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Abstract

This chapter focuses on using geographical information for survey sampling. Such information can
be used at different stages in the sampling design development process. In most surveys carried
out face-to-face, multistage sampling designs are used, so as to lower data collection costs through
geographically concentrated interviews. Using a geocoded sampling frame is therefore decisive for
constructing the primary sampling units. This geographic information can also be used at selection
stage to improve the statistical efficiency of the sample when the variables of interest are positively
autocorrelated.
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R Prior reading of Chapters 2: “Codifying the neighbourhood structure” and 3: “Spatial
autocorrelation indices” is recommended.

Introduction

Eurostat’s Geostat 2 project (2015-2017) was intended to provide a reference framework within
which geocoded statistical information could be produced efficiently and used easily. Regarding
design-based surveys, the final project report A Point-Based Foundation for Statistics, identifies
at least three steps of survey design that could benefit from a geocoded sampling frame. Firstly,
upstream, when the collection method is face-to-face, precise knowledge of the location of all
statistical units allows the creation of primary sampling units 1 (PSU). Knowing the characteristics
of these PSUs makes it easier to manage the interviewers’ network while preserving the statistical
qualities of the sampling. Secondly, whatever the data collection method, geographical information
makes it possible, given certain conditions, to improve the accuracy of estimates by using spatial
sampling methods. Thirdly, during the data collection phase, knowing the location of the statistical
units sampled makes it easier to identify them when the quality of the addressing is not sufficient.

This chapter focuses exclusively on the first two points. In the first part, we briefly review the
sampling theory framework. The second part then offers a method for constructing the smallest
primary sampling units in terms of area while having a constant number of statistical units. The
third section is dedicated to presenting different spatial sampling methods, while the last part
empirically compares their properties, using simulation.

Among the rich literature on the subject, we rely on or direct the reader to Benedetti et al. 2015.

10.1 General

The purpose of the sampling theory is to estimate the value of a parameter θ measured on
a population U of size 2 N. We can think of θ as a function of the values taken by one or more
variables of interest associated to each statistical units. Let yi be the value of the variable y for the
statistical unit i in U . The survey statistician does not have access to yi except for a sub-part of the
population, referred to as the sample and expressed as s. He or she aggregates the values observed
on the sample thanks to a function called the estimator, taking value θ̂(s) for s. Estimating θ by
θ̂(s) is known as statistical inference. Properties of statistical inference are described only if s is
chosen randomly.

A sampling design is a probability law across the set P(U) of parts (samples) of U . The classic
notation of a random variable with values in P(U) is S. A sampling design in which all samples
with a size different from n (n ∈ N∗) have zero probability of being selected is said to be of fixed
size n. It is generally complex to manipulate a probability law on P(U). This is why the survey
statistician works with summary versions of the law of S, i.e. first-order and second-order inclusion
probabilities. They refer respectively to the probability of inclusion of unit i in the sample or the
joint probability of inclusion of units i and j in the sample: πi = P(i ∈ S) and πi j = P((i, j) ∈ S).

Estimating θ by θ̂ is subject to multiple errors:
— coverage error: some statistical units in the population cannot be selected since they do not

appear in the sampling frame;

1. Primary sampling units are a sub-division of the population often based on geographical criteria. The first stage
of selection of PSUs, and the second stage of selection of individuals in these PSUs, is such that collection can be
concentrated and costs be reduced when the survey is conducted face-to-face.

2. In this chapter, in contrast to the previous chapters, the notion of "size" with respect to a geographical area
refers to the number of statistical units present inside, not to the surface.
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— non-response error: some individuals have an unknown value of yi even when they are
selected;

— measurement error: collecting incorrect value y∗i instead of yi.
An estimator with an expected value different from θ is said to be biased, whereas the variability of
values θ̂(s) is assessed using the variance of θ̂ . The objective is to make the bias and variance as
small as possible, by paying special attention to the conditions in which information is collected
and/or by judiciously choosing the sampling design.

Out of all parameters to be estimated, the most traditional is the population total of one variable
of interest y: θ = ty = ∑i∈U yi. Out of all the different possible estimators of ty, we will focus on
the Narain-Horvitz-Thompson estimator: t̂y = ∑i∈S yi/πi. In the absence of coverage, non-response
and measurement errors, this estimator is unbiased. Its variance for a fixed size design is:

V (t̂y) =−
1
2 ∑

i∈U
∑
j∈U

(πi j−πiπ j)

(
yi

πi
−

y j

π j

)2

(10.1)

By analysing Equation 10.1, one can glean indications on the sampling designs to be used to achieve
a more accurate estimate of ty. If the πis are proportional to the yis, the variance equals zero. This
solution being impossible in practice, an alternative involves using πi proportional to xi, where x is
an auxiliary variable known for all statistical units and correlated with y.

This strategy is valid when the survey is mono-thematic (only one variable of interest y). The
use of such probabilities for another variable of interest y′ uncorrelated with x can indeed result in
highly imprecise estimates. Therefore, when the survey is multi-thematic, statisticians often prefer
choosing equal first-order inclusion probabilities. Equal first-order-inclusion probabilities make
it possible to "reduce to a minimum the variances that would emerge in the most unfavourable
configurations (referred to as the MINIMAX optic), [...] i.e. for the variables that are most likely to
impair the accuracy of the estimates" (Ardilly 2006).

When working with a set of fixed first-order-inclusion probabilities, the design should ascribe
large πi j when yi/πi is very different from y j/π j. In the case of spatialised variables and on the
assumption that spatial autocorrelation decreases with distance, distant rather than close statistical
units should be selected.

10.2 Constructing primary sampling units of small area and with a constant
number of secondary statistical units

10.2.1 Rationale
Sometimes, organisational constraints imply that the face-to-face collection method is conducted

on a low population density area. Then the two-stage sampling method is generally preferred. In
order to reduce the costs arising from the interviewers’ trips, the first-stage selection will include
geographic entities (primary sampling units, PSUs) the geographical extent of which must be as
small as possible. To simplify, a PSU selected in this manner is then assigned to one interviewer
only. Within each PSU, secondary sampling units (SSUs) are selected, each matching up with a
statistical unit to be interviewed (individuals in their main dwelling, companies). In order to ensure
sufficient workload for the interviewers for one or more surveys, each PSU must also include a
minimum number of secondary sampling units.

For a network consisting of m interviewers and a final sample of n secondary sampling units, m
PSUs are selected proportionally to their number of secondary sampling units: πi(1)= m(Ni/N) for
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PSU i bringing together a total of Ni secondary sampling units. Assuming that m divides n, in each
of these m PSUs, n/m SSUs are drawn based on an equal-probability design: π i

j
(2) = n/(mNi) for

secondary sampling unit j in PSU i. The final inclusion probability is constant: π i
j = πi(1)π i

j
(2)= n/N.

The PSUs are constructed by combining the finest geographical meshes available in the sampling
frame. When these meshes remain coarse, for example municipalities, the number of SSUs in
the final PSUs proves a difficult parameter to control. As a consequence, at first-sampling stage,
the design does not benefit from the MINIMAX property referred to above, since probabilities
are proportional to the number of SSUs. This property can be met if the PSUs are of equal size.
Equal-size PSUs may also prove preferable for other reasons connected with coordinating the
samples (selecting disjoint or nested samples). Note that:

— the complementary S =U\S to an equal-probability sample S, is itself an equal-probability
sample;

— a random sample S2, selected with equal probabilities in a sample S1 itself selected with
equal probabilities, is itself a equal-probability sample.

The ideal solution is therefore to construct PSUs covering a small geographical area while having
equal numbers of secondary sampling units.

10.2.2 Method

The problem of constructing equal-size primary sampling units having a small geographical
area is a particular case of the more general problem consisting of constructing classification
which is subject to size constraints. This topic has enjoyed renewed interest in the recent literature
(Malinen et al. 2014, Ganganath et al. 2014, Tai et al. 2017). The aim is to subdivide the territory
into classes within which the dispersion of geographical coordinates is as low as possible, while
having an expected number of units per class. Here, we introduce a method initially developed
to determine PSUs for the French Labour Force Survey (Loonis 2009), and recently considered
among other possibilities to establish PSUs for the French master sample for households surveys
(Favre-Martinoz et al. 2017).

The general principle is as follows:
1. the statistical units are geocoded according to the most fine-grained geo-referencing possible.

Due to the quality of geo-referencing or the nature of data, the number of statistical units nxy

located at the coordinate point (x;y) may be greater than 1.
2. A path is drawn through all known locations. For this purpose, the methods discussed in

Chapter 2: “Codifying the neighbourhood structure”, are used. Insofar as there is no need
for the path to return to its starting point, the Hamilton path has been chosen since it is the
shortest (Hamilton path minimises the sum of the distances between two consecutive points
without setting a starting or finishing point).

3. To construct M zones, we go through the whole path from the starting point, cumulating nxy

units along the way. When the total exceeds the threshold c' N
M , the first PSU is constructed.

The process is then repeated, from the first point not yet visited on the path.
4. Under ideal conditions where M divides N and nxy = 1 for all pairs (x,y), the procedure results

in geographically homogeneous primary sampling units of equal size. This heuristic approach
does not, however, lead to a global optimum. As in any classification, a consolidation
procedure needs to be provided to manage any atypical geographical situation and/or PSU
size that is too remote from c. This type of situation can arise, for example, when the last
point on the path integrated into a PSU has a very high nxy value, or when dealing with the
last PSU formed.

In the following section, we implement this procedure. We focus in particular on how to
construct the path when the number of secondary sampling units is high.
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10.2.3 Application
Figure 10.1 shows the results when the general strategy described above is applied to the Alsace

region (former region, before the restructuring of the French regions in 2016). For the purposes of
the French Labour Force Survey (LFS), the main dwellings were gathered in PSUs of 2,600 main
dwellings (Figure 10.1b), divided into sectors with 120 main dwellings (Figure 10.1c).

Due to the computation time needed to construct the PSUs, the approximately 616 000 main
dwellings were initially grouped into 80 000 grid cells whose resolution is 100 meters (Figure
10.1a), which therefore constitute the most fine-grained georeferencing of statistical units. To
construct sectors within the PSUs, the main dwellings are by nature geocoded at building level.
The original cells or buildings show high variability in size that implies variability in the nxy as well.
This partly explains the slight variability in the size of the PSUs and sectors (Table 10.1).

(a) 616 000 main dwellings, in 80 000 cells 100 m
per side...

(b) ... are gathered in homogeneous PSUs of 2 600
main dwellings...

(c) ... and divided into sections of 120 main
dwellings each.

Figure 10.1 – Construction of zones with a small geographical area and an equal number of main
dwellings in Alsace

Constructing sectors of 120 main dwellings, from a large number of main dwellings may lead
to performance issues. When using a Euclidean distance, the shortest Hamilton path can computed
be exactly and easily if the number of points does not exceed a few hundred. When dealing with
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Order of Size of Size of PSUs Size of sectors
Fractile original cell (Figure 10.1b) (Figure 10.1c)
100% 378 2776 139
99% 59 2757 131
95% 23 2685 130
90% 15 2640 130
75% 9 2606 124
50% 5 2595 119
25% 2 2591 118
10% 1 2587 118
5% 1 2502 117
1% 1 2491 111
0% 1 2479 99

Table 10.1 – Quantiles of the number of main dwellings in the cells, PSUs and sections of Figure
10.1

several thousand points, it is not reasonable nor useful to compute the exact optimal path. We
therefore propose an approximate method aiming at constructing a path that fits for the purpose.
The different steps in this approximate method are described below and illustrated in Figure 10.2
for one given PSU. This PSU is composed of 2,600 main dwellings and 1,085 buildings.

1. The 1,085 buildings and 2,600 main dwellings of the PSU in blue in Figure 10.1c, are
gathered using the k-means method 3 into 20 different but geographically consistent classes.
This classification is carried out with the geographical coordinates of the buildings. It should
be noted that 20' 2600

120 (Figures 10.2a and 10.2b).
2. A Hamilton path is drawn through the barycentres of the 20 classes so that they can be

ordered (Figure 10.2c).
3. In a given class i, the buildings are sorted according to two sub-classes (Figure 10.2d):

(a) the first comprises the buildings in class i that are closer to Gi−1 (barycentre of the
previous class) than to Gi+1 (barycentre of the next class) and increasingly sorted by
distance to Gi−1;

(b) the second comprises the buildings in class i that are closer to Gi+1 (barycentre of the
next class) than to Gi−1 (barycentre of the previous class) and decreasingly sorted by
distance to Gi+1;

4. By construction, the first buildings in class i are close to the last buildings of class i− 1,
and the last buildings in i are close to the first in class i+1. Following the path thus means
running along buildings by class, by sub-class and finally by increasing or decreasing distance,
depending on the case (Figure 10.2e). If necessary, main dwellings inside a building can be
sorted by floor.

10.3 How to draw a spatially balanced sample
The overall considerations have shown that the more the sampling design selects individuals

geographically distant from one another, the more the estimation will be precise for a spatially
autocorrelated variable. Grafström et al. 2013, for example, have formalised these considerations
more explicitly. In this section, we detail the methods for selecting spatially balanced samples.
Existing methods can be grouped into two families.

3. The k-means method aims at creating homogeneous classes by maximising between-class variance and min-
imising within-class variance.
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(a) The buildings and their related Voronoï
polygons...

(b) ... are grouped, by k-means on the coordinates,
into approximately 20 clusters of varying size.

(c) A path through the cluster’s barycentres... (d) ... makes it possible for buildings to be classified
according to whether they are closer to the
barycentre of the previous cluster (white) or the next
one (grey) ...

(e) ... and thus to create a path passing through all
the buildings.

(f) Following this path, sectors of 123 to 128 main
dwellings are built.

Figure 10.2 – Main dwellings divided into 120-unit sections
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Within the first family, the inclusion probabilities are updated locally in order to limit the
selection of two neighbouring units. These methods include the spatially correlated Poisson
sampling method (Grafström 2012), the local pivotal method (Grafström et al. 2012), and the local
cube method (Grafström et al. 2013).

Within the second family, we turn the problem of proximity between units in several dimensions
into a problem of order in R. Then, the sampling is performed excluding two nearby units, basing
on the sorted file. This family of methods includes the General Randomized Tessellation Stratified
(GRTS, Stevens Jr et al. 2004) method, the method based on a Peano curve (Lister et al. 2009), or
on Traveling-Salesman Problem (TSP) algorithm (Dickson et al. 2016).

10.3.1 The spatially correlated Poisson method (Grafström 2012)
The spatially correlated Poisson sampling is an extension of the correlated Poisson sampling

(Correlated Poisson Sampling, CPS) proposed by Bondesson et al. 2008 to perform realtime
sampling. The CPS method is based on sequential and orderly sampling of units. Units are ordered
with indices ranging from 1 to N. The decision is first made as to unit 1, then unit 2, up to unit N.
In the case of real time sampling, the order of the indices is a pre-established order of sampleable
units. In the case of a spatial sampling, the order can be based on the proximity of the units, in
accordance with an Euclidean distance function. At each stage, the inclusion probabilities are
updated so as to create a positive or negative correlation between the unit selection indicators.

More specifically, the first unit is included in the sample with probability π0
1 = π1. If unit 1 was

included, we set I1 = 1 . More generally speaking, at stage j, unit j is selected with probability
π

j−1
j and the inclusion probabilities of units i≥ j+1 are updated as follows:

π
j

i = π
j−1

i −
(

I j−π
j−1
j

)
wi

j, (10.2)

where wi
j is the weight given by unit j to units with indices i≥ j+1. The inclusion probabilities

are updated stage by stage, with at most N stages until the selection indicator vector is obtained.
The choice of weights wi

j is crucial as it helps determine whether a positive or negative
correlation is introduced between the selection indicators. Bondesson et al. 2008 give the expression
of these weights for some conventional sampling designs, and a general expression for any sampling
design. Consequently, this method is very general: any sampling design with fixed first-order
inclusion probabilities can be implemented by the CPS method. Only the expression and conditions
related to to weights 4 may vary according to the design. For example, for a fixed-size design, the
sum of the weights wi

j, j < i must be equal to 1. In case of positive spatial auto-correlation (wherein
nearby units are similar), the associated weights should be chosen positively, so as to introduce a
negative correlation between the sampling selection indicators. It therefore seems appropriate to
carry out a global spatial autocorrelation test to determine the sign of the weights to be used in this
method.

Grafström 2012 suggests two versions for the weights wi
j. Here, we show the version consider-

ing a Gaussian distribution. In this case, the weights are defined as:

wi
j ∝ exp(− [d (i, j)/σ ]2), i = j+1, j+2, ...,N. (10.3)

Since the sum of the weights must be equal to 1, the proportionality constant is set. These
weights are all the larger as the units are close to the unit j. Thus, the closer is unit i (in the sense
of distance d(i, j)) to unit j, the lower is probability π

j
i , and spatially balanced sampling can be

carried out. Parameter σ makes it possible to manage the dispersion of these weights, and therefore
distribute the update of inclusion probabilities in a wider or smaller neighbourhood, as needed.

4. the conditions imposed on weight are linked to the conditions imposed on the inclusion probabilities, i.e. the
sampling design.
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This method is implemented in package BalancedSampling in R (Grafström et al. 2016) using
the function scps().

10.3.2 The local pivotal method (Grafström et al. 2012)
Review of the local pivotal method

The local pivotal method is a sampling procedure thanks to which a sample with equal or
unequal inclusion probabilities can be selected (Deville et al. 1998). At each stage of the algorithm,
the inclusion probabilities of two units i and j in competition are updated and at least one of the
two units is selected or rejected.

The inclusion probability vector of the two competing units (πi,π j) is updated according to the
following rule (fight between units i and j):

— if πi +π j < 1, then:

(π ′i ,π
′
j) =


(0,πi +π j) with probability

π j

πi +π j

(πi +π j,0) with probability
πi

πi +π j

— if πi +π j ≥ 1, then:

(π ′i ,π
′
j) =


(1,πi +π j−1) with probability

(1−π j)

(2−πi−π j)

(πi +π j−1,1) with probability
(1−πi)

(2−πi−π j)

This procedure is repeated until an inclusion probability vector emerges containing N−n times
the number 0 and n times the number 1, which will completely determine the selected sample (steps
at most N).

Extension to spatial sampling
The local pivotal method (Grafström et al. 2012) is a spatial extension of the pivotal method.

The idea of the method is still to iteratively update the inclusion probabilities vector π , but this time,
at each step, we select for the contest two neighbouring units, in terms of a certain distance (e.g. a
Euclidean distance). Several various methods can be used to select these two neighbouring units:

— LPM1: two units as close as possible to one another are selected to participate in the contest,
i.e. one unit i is randomly selected among N population units, then unit j closest to i is
selected to participate if and only if i is also the closest unit to j (at best N2 steps, at worst
N3 steps);

— LPM2: two neighbouring units are selected to participate in the contest, i.e. one unit i is
randomly selected from among N units of the population, then unit j closest to i is selected
to participate in the fight (N2 steps);

— LPM K-D TREE: the two neighbouring units are selected using spatial partitioning k-d tree
(Lisic 2015) making it possible to search for closer neighbours quicker (complexity of the
algorithm in N log(N)).

These three local pivotal methods are implemented in C++ in package BalancedSampling in R.

10.3.3 The cube method
General information about the cube method

Balanced sampling is a procedure aimed at providing a sample that complies with the following
two constraints:

— the inclusion probabilities are respected;
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— the sample is balanced on p auxiliary variables. In other words, the Narain-Horvitz-Thompson
estimators of the totals of the auxiliary variables are equal to the totals of these auxiliary
variables in the population:

∑
i∈S

xi

πi
= ∑

i∈U
xi (10.4)

An algorithm for making such a sampling is called the cube algorithm. To describe the principle,
it is appropriate to use the following geometric representation. A sample is one of the vertices
of a hypercube with dimension N, expressed as C. All p constraints, recapitulated in Equation
10.4, define a hyperplane with dimension N− p, expressed as Q. Using K = Q∩C, we depict the
intersection between the cube and the hyperplane. A graphical representation of the problem in
dimension 3, derived from article Deville et al. 2004, is shown in Figure 10.3.

Échantillonnage équilibré : méthode du cube

Principe de la méthode du cube

Chaque échantillon est un sommet d’un hypercube dans RN .

Le vecteur des probabilités d’inclusion est à l’intérieur de cet

hypercube.

Les contraintes d’équilibrage définissent un sous-espace.

π

(000) (100)

 (010)

(011)
(111)

(101)

(110)

(101)

(000) (100)

 (010) (110)

(011)
(111)

(101)

(000) (100)

 (010) (110)

(011)
(111)
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Figure 10.3 – Graphical representation of the cube for N = 3 and different possible configurations
of the space subject to constraint, with p = 1

The cube algorithm is divided into two phases. The first phase, referred to as the "flight phase"
(Figure 10.4), is a random walk starting with the inclusion probabilities vector and making them
change in K. For this, we start from π(0) = π , then update the inclusion probabilities vector by
choosing a vector u(0) such that π +u(0) remains within the space of the constraints. By following
the direction indicated by vector u(0), we necessarily end up on one face of the cube. The way to
update the inclusion probabilities vector is then provided by parameters λ ∗1 (0) and λ ∗2 (0), chosen
so that updated vector π(1) reaches one face of the cube. The update is chosen randomly so that
E(π(1)) = π(0). The operation is then repeated by choosing a new vector u(1) for the direction and
a new direction for updating the inclusion probabilities. This random walk stops when it reaches a
vertex point π* of K. At the end of this first phase, vertex π∗ is not necessarily a vertex of the cube
C. Let q be the number of non-integer components in vector π∗ (q≤ p). If q is null, the sampling
procedure is completed; otherwise a second step, referred to as the "landing phase", needs to be
initiated. It consists in relaxing the balancing constraints as little as possible, and re-initialising a
flight phase with these new constraints until a sample is obtained. It is not possible to change the
space of the constraints from the outset in a way that might mix the vertices of K with C, as this
would amount testing all possible samples to first see whether one of them allows the constraints to
be met. Changing the constrained space in a later phase (the landing phase) makes it possible to
work on a population U∗ of smaller size (dim(U∗) = q). The problem can thus be solved because
the number of samples to be considered is reasonable.

The implementation of this algorithm is available in SAS thanks to macro FAST CUBE or in
package BalancedSampling in R.

The local cube method
The general idea of the spatially balanced sampling algorithm is to build a cluster of p+ 1

geographically close units, and then to apply the cube flight phase to this cluster. This leads to
decide whether a unit is selected in this cluster or not, while respecting p local constraints within
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Idée de l’algorithme, phase de vol
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Figure 10.4 – First step of the cube flight phase for N = 3 and a constraint (p = 1) of a fixed
sample size n = 2

the cluster. Next, the probabilities are modified locally, ensuring that the inclusion probabilities
of the nearby units are reduced if the unit on which a decision has been made is selected. This
lowers the probability that one of its nearby units is selected in the following step of the algorithm.
Then, the procedure is repeated: a unit is selected, followed by a cluster of p+1 units around it,
and we apply the cube flight phase with the inclusion probabilities updated in the previous step.
The process is repeated as long as there are still more than p+1 units. Finally, the traditional cube
landing phase is applied.

The spatially-balanced sampling method described above is available in package BalancedSam-
pling in R. This package, developed in C++, allows the algorithm to be applied very quickly.

Balancing on moments

The definition of a spatially balanced sample suggests a different use of the cube algorithm for
spatial sampling. For Marker et al. 2009, "a sample is spatially balanced if the spatial moments of
the localised samples match the spatial moments of the population. Spatial moments are the centre
of gravity and inertia.” In the cube algorithm terminology, this definition may result in selecting a
balanced sample on variables defined from the geographic coordinates: xi,yi,x2

i ,y
2
i ,xiyi. In order to

respect the first and second non-central moments:
— Tx = ∑

i∈U
xi,

— Ty = ∑
i∈U

yi,

— Tx2 = ∑
i∈U

x2
i ,

— Ty2 = ∑
i∈U

y2
i ,

— Txy = ∑
i∈U

xiyi.

10.3.4 Ordered spatial sampling methods

The methods in this family (Stevens Jr et al. 2004, Dickson et al. 2016, Lister et al. 2009)
firstly rely on the creation of a path going through all statistical units. This path can be GRTS
(Generalized Random Tessellation Stratified), Traveling-Salesman Problem (TSP) or a Peano curve.
Given the order defined by this path, the aim is then to select a sample according to a method that
excludes two nearby units, for example systematic sampling.

Other path-building methods exist (Hamilton paths, or curves filling space: Hilbert, Lebesgue).
Similarly, other selection methods exclude nearby units with a given ordering, such as determinantal
sampling designs (Loonis et al. 2017). The question of paths has been addressed in Chapter 2:
"Codifying the neighbourhood structure". We describe here the repulsiveness properties of the
systematic and determinantal sampling designs.
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The systematic sampling method
Systematic sampling is a sampling method that is simple to implement and makes it possible to

carry out sampling with unequal probabilities while respecting those inclusion probabilities. This
method was proposed by Madow 1949, then extended by Connor 1966, Brewer 1963, Pinciaro 1978,
and Hidiroglou et al. 1980. It is very often used in practice for telephone surveys, for sampling on
continuous data flows, or in sampling housing units for INSEE household surveys.

To draw a fixed size sample n respecting the inclusion probability vector π , we start by defining
the cumulative sum of the inclusion probabilities by Vi = ∑

i
l=1 πl, i ∈U , with V0 = 0. For a fixed

size sample, the result is VN = n. The systematic sampling algorithm shown below is then used to
decide on the units to be sampled.

Systematic sampling algorithm:
— Generate a random variable u uniformly distributed on the interval [0.1].

— For i = 1, ...,N,

Ii =

{
1 if there is an integer j so that Vi−1 ≤ u+ j−1 <Vi,

0 otherwise.

Table 10.2 provides an example of the method for n = 3 and N = 10.

i 1 2 3 4 5 6 7 8 9 10
πi 0.2 0.2 0.3 0.3 0.4 0.4 0.3 0.3 0.3 0.3
Vi 0.2 0.4 0.7 1 1.4 1.8 2.1 2.4 2.7 3(=n)

Table 10.2 – An example of systematic sampling

For example, if the random number generated u is equal to 0.53, then units 2, 5 and 8 will be
selected because they meet the constraints:

V2 ≤ u <V3 V5 ≤ u+1 <V6 V8 ≤ u+2 <V9.

|
0

|
1

|
u = 0.53

|
u+1

|
u+2

|
2

|
3

|
V1

|
V2

|
V3

|
V4

|
V5

|
V6

|
V7

|
V8

|
V9

|
V10

Figure 10.5 – 3 units selected out of 10

According to this method, units (i, j) respecting |Vi−Vj|< 1 have zero probability of being
selected together. If the file is wisely sorted, this ensures the geographical spread of the sample.

Implementation of the GRTS method

The GRTS method is one of the most frequently-used methods in practice when it comes to
systematic sampling on a geographically-ordered file. GRTS ordering is described in chapter 2
"Codifying geographical structure".

The R gstat package of software R has been implemented specifically to produce samples
using this method. However, the GRTS method has some drawbacks, in particular the fact that the
cutting algorithm and the sampling algorithm are not dissociated, nor is the method’s computational
time. Indeed, the method proposes by default to stop at 11 hierarchical levels in the decomposition
process, as the time needed to execute the method may be too long if a more detailed cutting is
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requested. This makes it difficult for the GRTS algorithm to adapt to large populations. In order to
overcome these computational limits, a new pivotal method using another tessellation algorithm
(Chauvet et al. 2017) has been developed in R. In this method, the tessellation algorithm (very
similar to the GRTS one) is dissociated from the sampling algorithm. This method is based on
binary decomposition, making it possible to carry out the decomposition directly on 31 levels. The
computational time is therefore considerably improved. In addition, it is possible to use this method
in more than two dimensions.

Determinantal sampling design

By definition, given a random variable S with values in 2U , the probability law will be a
determinantal sampling design if and only if there is a contracting hermitian matrix 5K indexed by
U , referred to as a kernel, as for all s ∈ 2U ,

p(s⊆ S) = det(K|s) (10.5)

where K|s is under the matrix of K indicated by units of s. This definition directly gives rise to the
calculation of inclusion probabilities (table 10.3).

πi = pr(i ∈ S) = det(K|{i}) = Kii

πi j = pr(i, j ∈ S) = det
(

Kii Ki j

Ki j K j j

)
= KiiK j j− | Ki j |2

Table 10.3 – Calculation of simple and joint inclusion probabilities in a determinantal sampling
design DSD(K) (|z| refers to the complex number module z)

The diagonal entries of K are the simple inclusion probabilities. Another particularly important
result of determinantal sampling designs is the following: a determinantal design is of a fixed size
if and only if K is a projection matrix 6(Hough et al. 2006).

Let us consider all projection matrices in which the diagonal is a vector Π of inclusion proba-
bilities a priori. Among them, matrix KΠ (whose coefficients are provided in table 10.4) offers
interesting properties in terms of spatial repulsion.

The repulsiveness of the determinantal sampling design associated to KΠ for close statistical
units (given the order listed in the file) is illustrated by the following properties (Loonis et al. 2017):

1. the design will select at most one unit within a range of the form ]ir +1, ir+1−1[;
2. if a unit is drawn in that range of indices, as well as the "close" unit ir+1, then the design will

not select an additional "close" unit, i.e. in ]ir+1 +1, ir+2−1[;
3. this design will always have at least one individual in an interval [ir +1, ir+1−1];
4. if |i− j| is large enough, then πi j ≈ ΠiΠ j that is the joint inclusion probabilities of the

Poisson design.

Applying the results of the determinantal sampling designs to the probabilities defined in table
10.2 results in quantities: i1 = 4, i2 = 7, i3 = 10 and α4 = 0.3 = Π4,α7 = 0.2,α10 = 0.3 = Π10.

5. A complex matrix K is hermitian if K = Kt , where the coefficients of K are conjugates of those of K. A matrix is
a contracting matrix if all its own values are between 0 and 1.

6. A hermitian matrix is projection if its own values are 0 or 1.
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Values of j
Values of i j = ir ir < j < ir+1

ir′ < i < ir′+1 −
√

Πi

√
(1−Π j)(Π j−αl)

1−(Π j−α j)
γr′

r
√

ΠiΠ jγ
r′
r

i = ir′+1 −
√

(1−Πi)αi
1−αi

√
(1−Π j)(Π j−α j)

1−(Π j−α j)
γr′

r

√
(1−Πi)αi

1−αi

√
Π jγ

r′
r

where for every r such as 1≤ r ≤ n:

— 1 < ir ≤ N is a integer such that
ir−1
∑

i=1
Πi < r et

ir
∑

i=1
Πi ≥ r; by convention, it is established that

i0 = 0

— αir = r−
ir−1
∑

i=1
Πi. It should be noted that αir = Πir if

ir
∑

i=1
Πi = r.

— γr′
r =

√
r′

∏
k=r+1

(Πik−αik )αik
(1−αik )(1−(Πik−αik ))

for r < r′, γr′
r = 1 otherwise.

Table 10.4 – Values of KΠ
i j with i > j

The joint inclusion probabilities are given in the matrix below.
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
.

The entries around the main diagonal tend to be null or close to 0, reflecting repulsiveness.

10.4 Comparing methods
Various sampling methods aimed at taking spatial information into account have been presented.

This section compares their relative efficiency, using real data.

10.4.1 The principle
The 2015 tax data is geocoded for all households, making it possible to split the territory

of the Provence-Alpes-Côte d’Azur region (PACA) into 1 012 primary sampling units (PSU) of
approximately 2 000 primary residences. Each of these PSUs is characterised by fifteen variables
of interest describing its socio-economic or demographic situation. We focus here on the statistical
properties of first-stage sampling, i.e. a sampling of m primary units from amongst the M = 1012
PSUs.

Only the geographical coordinates of the barycentres of the PSU at the time of sample selection
are available. Two sets of inclusion probabilities are tested: the first with equal probabilities, the
second with probabilities proportional to the number of the unemployed. Both of these sets are
tested for three different sample sizes: m = 30,60,100.

The aim is to assess the methods presented above by comparing their performance with those
of a benchmark method. This benchmark is simple random sampling (SRS) for equal probability
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designs, and systematic sampling on a randomly sorted file for unequal probabilities sampling
designs. Each method is assessed through two types of indicators:

1. Estimating the variance
For each method, the aim is to determine to what extent the variance of the total of a given
variable is reduced in respect to to the variance found with the benchmark method. This is
achieved by studying a set of variables of interests with different levels of spatial autocorrela-
tion.
For all methods apart from the determinantal sampling design, variances of totals are esti-
mated using the Monte Carlo method, replicating 10,000 times each method for each set of
inclusion probabilities and each sample size. Concerning determinantal sampling designs,
variance can be computed exactly since the joint inclusion probabilities are known.
The aim is to find out whether the gain in variance is greater when the variable is spatially
autocorrelated. Therefore, the 15 variables of interest are ranked according to their level of
spatial autocorrelation, measured by Moran’s I dilated by inclusion probabilities, since yi

πi
determines the quality of the results according to Equation 10.1. When the design is an equal
probability sampling design, it is similar to computing directly Moran’s I for each variable
(table 10.5).

2. The Voronoï indicator
For each method, an empirical dispersion indicator (known as the Voronoï index) is also

computed, by following Stevens Jr et al. 2004. The principle is as follows:
— the Voronoï diagram is built only with the m selected PSUs;
— for a given selected PSU i, PSUs located in the Voronoï polygon associated with i are

identified from amongst the 1 012 original PSUs;
— the sum δi of these PSUs’ inclusion probabilities is computed. The average of the δi

is equal to 1, since the sum of the inclusion probabilities over the 1 012 PSU is m and
because the m polygons partition the territory. If the procedure has selected only few
units around a given selected PSU i, δi will be greater than 1. If the procedure has
selected a lot of other units close to i, δi will be less than 1 (see Figure 10.6);

— for a random sample S, the Voronoï indicator is then defined by:

∆S =
1

m−1 ∑
i∈S

(δi−1)2.

The more uniformly a procedure spreads the units, the lower the dispersion of δi measured by
∆S will be. The expected value of ∆S will be estimated by simulation (average over 10 000
replications, noted V ).

The Voronoï index can be computed in R using the function sb() of package BalancedSam-
pling or based on the R codes provided in Benedetti et al. 2015 (pp. 161-162).

10.4.2 Results
Ten spatial sampling methods are studied:

— 4 methods in the so-called “A” family in the following. Family A consists in updating
inclusion: Poisson sampling, local pivotal, local cube 7 and balanced cube on spatial moments;

— 6 methods in a second so-called “B” family of methods. Family B methods are based on prior
ordering of the file. In total, 3 paths are considered (Figure 10.7): TSP (10.7a), Hamilton
(10.7b), and GRTS (10.7c), and each followed by a systematic sampling or a determinantal
sampling. These three paths are computed using an exact method. Then, all the sampling
replications run on a single sorted file.

7. The local pivotal and local cube are equivalent methods in this context.
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Figure 10.6 – Calculation of the Voronoï index
Note: Voronoï polygons are built around the selected units (red). δis are calculated on all units
(red and black).

Variable Moran I Moran’s I
π constant dilated ( yi

πi
)

Number of households earning agricultural income 0,68 0,66
Total wage income 0,62 0,55
Number of couples with child(ren) 0,61 0,54
number of those receiving minimum social benefits 0,60 0,61
Number of poor 0,58 0,58
Number of children 0,55 0,52
Number of people living in a neighbourhood targeted by City Policy 0,55 0,54
Number of households owning their homes 0,52 0,47
Total standard of living 0,46 0,46
Number of unemployed 0,45 0,42
Number of single-parent families 0,41 0,43
Number of individuals 0,40 0,34
Number of men 0,39 0,34
Number of women 0,24 0,34
Number of households 0,08 0,38

Table 10.5 – Moran’s indices for different variables computed at the PSU level of PACA
Source: INSEE, Fideli 2015
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(a) Traveling-Salesman Problem (TSP) (b) Hamilton

(c) GRTS

Figure 10.7 – Paths connecting PSU centroids
Source: INSEE, Fideli 2015

Figure 10.8 – (V q−V re f )/V re f , where V q is the Voronoï index for method q and V re f for
benchmark, for different values of m (example offered by equal probabilities)
Source: INSEE, Fideli 2015
Note: For a sampling with 30 PSUs using the Poisson sampling method with equal probabilities,
the Voronoï indicator (averaged over 10 000 replications) is 65% less than the single random
sampling (benchmark).

Figure 10.8 provides (V q−V re f )/V re f , where V q stands for the Voronoï index for method q
and V re f stands for the same indicator for benchmarking. A significantly negative value reveals a
better spatial dispersion. The figure shows that for all methods and sample sizes, the Voronoï index
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is significantly improved: by -60 to -70% compared to the benchmark. Only the balanced moments
method is less efficient.

For a given method and sample size, Figures 10.9 and 10.11 represent, as they do for the
Voronoï index, the decrease of variance of a variable of interest, in comparison to the benchmark.
This decrease is related to the intensity of the spatial autocorrelation of the variable dilated by
inclusion probabilities.

For the methods shown in figure 10.9, i.e. most of the methods studied, the gain in terms
of variance is all the greater as the variable is spatially autocorrelated. However, this result is
clearer with equal probabilities (10.9a) than with unequal probabilities (10.9b). These methods
are equivalent in terms of gain. Consequently, Poisson sampling, local pivotal, local cube and
determinantal designs on ordered file (TSP or Hamilton ordering) almost halve the variance of
the sample, for the most autocorrelated variables and for m = 100. Furthermore, for all methods
represented in Figure 10.9, the relative gain in variance is all the greater as the sampling rate is
higher. Figure 10.10 illustrates this result for determinantal plans with equal probabilities.

The four methods shown in red and blue in Figure 10.11 lead to results different from methods
presented in Figure 10.9:

— the cube method balanced on first and second-order spatial moments (x, y, x∗ y, x2 and y2,
where x and y are spatial coordinates) is less effective in terms of gain in variance. Calibrating
with the inertia of the total population finally reproduces in the sample the groupings and
repulsions of units. That goes against the desired sample dispersion principle;

— file ordering (TSP, Hamilton or GRTS) followed by a systematic sampling, yields more
erratic results than other methods in the same family. Entropy 8 of the systematic survey
design is very weak, and this is even more the case on a uniquely sorted file. The number
of potential samples with this method is M/m, explaining why curves in Figure 10.11 look
less smooth and why it is more difficult to draw conclusions. However, these methods still
perform very well in terms of sample dispersion. In particular, the TSP ordering followed by
systematic sampling is the one that reduces the Voronoï indicator the most (Figure 10.8). It
is also the one that most reduces the variance of the variables most spatially autocorrelated.
GRTS ordering, meanwhile, is less efficient, due to lower ordering quality (the total length of
the path obtained with GRTS is almost twice as long as the TSP or Hamilton path, see Figure
(10.7)).

Conclusion
The creation of samples from a georeferenced sampling frame offers a possible new context for

judicious mobilisation of geographical information. This chapter has presented various methods
using this information at different stages of the sampling design process. We have carried out some
tests based on real data, aiming at comparing these methods with traditional or original precision
indicators, and testing different sets of parameters. The large majority of the suggested methods
prove to be effective in that they yield accurate estimates, even though the systematic sampling
methods appear less effective. The statistical efficiency of a spatial sampling method increases with
the level of spatial autocorrelation in the variable of interest to be estimated.

8. Entropy is a measure of disorder. A high-entropy design enables a large number of samples to be selected and
therefore leaves significant room for randomness
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(a) Constant probabilities (b) Unequal probabilities

Figure 10.9 – Decrease in variance vs. benchmark for different methods, according to the spatial
autocorrelation index of the variable (example with m = 60)
Source: INSEE, Fideli 2015
Note: Each curve stands for a spatial sampling method, and each point of the curve reflects
10 000 samples taken using the same method. The variation in variance of a given variable
relative to a benchmark (in percentage) is shown, depending on the variable’s level of spatial
autocorrelation. For example, for an equal probabilities sample of 60 PSUs with the Poisson
sampling method, the variance of the "number of women " variable (Moran’s I =0.24) is 11%
less than with SRS.

Figure 10.10 – Reductions in variance vs. benchmark according to the spatial autocorrelation
index of the variable, for different values of m (e.g. determinantal sampling with Hamilton
ordering processes and equal probabilities)
Source: INSEE, Fideli 2015
Note: When using determinantal sampling with equal probabilities, the variance of the variable
"number of women " (Moran’s I = 0.24) is decreased by 6.7% for a sample of 30 PSUs, by 8.9%
for a sample of 60 PSUs, and by 19.3% for a sample of 100 PSUs, compared to simple random
sampling.
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(a) Equal probabilities (b) Unequal probabilities

Figure 10.11 – Reductions in variance vs. benchmark for different methods, according to the
spatial autocorrelation index of the variable (example with m = 60)
Source: INSEE, Fideli 2015
Note: The figure’s local pivotal method 10.9 is represented in a grey line for comparison
purposes.
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