaviours with regard to the variable of
interest are heterogeneous, this formula may give reason to run an exhaustive sampling of certain
strata, i.e. to apply to them a 100% sampling rate.

11.1.3 Results and interpretation
In order to estimate the effect of sampling part of the European NUTS3, we use the Monte

Carlo method. We thus carry out 100 simulations of Y based on a SAR model, then draw 100
samples for each of them. The exact same SAR model is estimated on each sample to retrieve the
estimated values of the parameters. The parameters ultimately shown in the results are the averages
of ρ and β out of the 10,000 samples, and their standard deviations are calculated on these 10,000
values.

For each of the 10,000 draws, we keep the values of X and Y and we reconstruct a spatial
weighting matrix Wechantillon based on distance, as previously, but limited to the units included in
the sample. Different sample sizes and sampling methods are considered.

Simple random sampling
Table 11.2 shows the results using simple random sampling for sample sizes n varying from 50

to 250 zones. Significant spatial autocorrelation may be detected for a sample size above n = 150,
which corresponds in the present case to a sampling rate of 1/10. Parameter β is estimated without
bias, regardless of the size of the sample, but estimated parameter ρ̂ is well below its true value
ρ = 0.5 used for the simulation of the data set. Therefore, for small samples, the indirect effect
does not significantly differ from zero and remains far lower than that observed across the entire
population. The spatial autocorrelation is largely underestimated.

Cluster sampling
Cluster sampling makes it possible to maintain a strong geographical structure, which in our

case appears beneficial for detecting spatial effects, particularly for small values of n. From the
clusters shown in section 11.1.2, we carry out drawings of different numbers of clusters ranging
from 3 to 15 clusters, i.e. 51 to 255 zones. Table 11.3 shows the results obtained for values of
n = 17p, the sample size composed of p clusters.

With a cluster survey, the estimate ρ̂ is closer to the true value of this parameter, which lies
within its confidence interval. The accuracy of the estimate clearly improves when n increases, but
the estimator remains biased. Thus, contrary to the case of simple random sampling, it is possible
to capture spatial interactions even with a very low survey rate of around 3%. In fact, the units
surveyed are highly concentrated in space and therefore highly representative of spatial correlations.
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n ρ̂ β̂ Direct Indirect Total
50 0.043 1.055∗∗∗ 1.056∗∗∗ 0.016 1.072∗∗∗

(0.043) (0.125) (0.125) (0.017) (0.128)
100 0.058∗ 1.050∗∗∗ 1.052∗∗∗ 0.032∗ 1.083∗∗∗

(0.031) (0.087) (0.087) (0.019) (0.091)
150 0.072∗∗ 1.049∗∗∗ 1.051∗∗∗ 0.048∗∗ 1.099∗∗∗

(0.028) (0.068) (0.068) (0.020) (0.073)
250 0.101∗∗∗ 1.051∗∗∗ 1.054∗∗∗ 0.080∗∗∗ 1.135∗∗∗

(0.026) (0.051) (0.052) (0.023) (0.060)

Table 11.2 – Estimation of a SAR model on samples drawn by simple random sampling
Note: *** denotes significance at 1%, ** significance at 5% and * significance at 10%. Standard
deviations are shown between brackets. n: number of observations in the sample. These
estimates come from 10,000 simulations.

n p ρ̂ β̂ Direct Indirect Total
51 3 0.309∗ 1.015∗∗∗ 1.051∗∗∗ 0.441∗ 1.492∗∗∗

(0.237) (0.091) (0.097) (0.262) (0.310)
102 6 0.348∗∗∗ 1.017∗∗∗ 1.054∗∗∗ 0.493∗∗∗ 1.546∗∗∗

(0.100) (0.063) (0.066) (0.188) (0.215)
153 9 0.363∗∗∗ 1.017∗∗∗ 1.054∗∗∗ 0.516∗∗∗ 1.571∗∗∗

(0.078) (0.052) (0.055) (0.152) (0.176)
255 15 0.377∗∗∗ 1.014∗∗∗ 1.052∗∗∗ 0.541∗∗∗ 1.593∗∗∗

(0.058) (0.038) (0.040) (0.119) (0.136)

Table 11.3 – Estimation of a SAR model on samples drawn by cluster
Note: *** denotes significance at 1%, ** significance at 5% and * significance at 10%. Standard
deviations are shown between brackets. n: number of observations in the sample. p: number of
clusters in the sample. These estimates come from 10,000 simulations.

However, if the number of units drawn is low, then the same is true for the accuracy of the spatial
correlation estimate. Therefore, the indirect effect is effectively detected, even for small samples,
and its value is closer to that obtained on the total population. The estimation of geographical
effects therefore appears reasonable with surveys relying on cluster sampling.

Two questions remain. First, would this cluster sampling not lead to overestimating the detection
of a spatially-controlled model, even if the effect is not major on the entire population? On the
one hand, as there are few values X and Y , the term WY is paradoxically quite well-known, which
might encourage giving priority to this approach. Second, and this will be developed in Part 11.1.4,
the gap observed between the estimated ρ̂ and the real value used to generate the SAR can appear
surprising, even though the spatial effects are clearly detected.

11.1.4 A "size effect"
The results derived from simulation may come as a surprise to econometricians. Simple random

sampling can be related to the super-population model used in econometrics 7. Therefore, the

7. This term is connected with the difference between design-based and model-based approaches. Under a design-
based approach, we assume that the population has deterministic Y values - the usual approach. Under a model-based
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estimation of a population or model parameter is usually unbiased, as long as the sampling plan is
correctly specified. However, spatial autocorrelation parameter ρ does not follow this "traditional
law" of sampling theory 8.

Notwithstanding the question of the random selection method used for the zones on which
information about Y is retrieved, we will restrict this analysis to a number of zones below that
of the entire population, inducing a change in the underlying spatial structure. Intuitively, a
spatial effect results from interactions between all units constituting a territory. When this effect
is spatially homogeneous, omitting some units implies that we neglect their contribution to the
total spatial effect, which is then underestimated. We call this first component a "size effect".
Moreover, available data may be more or less scattered spatially. When observed units are too
sparse, they hardly account for the structure of spatial correlations. This "sparsity effect" also leads
to underestimating the spatial correlation parameter.

The question of ecological bias, i.e. estimation errors of spatial econometric models that come
from poor spatial specification, whether in terms of data granularity (resolution) or boundary
problems, is similar to this issue. Thus, it is entirely possible, when you are restricted to n zones,
with n < N, to never achieve as strong a spatial effect as across the entire population.

Figure 11.4 – "Size effect"
Note: Each point of a full-line curve represents an estimate of the parameter ρ̂ for a sample size
stated as a percentage of the comprehensive population. When the estimate is performed on
exhaustive data, we find ρ̂ = 0.5. The blue curve is that of a simple random survey, the green
curve a cluster sampling. The red curve reflects a deterministic selection of the regions, starting
from an initial point, then moving away gradually. Dotted lines represent confidence intervals at
95%.

Previous estimations were the consequence of both the size and sparsity effects. To illustrate
the former, we simulate data from a SAR model on the entire population and estimate spatial
correlations on a sample of the most central NUTS3 n. The goal is to focus on a sub-section of

approach, we assume that there is a so-called superpopulation model, from which the Ys in the population are derived.
Here, we are required to follow this approach in order to estimate our SAR models

8. It should be noted that multiple parameters violate this law: for example, the maximum of variable Y on a
population cannot be estimated without bias from a sample. Furthermore, in our case of simple random sampling
or cluster sampling, there is no problem with under-coverage, i.e. units of the population that cannot belong to the
sample for reasons often due to the quality of the registries. This angle cannot explain the bias on ρ̂ .
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Europe, without letting it be randomly chosen or in a fragmented manner, as was the case with
previous samples (Figure 11.2). Figure 11.4 compares the values of ρ̂ resulting from three protocols
for different percentages P% of the total population: the selection of the most central P% NUTS3;
a cluster sampling in which each cluster of zones has P% chances of being selected; and a classic
Poisson sampling, where each area independently has P% chances of being selected.

Just as in part 11.1.3, the Poisson sampling (similar to simple random sampling) yields estimated
values ρ̂ much lower than the cluster survey. The main contribution of this figure is in the red
curve, which is based on a non-random selection of part of the zones. It converges quicker than the
others toward 0.5, the true value of ρ . This appears to confirm the hypothesis of a bias linked to the
distortion of the spatial structure or "size effect", resulting from a restriction to a subset of the total
population.

11.1.5Robustness

To conclude this section, note that the choice of specification for the spatial model affects
the results only marginally. The latter remain unchanged when the maximum distance threshold
varies or when the concept of distance chosen is based on the closest neighbours (table 11.11 in
Appendix 11.3.6). Lastly, the true value of parameter ρ does not affect the magnitude of the bias.
Figure 11.5 shows that, at a given sampling rate, an estimate on a sample drawn by simple random
sampling almost never makes it possible to find the true value of parameter ρ . In the case of a
cluster survey, this value can be included in the confidence interval of the estimated parameter.
However, the bias does not disappear when the magnitude or sign of this parameter vary. In any
case, the bias mitigates the magnitude of the estimated spatial correlation.

Figure 11.5 – Estimates of ρ̂ for various values of ρ

Note: Full-line curves represent the estimated value ρ̂ based on the effective value ρ set for data
simulation. The blue curve shows the case of data driven by simple random sampling and the red
curve the case of cluster sampling. Dotted curves represent 95% confidence intervals for
estimator ρ̂ .

Lastly, considering a SEM model (Spatial Error Model): Y2 = Xβ +(1−λW)−1
ε does not

radically affect the results (Table 11.12 in Appendix 11.3.6).
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11.2 Prospects for resolution

One of the first positions one can adopt in the face of missing data is to ignore, consciously or
not, this data and to directly apply the spatial model to the units observed. This mitigates the spatial
correlation parameter relative to its true value, due to a "size effect" and a "sparsity effect".

The first effect comes from differences between the theoretical model and the estimated model
regarding the dimension of the spatial weighting matrix. To remove it, the exhaustive data needs
to be compared with the sample data according to a single geographical structure, and therefore
on the same number of units. To compensate for the second, we need to be able to reconstruct the
spatial correlations between observed and missing units. In this case, the location of units is always
assumed to be known 9.

In this section, we discuss the impact of two solutions commonly applied to empirical work.
First, switching to a higher scale by aggregating data and second, imputing missing data. Both meth-
ods maintain the geographical structure of the data, but are more or less effective in reconstructing
spatial correlations.

11.2.1 Moving to a higher scale by aggregation

In the absence of comprehensive individual data, much research has been carried out on an
aggregated scale of regions, departments or employment areas. This choice depends crucially
on the relevant scale of the economic issue, assumes the availability of a good estimator of the
local average and can lead to an ecological bias (see Anselin 2002b for further details). Intra-zone
correlations are then omitted, to the benefit of correlations between zones.

To evaluate this solution, we simulate 6,000 points drawn from a uniform distribution on a
square space and assign them, as in section 11.1, values of X and Y according to a SAR data
generating process characterized by a spatial autocorrelation parameter ρ = 0.5. These points are
depicted on the left-hand surface of Figure 11.6. Then, this square space is divided according to
a grid of size G×G for different values of G, and to each centroid of each square is assigned the
average of the points located inside this square. The centre and right panels of Figure 11.6 depict
this configuration for G = 50 and G = 20 respectively.
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Figure 11.6 – Spatial data aggregation
Note: On the left panel, 6 000 items simulated from a uniform distribution, on the center panel,
data aggregated in a grid of 50×50 squares and on the right panel, data aggregated in a grid of
20×20 squares

9. The lack of information on the location of certain units is another challenge for current research on spatial
econometrics (Arbia et al. 2016) which exceeds the scope of this chapter.
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The estimation of a SAR model on comprehensive data aggregated with G = 50 provides a
spatial correlation parameter ρ̂ = 0.47 with standard deviation of σ̂ρ = 0.068. This parameter is
significantly positive and the estimate includes 0.5 in its confidence interval. Aggregating data on
squares would limit the loss of spatial interactions and minimize the bias in estimating the spatial
correlation parameter. Figure 11.7 shows that parameters ρ and β are estimated precisely and
without bias when the grid on which the data is aggregated is relatively fine. The finer the grid,
the closer we are to the spatial structure of exhaustive individual data and therefore, the closer the
spatial correlation is to its true value.

Figure 11.7 – Estimated parameters and fineness of the grid
Note: For each value of the size of the grid, the red curve displays the estimate ρ̂ and the blue
curve the estimate β̂ . Dotted curves stand for the 95% confidence intervals. Results from
simulating 6,000 points from a uniform distribution.

Application to a sample
This procedure is replicated on data sampled by simple random sampling. The fineness of

the grid fulfils the need for bias-variance arbitrage: fine squares reflect the distance between
observations more accurately but lead to estimates of local averages that are less precise for each
variable. Subject to assigning null weight and null values of the dependent and explanatory variables
to squares without observation, we are able to identify the simulated spatial effect.

Table 11.4 shows the results of this procedure for different sample sizes and various spatial
grids. In most cases, the true value of ρ is well within the confidence interval of the estimated
parameter. For a small sample, an overly-coarse grid flattens out the spatial effects while an overly
fine grid provides a poor estimate of individual variables. As before, the larger the sample, the more
accurate the estimate.

These simulations tend to statistically validate the aggregation approach, provided that interpre-
tation is not made directly at the individual level, but rests on strong hypotheses (coordinates of
units drawn from a uniform distribution, homogeneous SAR process), rarely met in practice.

11.2.2 Imputing missing data
To stay on the scale of the available data, the solution is to impute values to missing observations.

This is another way of ignoring the "size effect": ensuring consistency between the spatial structure
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ρ̂ β̂

n
G

10 30 50 60 10 30 50 60

100 0.487∗∗∗ 0.494∗∗∗ 0.483∗∗∗ 0.478∗∗∗ 1.016∗∗∗ 1.007∗∗∗ 1.027∗∗∗ 1.030∗∗∗

(0.070) (0.060) (0.068) (0.072) (0.134) (0.115) (0.129) (0.134)
200 0.482∗∗∗ 0.499∗∗∗ 0.495∗∗∗ 0.489∗∗∗ 1.020∗∗∗ 0.998∗∗∗ 1.006∗∗∗ 1.011∗∗∗

(0.064) (0.045) (0.046) (0.050) (0.126) (0.084) (0.088) (0.095)
500 -0.093 0.488∗∗∗ 0.483∗∗∗ 0.489∗∗∗ 1.035∗∗∗ 1.022∗∗∗ 1.031∗∗∗ 1.021∗∗∗

(0.701) (0.032) (0.030) (0.032) (0.121) (0.060) (0.055) (0.059)
1000 -0.982 0.487∗∗∗ 0.485∗∗∗ 0.491∗∗∗ 1.048∗∗∗ 1.024∗∗∗ 1.028∗∗∗ 1.019∗∗∗

(0.159) (0.024) (0.020) (0.021) (0.119) (0.045) (0.038) (0.040)

Table 11.4 – SAR model estimated on data aggregated by squares of the grid
Note: Each line reflects the size n of the sample drawn from the 6,000 simulated points and each
column reflects the fineness of the grid in terms of number of squares (a size 30 grid breaks the
initial square in 900 boxes). *** denotes significance at 1%.

of survey data and administrative data. In the face of missing values in a survey or census, assigning
"plausible" values to these units makes it possible to have a sample or even a complete population.

Imputation methods
This section lists a number of traditional imputation methods. Interested readers may refer to a

comprehensive handbook on survey theory, for example Ardilly 1994 or Tillé 2001, which provides
more information, theoretical context, as well as other more advanced methods. In the case of
imputation by ratio or by hot deck, explanatory variables X are assumed to be known exhaustively.

Imputation by the mean. The method of imputation by the mean (or by the median, or by the
dominant class in the case of qualitative variables) is a common method consisting of replacing
all missing values by the mean of the observed values. This method does not respect a possible
econometric structure between different variables of the survey and may lead to false results in the
estimation of such models.

Imputation by ratio. The attribution by ratio method involves mobilising the auxiliary infor-
mation X available on the entire population, including the units for which the information of interest
Y is missing, in order to impute plausible Y values. To do this, we assume the existence of a linear
model Y = βX + ε . β̂ is estimated by ordinary least squares, after which the value Yratio = β̂X is
imputed for the missing Y . The ratio of the Y over the X , in the case of quantitative data, is the same
between the units observed and the units for which no information is available. This method can be
refined by adding constraints to the units for which the estimate of β is calculated, for example on
a specific domain or stratum.

Hot deck imputation. The hot deck method randomly connects a donor to a missing value,
in contrast to the cold deck, which establishes this link deterministically. A donor here is an
individual statistically "close" to the missing individual (they share similar values of auxiliary
variable X , belong to the same stratum, to the same domain, or possibly are located in the same
spatial position). The application of hot deck is based on the definition of a distance criterion,
from which k neighbours of the valueless individual Y are determined. One individual is randomly
selected from the k neighbours, uniformly or otherwise, to give its value to the new Yhotdeck. Variants
can be introduced, for example by limiting the number of times a single individual can be a donor,
or by performing the hot deck sequentially.

We illustrate the proposed methods with a simple example. We simulate the geographic position
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of N = 1,000 points to which we assign variables X and Y following a SAR structure with β = 1
and ρ = 0.5. We then draw samples by simple random sampling for different sizes n. For each
sample, the N−n units not drawn are imputed by one of the methods mentioned above: imputation
by the X ratio, imputation by statistical hot deck (neighbours have values close to X) and imputation
by geographic hot deck (neighbours are spatially close). Table 11.5 compares the results of these
different methods to direct exploitation of sample.

Direct Ratio Statistical Geographic
hot deck hot deck

n ρ β ρ β ρ β ρ β

100 0.06 1.14∗∗∗ 0.05∗∗∗ 1.13∗∗∗ 0.03 1.06∗∗∗ 0.19∗∗∗ 0.12∗∗

(0.06) (0.14) (0.01) (0.12) (0.03) (0.13) (0.05) (0.05)
200 0.09* 1.10∗∗∗ 0.11∗∗∗ 1.11∗∗∗ 0.06∗∗ 1.08∗∗∗ 0.22∗∗∗ 0.22∗∗∗

(0.04) (0.08) (0.02) (0.08) (0.02) (0.09) (0.04) (0.05)
500 0.19∗∗∗ 1.08∗∗∗ 0.25∗∗∗ 1.09∗∗∗ 0.19∗∗∗ 1.09∗∗∗ 0.31∗∗∗ 0.55∗∗∗

(0.02) (0.04) (0.02) (0.05) (0.02) (0.05) (0.03) (0.04)

Table 11.5 – Imputation methods
Note: Parameter ρ of SAR model, estimated by Monte Carlo, for a 100-size sample, after
imputation by ratio, is 0.05, with empirical standard deviation of 0.01. *** indicates a 1%
significance, ** 5% and * 10%.

The choice of method has a significant impact on the results. Imputation by ratio seems to work
well for both parameters even though it underestimates parameter ρ for small samples. On the
other hand, the geographic hot deck method gives good results on the auto-correlation parameter
but implies a very strong bias on parameter β . Finally, the statistical hot deck method seems to give
similar results to the direct estimation on the sample. These results illustrate these methods on a
very simple example and show their inability to find the initial parameters of the model.

Further reading

Imputation methods may bias estimates. In particular, the link between Y and X on which the
imputation is based can be passed on to parameters estimated from a regression of Y on X (see
Charreaux et al. 2016 for a discussion on this point). Similarly, imputation methods can create a
spatial structure ex-nihilo or, to the contrary, break the spatial correlations which are not taken into
account.

Lastly, as mentioned in introduction, more refined methods of imputation using EM algorithms
have been developed (LeSage et al. 2004; Wang et al. 2013a). However, they are complex, very
specific to the type of information missing and still remain rarely applied.

11.3 Empirical application: the manufacturing sector in Bouches-du-Rhône

In order to illustrate the issues of estimating spatial models on survey data, we estimate a
production function on plants from the manufacturing sector. The spatial approach makes it possible
to measure the impact of interactions between the production processes of selected firms. Such
spillovers between firms have already been highlighted by a significant literature on conurbation
economies (see in particular LeSage et al. 2007,Ertur et al. 2007, López-Bazo et al. 2004, Egger
et al. 2006).
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11.3.1 Data
The SIRUS register (identification system in the register of statistics units 10) lists all French

firms, groups and their entities, contained in SIRENE (computerised system for the national register
of enterprises and institutions 11), the administrative register used for registering legal units. For
each firm, information on turnover, main activity (accessible via the APE code (principal activity
code), following the French nomenclature), total balance sheet, exports (administrative and full-time
equivalent), physical address and list of plants is available.

Using the geographical information available (cadastral reference, road or city centre), the
(x,y) coordinates of each entity have been successfully geolocated by the INSEE Methodology
and Geographical Guidelines Division. This geographical data, combined with the economic data
available in the SIRUS register, makes it possible to model econometric relations by taking into
account the spatial interactions.

Figure 11.8 – Industrial companies in Bouches-du-Rhône
Source: SIRUS register, 2015
Scope: Companies of the manufacturing sector in Bouches-du-Rhône
Note: Darker green matches higher turnover

11.3.2 Identification
The production of a firm can be influenced by the geographical proximity of neighbouring

companies. These interactions are designated by the concept of "externalities" which can be positive
when the neighbourhood has a favourable impact on production (complementarities between sectors,
integration of production chains, relationship with suppliers, transport, sharing of knowledge, etc.)
or negative when they damage production (competition, pollution, traffic jams, etc.).

First of all, in order to carry out this analysis, it is necessary to choose coherent field, type of
spatial links, and territory, so that the units considered maintain relations between them but not (or
little) with the outside. In this case, we assume to have exhaustive data as regards the spatial effects
on this territory. The choice to study the manufacturing sector in the Bouches-du-Rhône is didactic,
but not meaningless. The presence of the port of Fos-sur-mer, the axis of the Rhône valley and the
road nodes towards Toulouse and Italy make it a territory of interest (Figure 11.8 clearly illustrates
the establishment of plants according to the transport networks). Of course, this estimate will not
take national or even international trade relations into account, but will be exhaustive concerning
local relations.

10. In French, Système d’Identification au Répertoire des Unités Statistiques.
11. In French, Système Informatisé du REpertoire National des Entreprises et des établissements.
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The production level Yi of a plant i can be stated according to a Cobb-Douglas production
function: Yi = ALβL

i KβK
i , where workforce Li and capital Ki are input factors while A refers to

general productivity of factors. Parameters βL and βK represent, respectively, the share of earned
income and capital in production 12. Traditionally, the term A refers to all mechanisms that influence
production (human capital, technological progress, complementarities. . . ) without being directly
measurable. It can also be conceived of as representing the positive production externalities and be
written: A = exp(β0)∏ j∈vi Y

ρωi j
j , where vi refers to the neighbours of plant i, and Yj the production

level of a neighbouring plant j. The production function may be expressed in logarithm as:

log(Yi) = β0 +ρ ∑
j∈vi

ωi j log(Yj)+βL log(Li)+βK log(Ki)+ εi (11.3)

or:

Ỹ = β0 +ρW Ỹ +βLL̃+βKK̃ + ε

Terms with a tilda refers to the logarithm of these variables. W is the spatial weighting matrix,
such that Wi, j = ωi j. This equation may be estimated using a SAR model. The parameter of spatial
autocorrelation ρ captures the complementarities common to all units while ωi j captures specific
complementarities resulting from the impact of the production of plant j on the production of plant
i. The term ρωi j refers to the elasticity of the plant i’s production with respect to the production of
plant j: when a plant j neighbouring i increases production by 1%, the production level of plant i
increases by ρωi j%through direct effects. Deriving equation 11.3 with respect to log(Yk), we have:

d log(Yi)

d log(Yj)
= ρωi j︸︷︷︸

Direct effect from j on i

+ρ ∑
k 6= j

ωik
d log(Yk)

d log(Yj)︸ ︷︷ ︸
Indirect effect via k

Likewise, summing this expression over j, ρ appears as the direct elasticity of plant i’s production
with respect to the production of neighbouring plants:

∑
j

d log(Yi)

d log(Yj)
= ρ +ρ ∑

j
∑
k 6= j

ωik
d log(Yk)

d log(Yj)

11.3.3 Estimation
The equation 11.3 is estimated over 6,306 plants geolocated in Bouches-du-Rhône, belonging

to the manufacturing sector 13. This sector is particularly appropriate to a spatial estimate, since
the geographical location is not directly part of its production activities (unlike trade, transport
or agriculture), it is not too concentrated (as is the case in high technology) and does not make
particular use of network logics other than spatial (contrary to finance or communications for
instance).

Production Yi from plant i is given by its turnover. The total balance sheet of the plant, which
is a measure of its assets, is used as a proxy for capital Ki. These two variables, which are only
available at firm level, are divided by the number of plants within the company. Lastly, workforce
Li is available at plant level in SIRUS.

Figure 11.8 shows the location of these plants. The intensity of the green in these cross-signs
denotes their turnover: the darker the colour, the higher the turnover. Groups of plants with strong

12. These parameters can also be interpreted, respectively, as the elasticities of production with respect to work and
capital.

13. The manufacturing sector encompasses companies whose main business belongs to Divisions 10 to 33 of NAF
Rev 2. 2008.



294 Chapter 11. Spatial econometrics on survey data

turnover appear clearly, for example near Aix-en-Provence or around Fos-sur-Mer. As in the
simulations in section 11.1, neighbourhood proximity is depicted by a weighting matrix based on
distance. According to our definition, each plant has on average 109 neighbours, and 76 plants do
not have neighbours 14.

β0 βL βK ρ

0.422 0.535 0.769 0.051
(0.050) (0.015) (0.009) (0.009)

Table 11.6 – SAR model estimation: all plants
Source: SIRUS register, 2015
Scope: All plants from the manufacturing sector located in the Bouches-du-Rhône department,
whose turnover and total balance sheet are strictly positive
Note: Estimated parameters are significant at 1%.

Table 11.6 shows the results of the SAR model estimated on all of plants within the manufac-
turing sector in Bouches-du-Rhône. Labour income and capital income shares are close to values
generally estimated (roughly one-half to two-thirds for the latter, and one-third to two-thirds for
the second, the high marginal return on capital being attributable to the choice of the industrial
sector). There is a positive and significant spatial correlation: when the average turnover of the
neighbouring units of plant i increases by 1%, the turnover of plant i increases by 0.05%.

11.3.4 Spatial estimates on samples
Sampling plans

As in Section 11.1, we replicate the model’s estimate 11.3 on a sample of plants. Simple
random sampling is used as a reference point, but is not common in the context of corporate
surveys. Stratified sampling methods are more frequently employed in studies identifying the
effect of the labour force and capital on turnover. These sampling methods have been presented in
Section 11.1.2.

Stratification is carried out according to this workforce variable, assuming a correlation between
headcount and turnover. Table 11.7 shows the strata created using a Neyman Allocation, based on
dispersion of turnover within each of the strata. The dispersion within Stratum 4 is much higher
than that of the other strata. As a consequence, we consider Stratum 4 to be exhaustive, i.e. we will
always sample the 67 companies of Stratum 4 in order to limit the variance of estimation.

Results

In this section, we compare the results secured using a simple and stratified random sampling
plan, varying the sample size: n ∈ {250,500,1000,2000}.

Table 11.8 shows the parameters of the SAR model estimated from 1,000 draws by simple
random sampling (on the left) and stratified sampling (on the right). In the case of simple random
sampling, as well as in section 11.1, the traditional regression parameters βL and βK are correctly
estimated. In contrast, spatial correlation parameter ρ is significant only for a sample size greater
than 1,000 and always remains lower than the value it would take on full data.

The stratified survey plan applied to non-reweighted data skews traditional estimators βL and
βK when regression is unweighted (Davezies et al. 2009). On the other hand, the bias on spatial

14. The units without neighbours, also referred to as "islands", do not participate in estimating the spatial correla-
tion parameter ρ . The threshold is determined by a trade-off between minimising the number of neighbours and the
number of islands.
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Number of Number Number
strata of employees of companies
1 0 3 628
2 1 to 9 2 742
3 10 to 99 770
4 100 and more 67

Table 11.7 – Constitution of strata
Source: SIRUS register, 2013
Scope: All plants from the manufacturing sector located in Bouches-du-Rhône, whose turnover
and total balance sheet are strictly positive

Simple random sampling Stratified sample
n ρ βL βK ρ βL βK

250 0.011 0.554∗∗∗ 0.768∗∗∗ 0.015∗ 0.311∗∗∗ 0.813∗∗∗

(0.021) (0.104) (0.078) (0.009) (0.072) (0.056)
500 0.017 0.545∗∗∗ 0.773∗∗∗ 0.020∗∗ 0.371∗∗∗ 0.796∗∗∗

(0.016) (0.073) (0.052) (0.008) (0.053) (0.041)
1000 0.024∗∗ 0.542∗∗∗ 0.774∗∗∗ 0.024∗∗∗ 0.410∗∗∗ 0.793∗∗∗

(0.012) (0.051) (0.039) (0.007) (0.039) (0.029)
2000 0.034∗∗∗ 0.541∗∗∗ 0.770∗∗∗ 0.036∗∗∗ 0.457∗∗∗ 0.790∗∗∗

(0.010) (0.031) (0.023) (0.007) (0.028) (0.022)

Table 11.8 – Model 11.3 estimated on a random sample and on a stratified sample
Source: SIRUS register, 2015
Scope: All plants from the manufacturing sector located in Bouches-du-Rhône, whose turnover
and total balance sheet are strictly positive
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correlation parameter ρ appears less. This is because large companies likely to have significant
spatial influence are all taken into account in the sample, due to this stratified survey plan.

The decision not to weight the regression is made by default. In traditional econometrics, it
is of use to weigh observations before estimating an econometric model when the structure of
the sampling plan is linked to the estimated variables. However, the question of using sampling
weight as part of a SAR model has not been definitively addressed by the current literature 15. In
the current state of affairs, unweighted regression appears to be the safest and easiest choice. We
do not explore this question further in this chapter.

11.3.5 Estimation on aggregated data

As discussed in section 11.2, an approach commonly used to circumvent the problem of missing
data consists in moving to a wider scale by aggregating the sampled data. In order to move away
from the administrative zonings, we divided the Bouches-du-Rhône department according to a
G×G grid (Figure 11.9).

Figure 11.9 – Bouches-du-Rhône breakdown in a grid of 20×20 squares
Source: SIRUS register, 2015
Scope: Plants from the manufacturing sector in Bouches-du-Rhône

From this grid, observations of a sample are averaged on each cell and the spatial analysis is
carried out at the scale of the grid, with the distance being defined between the centroids of the
cells. Null values are assigned to the variables and spatial weights of cells without observation,
thus excluding them from the estimate without distorting the size of the spatial weighting matrix.
Table 11.9 shows parameter ρ estimated for different sample sizes and various grid sizes.

Estimating spatial models based on aggregated data appears to circumvent the problem of
missing data within a very simple context of data simulated uniformly across a territory. However,
the application of this method to actual data is not straightforward. In particular, in this specific
case, the parameter of spatial autocorrelation is still underestimated and is never significant. This
could be due to the high concentration of plants in Bouches-du-Rhône, as the intra-cell distances
are not, by definition, taken into account in this method. Spatial estimates on aggregated data thus
require that the estimated phenomenon not be specific to a finer geographical scale.

15. For example, it is not clear whether it is necessary to involve the sampling weights in the spatial weighting
matrix calculation W; this could also induce additional endogeneity, linked to the sample structure.
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n
G

20 30 50 60

100 0.007 0.009 0.014 0.015
(0.018) (0.022) (0.022) (0.024)

200 0.013 0.007 0.015 0.018
(0.021) (0.019) (0.018) (0.018)

500 0.024 0.023 0.012 0.013
(0.031) (0.023) (0.014) (0.013)

1000 0.031 0.057∗ 0.021∗ 0.014
(0.026) (0.040) (0.015) (0.012)

Table 11.9 – Parameter ρ estimated on aggregated data
Source: SIRUS register, 2015
Scope: Plants from the manufacturing sector in Bouches-du-Rhône
Note: Parameters are estimated on a size-n sample aggregated on a G×G grid. For the sake of
clarity, we show here only parameter values ρ .

11.3.6 Imputation of missing data
Implementation

The second approach, referred to in section 11.2.2, consists in imputing the missing data, i.e.
to attribute estimated Yi values to plants for which none are available. We consider three types
of imputations for Bouches-du-Rhône plants: (i) imputation by ratio, which uses variables L and
K representing workforce and capital as explanatory variables of the model, (ii) imputation by
statistical hot deck, in the sense that the distance is calculated based on the values of L and K, that
is to say that the neighbours of a plant are the plants that share similar staff and capital and (iii)
imputation by geographic hot deck, where one is associated with an individual in the geographic
sense.

The implementation of these techniques requires, in the first case, to estimate a linear model
(function lm in R), and in the next two cases, to define the neighbours (function knn of package
class), then randomly make a draw amongst them (function sample in R). These three approaches
are tested on the manufacturing sector in Bouches-du-Rhône. 1,000 size-n samples are drawn
according to the principles of simple random sampling, after which the imputation process assigns
values Y to the N−n companies not sampled. The results obtained are presented in table 11.10. As
a reminder, the results on the entire population can be found in table 11.8.

Results

The results are highly variable, depending on the method used. Imputation by ratio makes
it possible to maintain the linear structure between turnover, workforce and capital, resulting in
unbiased and accurate estimates for coefficients βL and βK . On the other hand, estimation of ρ is
very low, even more so than in the case of a direct estimation on a random sample (see table 11.8).
Imputation does not take into account the spatial structure, which is deleted when the model is
estimated on the data completed. Therefore, it is not relevant to apply spatial econometric models
to data imputed using this method.

Imputation by statistical hot deck appears more promising. The estimators are on the right order
of magnitude with respect to the resulting values for the population and are estimated accurately.
A comparison with table 11.6 reveals a bias when ρ̂ , β̂L and β̂K are estimated on small samples.
Thus, the imputation by hot deck skews the estimators (Charreaux et al. 2016) but enables the
structure of the spatial correlations to be brought out. This is because the connection between donor
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Ratio Statistical hot deck Geographic hot deck
n ρ βL βK ρ βL βK ρ βL βK

250 0.002 0.560∗∗∗ 0.768∗∗∗ 0.043∗∗∗ 0.664∗∗∗ 0.646∗∗∗ 0.419∗∗∗ 0.028 0.104∗∗∗

(0.002) (0.112) (0.080) (0.009) (0.083) (0.059) (0.046) (0.034) (0.023)
500 0.004 0.548∗∗∗ 0.774∗∗∗ 0.042∗∗∗ 0.613∗∗∗ 0.698∗∗∗ 0.412∗∗∗ 0.061∗ 0.149∗∗∗

(0.003) (0.077) (0.058) (0.008) (0.061) (0.044) (0.035) (0.034) (0.022)
1000 0.008∗∗ 0.546∗∗∗ 0.774∗∗∗ 0.040∗∗∗ 0.577∗∗∗ 0.734∗∗∗ 0.389∗∗∗ 0.116∗∗∗ 0.217∗∗∗

(0.003) (0.051) (0.037) (0.007) (0.040) (0.028) (0.035) (0.035) (0.023)
2000 0.017∗∗∗ 0.542∗∗∗ 0.773∗∗∗ 0.040∗∗∗ 0.562∗∗∗ 0.751∗∗∗ 0.333∗∗∗ 0.203∗∗∗ 0.338∗∗∗

(0.004) (0.032) (0.024) (0.007) (0.031) (0.023) (0.022) (0.034) (0.022)

Table 11.10 – Imputation methods
Source: SIRUS register, 2015
Scope: Plants from the manufacturing sector in Bouches-du-Rhône, whose turnover and total
balance sheet are strictly positive

and recipient implicitly maintains the structure of spatial interactions. It is also possible that the
underlying spatial structure Y also exists for L and K and is recovered by imputation. Thus, the use
of this imputation method for econometric analysis involves a trade-off between bias and variance
on parameters βL and βK , traditional in sampling theory. However, in this instance, the method also
offers the advantage of substantially reducing the pre-existing bias on ρ . These results, which are
tested only on this data set and with a simple sampling plan, are to be used with caution. In any
case, the effectiveness of this method is not based on the spatial proximity between the donor and
the recipient, as the last example shows.

The imputation method using geographic hot deck results in aberrant estimations. Based directly
on the spatial proximity between donor and receiver, it gives rise to very strong overestimation
of the spatial effect (the estimated ρ̂ is greater than its value estimated on the full population),
at the expense of the effect of other variables in the model (estimated β̂ ’s are well below the
values of these parameters estimated on the full population). In fact, according to this method,
nearby spatial structures will have the same turnover Y , which creates ex-nihilo a very high positive
spatial correlation. The use of the spatial dimension to remedy the problem of missing data is
not for the immediate future. Table 11.13 in Appendix 11.3.6 shows the results achieved for a
geographical hot deck imputation by limiting itself to plants with similar workforce. Parameter ρ is
less overestimated but the results remain far removed from the estimate based on full data. It may
be possible to use geographic information parsimoniously for imputation, but this would require
more extensive analysis of the data set and good knowledge of its spatial structure.

Conclusion

This chapter highlights the difficulties associated with the application of spatial econometrics
to sampled data. There are two pitfalls in particular: (i) a "size effect" by which the estimate on a
remote sample distorts the spatial weighting matrix, and (ii) a "sparsity effect" resulting from the
omission of units spatially correlated with the units observed. Both effects tend to underestimate
the magnitude of spatial correlations. However, the bias is lower in the case of a cluster survey and
when the sample is larger.

Empirical studies typically resolve this problem by ignoring missing observations, aggregating
data on a larger scale or imputing the missing values. The first solution is never desirable. The
other two are far from perfect, because it is hard to rebuild a complex set of information from few
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observations. The imputation by statistical hot deck is promising, but we do not demonstrate its
validity in a general case.

While this issue is bound to become more important as social media and geolocated data become
more prominent, estimating spatial models based on sampled data remains rare. For the time being,
it is preferable to consider comprehensive data. This chapter warns against overly-expeditious
solutions, such as aggregating data on a higher scale, calling upon simplistic imputation methods
or removing any mention of missing data. When a relatively large sample is available, or derived
from a cluster survey, a spatial estimate could then be considered, bearing in mind that the resulting
spatial correlation parameter will probably be underestimated.
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Appendix
Choice of model and neighbourhood matrix

Here, we consider the same procedure as in section 11.1 for different values of the parameters.
Table 11.11 shows estimates comparables to those from Table 11.2 for different neighbourhood
matrices. Table 11.12 displays results in the case of a Spatial Error Model (SEM) instead of a SAR
model.

ρ β

n
M

2 neighbours 5 neighbours Distance 2 neighbours 5 neighbours Distance

50 0.020 −0.003 0.042 1.107∗∗∗ 1.050∗∗∗ 1.054∗∗∗

(0.110) (0.172) (0.043) (0.115) (0.095) (0.125)
100 0.063 0.069 0.058∗ 1.112∗∗∗ 1.056∗∗∗ 1.054∗∗∗

(0.076) (0.111) (0.031) (0.079) (0.065) (0.086)
150 0.097∗ 0.115 0.073∗∗ 1.107∗∗∗ 1.052∗∗∗ 1.049∗∗∗

(0.060) (0.088) (0.028) (0.062) (0.051) (0.068)
250 0.150∗∗∗ 0.189∗∗ 0.101∗∗ 1.105∗∗∗ 1.050∗∗∗ 1.053∗∗∗

(0.047) (0.065) (0.026) (0.049) (0.040) (0.052)

Table 11.11 – SAR Model - Monte Carlo Estimation
Source: SIRUS register, 2015
Scope: Plants from the manufacturing sector in Bouches-du-Rhône
Note: Standard deviations are in brackets.

λ β

n
M

2 neighbours 5 neighbours Distance 2 neighbours 5 neighbours Distance

50 −0.025 −0.110 0.008 1.003∗∗∗ 1.003∗∗∗ 1.002∗∗∗

(0.167) (0.287) (0.193) (0.115) (0.113) (0.112)
100 0.008 −0.027 0.024 1.003∗∗∗ 1.004∗∗∗ 1.003∗∗∗

(0.113) (0.182) (0.124) (0.080) (0.078) (0.078)
150 0.023 0.002 0.034 0.998∗∗∗ 0.998∗∗∗ 0.998∗∗∗

(0.090) (0.144) (0.099) (0.065) (0.063) (0.063)
250 0.047 0.042 0.052 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗

(0.069) (0.108) (0.079) (0.051) (0.050) (0.050)

Table 11.12 – SEM Model - Monte Carlo Estimation
Source: SIRUS register, 2015
Scope: Plants from the manufacturing sector in Bouches-du-Rhône
Note: Standard deviations are in brackets.
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Imputation by stratified geographical hot deck
Table 11.13 provides the results using geographical hot deck imputation, restricted to plants

with similar workforce, i.e. those of the same stratum (defined in table 11.7) as the plant with a
missing value.

Geographic stratified hot deck
n ρ βL βK

250 0.137 1.216 0.029
(0.037) (0.100) (0.026)

500 0.148 1.192 0.071
(0.031) (0.077) (0.025)

1000 0.156 1.121 0.149
(0.026) (0.061) (0.025)

2000 0.148 0.542 0.279
(0.019) (0.048) (0.025)

Table 11.13 – Imputation by geographic stratified hot deck
Source: SIRUS register, 2015
Scope: Plants from the manufacturing sector in Bouches-du-Rhône
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