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Abstract

Geographically Weighted Regression (GWR) was developed in response to the finding that a
regression model estimated over the entire area of interest may not adequately address local
variations. The fairly simple principle on which it is based consists on estimating local models
by least squares, each observation being weighted by a decreasing function of its distance to
the estimation point. Combining these local models makes it possible to build a global model
with specific properties. GWR can be used, in particular with the help of associated cartographic
representations, to identify where local coefficients deviate the most from the overall coefficients,
to build tests to assess whether the phenomenon is non-stationary and to characterise non-stationary.
The method is presented using the example of a hedonic pricing model – prices of existing housing
in Lyon. We show how to optimally determine the radius of the disk on which local regressions
will be performed and we present the estimation results, the robust estimation methods and the tests
of coefficients’ non stationarity. In addition to this descriptive use, we present a more predictive
approach, showing how taking non-stationarity into account makes it possible to improve an
estimator over a spatial area. The example is based on a model linking the poor population and the
number of beneficiaries of supplementary universal health coverage (CMU-C) in Rennes.



232 Chapter 9. Geographically Weighted Regression

R Prior reading of chapter 3: "Spatial autocorrelation indices" is recommended.

9.1 Why use geographically weighted regression?
To identify the nature of relationships between variables, linear regression models the dependent

variable y as a linear function of explanatory variables x1, ...,xp. If you have n observations, the
model is written:

yi = β0 +
p

∑
k=1

βkxik + εi,

where β0, β1,..., βp are the parameters and ε1, ε2,..., εn are the error terms. In this model, the
coefficients βk are considered identical across the study area. However, the hypothesis of spatial
uniformity of the effect of explanatory variables on the dependent variable is often unrealistic
(Brunsdon et al. 1996). If the parameters vary significantly in space, a global estimator will hide
the geographical richness of the phenomenon.

Spatial heterogeneity corresponds to this spatial variability in the model’s parameters or
its functional form. When the territory of interest is well-known, it is often treated in empirical
literature by adding dummy variables of geographical zones in the model – possibly crossed with
each explanatory variable – by estimating the model for different zones or by conducting tests
of geographical stability on the parameters (known as Chow tests). When the number of these
geographic areas increases, this treatment nevertheless decreases the number of degrees of freedom
and therefore the accuracy of the estimators.
Local regressions can also be used, the spatial application of which is referred to as GWR, Ge-
ographically Weighted Regression (Brunsdon et al. 1996). Through the example of the study of
property prices in Lyon, we show the interest of performing a geographic regression (example 9.1)
and how to implement it (example 9.2).

More complex methods coming from geographical researchers have been developed (Le
Gallo 2004), but they remain largely descriptive and exploratory – in particular through graphical
representations – as their theoretical behaviour is not fully known, in particular their convergence
and their handling of geographic break.

� Example 9.1 — Use of a hedonic model to study real estate prices in Lyon. Mapping
changes in real estate prices makes it possible to generally deduct that prices tend to be higher in
the centre than in the outskirts (Figure 9.1). However, these high prices may be explained by better
quality in the housing which is sold in the centre. The hedonic model is aimed at isolating the
effect of localisation on prices. The principle of this method is that the price of a property is a
combination of the prices of its various attributes

yi = β0 +
p

∑
k

βkxik + εi (9.1)

with xik the characteristic k of property i, βk the coefficient associated with this characteristic and p
the number of explanatory variables.

The assumptions underlying the hedonic model are that sellers and buyers are individual agents,
without market power, and that this is a situation of perfect competition. The hedonic regression
coefficient corresponding to a characteristic informs about the value which the purchasers at
equilibrium at a given time would give to an increase in the quantity of this characteristic.

Figure 9.2 depicts the residuals of a hedonic regression of flats’ prices on their physical
characteristics. These residuals are not randomly distributed in space – the null hypothesis of
the Moran test is rejected. The Moran’s I of the distribution of residuals is positive, which is a
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Figure 9.1 – Sale price per m² of an existing flat - 2012
Source: PERVAL base
Scope: Lyon conurbation

Figure 9.2 – Residuals from the hedonic regression of price on the characteristics of the property
Source: PERVAL base
Scope: Lyon conurbation
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sign of positive spatial correlation in the residuals. The hypothesis of spatial stationarity of the
relationship between price and characteristic of the property is not valid. We can therefore
conclude in the existence of spatial heterogeneity.

As shown above, in order to take into account the variation in the model parameters with
the location, a commonly used method consists in introducing geographical dummy variables as
explanatory parameters. Let us examine the evolution of the influence on the price per square meter
of an existing flat in Lyon in 2012 of a construction year between 1992 and 2000 as opposed to
between 1948 and 1969, depending on the arrondissement in which the property is located.

Arrondissement Parameter estimate Significance
1st 1,1511 .
2nd 1,1499 .
3rd 1,1481 ***
4th 1,360 **
5th 1,4909 ***
6th 1,3085 ***
7th 1,1897 ***
8th 1,1487 ***
9th 1,1981 ***

Table 9.1 – Significance of regression coefficients associated with the time of construction
*, **, *** are the significance thresholds at 10, 5 and 1%
Source: PERVAL base
Scope: Lyon conurbation

The value and significance of the coefficients change with the arrondissements (table 9.1). Buy-
ers therefore value the time of construction differently, depending on their location. However, why
would the boundaries that define the changes in model match the administrative boundaries? Ge-
ographically Weighted Regression allows study a model that varies spatially in a continuous
way.

�

9.2 Geographically Weighted Regression
9.2.1 A model with variable coefficients

Geographically Weighted Regression belongs to the category of models with variable coeffi-
cients. The regression coefficients are not fixed, they depend on the geographical coordinates of
observations. In other words, the coefficients of the explanatory parameters form continuous
surfaces that are assessed at certain points in space,

yi = β0(ui,vi)+
p

∑
k

βk(ui,vi)xik + εi (9.2)

where (ui,vi) are the geographical coordinates.

9.2.2 How to estimate the model?
To estimate the model, the following hypothesis is used: the closer two observations are

geographically, the more similar the influence of the explanatory variables on the dependent
variable, i.e. the closer the coefficients of the explanatory parameters of the regression.
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Therefore, to estimate the model with variable coefficients at point i, we want to use the
fixed-coefficients model and include in the regression only the observations close to i. However,
the more points are included in the sample, the lower the variance, but the higher the bias. The
solution is therefore to reduce the importance of the most remote observations by giving each
observation a decreasing weight with the distance to the point of interest.

The model to be estimated is as follows:

Y = (β ⊗X)1+ ε (9.3)

Y: vector n×1 of the dependent variable.
X: matrix n× (p+1) of p explanatory variables + constant
1: vector (p+1)×1 of 1

The coefficients β of the model can be expressed in matrix form:

β =

β0(u1,v1) ... βp(u1,v1)
β0(u j,v j) ... βp(u j,v j)
β0(un,vn) ... βp(un,vn)

 (9.4)

The ⊗ operator multiplies each component of the coefficients matrix β by the corresponding
element of matrix X which contains the characteristics of the observations.

In order to give a weight to observations decreasing with their distance to the point of interest,
an estimate is performed using weighted least squares, the weighting being governed by weight
matrix W(ui,vi). The parameters governing the construction of this matrix are detailed in section
9.2.3.

In accordance with the principle of weighted least squares, coefficients β̂ (ui,vi) at the point of
geographic coordinates (ui,vi) minimize sum 9.5:

n

∑
j=1

w j(i)(y j−β0(ui,vi)−β1(ui,vi)x j1− ...−βp(ui,vi)x jp)
2 (9.5)

β̂ (ui,vi) = (XTW(ui,vi)X)−1XTW(ui,vi)Y (9.6)

Ŷ = SY,where S is the "hat matrix" defined by Equation 9.7. Let’s note xT
i =(1 xi1 xi2 ... xip)

column i of the explanatory variable matrix X. Then

S =


(xT

1 XTW(u1,v1)X)−1XTW(u1,v1)

.

.

.
xT

n XTW(un,vn)X)−1XTW(un,vn)

 (9.7)

Reminder: ordinary least squares estimation

Y = Xβ + ε (9.8)

β̂ = (XTX)−1XTY (9.9)

Y: vector n×1 of the dependent variable.
X: matrix n× (p+1) of the p explanatory variables + the constant.
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9.2.3 Choosing the estimation parameters
Matrix W(ui,vi) contains the weight of each observation according to its distance to the point i of

coordinates (ui,vi) (Figure 9.3). We assume that observations close to point i have more influence
over the estimated parameters at place i than more remote observations. The weight of observations
therefore decreases with the distance to the point i. There are several ways of specifying this
decrease. Here we show the main parameters governing the decrease function.

Figure 9.3 – Graphical representation of matrix W

The decrease in the weight of each observation with distance to the point of origin is determined
by a kernel function. The key parameters of the kernel function are:

— the shape of the kernel ;
— fixed kernel versus adaptive kernel ;
— bandwidth size.

Shape of the kernel

We can distinguish the continuous kernel that weights all the observations (Figure 9.4; table
9.2) of the kernel with compact support (Figure 9.5; table 9.3) for which the weight of observations
is zero beyond a certain distance. However, the shape of the kernel only changes the results
slightly (Brunsdon et al. 1998).

Uniform kernel w(di j) = 1
Gaussian kernel w(di j) = exp(−1

2(
di j
h )2)

Exponential kernel w(di j) = exp(−1
2(
|di j|

h ))

Table 9.2 – Continuous kernel

— Choosing a uniform kernel means doing an ordinary least squares regression at each point.
— The Box-Car kernel handles a continuous phenomenon in a discontinuous way.
— Gaussian and exponential kernels weight all the observations, with a weight that tends

towards zero with the distance to the estimated point.
— The bisquare and tricube kernels also give observations a decreasing weight with distance,

but this weight is zero beyond a certain distance h called bandwidth).
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Box-Car Kernel w(di j) = 1 if |di j|< h, 0 otherwise
Bi-Square w(di j) = (1− (

di j
h )2)2 if |di j|< h, 0 otherwise

Tri-Cube Kernel w(di j) = (1− (
|di j|

h )3)3 if |di j|< h, 0 otherwise

Table 9.3 – Kernel with compact support

Figure 9.4 – Continuous kernel

Figure 9.5 – Kernel with compact support
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⇒ The bisquare kernel should be preferred in order to optimise calculation time.

Fixed kernel versus adaptive kernel

Definition 9.2.1 — Fixed kernel. The extent of the kernel is determined by the distance to the
point of interest. The kernel is identical at any point in space (Figure 9.6).

Definition 9.2.2 — Adaptive kernel. The extent of the kernel is determined by the number
of neighbours of the point of interest. The lower the density of the observations, the smaller
the kernel (Figure 9.7).

— A fixed kernel is suited to a uniform spatial distribution of data but not very effective in the
case of a non-homogeneous distribution. Its radius must be at least equal to the distance
between the most isolated point and its first neighbour, which may cause the number of
points included in the regression to vary significantly.

— In low-density areas, a fixed kernel that is too small will include too few points in the
regression. The variance will be higher.

— In very dense areas, a fixed kernel that is too big will overlook variations on a fine scale. The
bias will be higher.

Figure 9.6 – Fixed kernel
Source: PERVAL base

Definition and choice of bandwidth

The bandwidth is a distance beyond which the weight of the observations is assigned the value
0. The value of bandwidth h is the parameter the choice of which has the strongest influence
on results. The larger the bandwidth, the higher the number of observations to which the kernel
gives a non-zero weight. The local regression will then include more observations and the results
will be smoother than with a small bandwidth. When the bandwidth tends towards infinity, the
results of the local regression are similar to those of ordinary least squares regression.
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Figure 9.7 – Adaptive kernel
Source: PERVAL base

Figure 9.8 – Influence of the choice of bandwidth on the kernel
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The choice of the bandwidth is not linked to the model itself, but to the calibration strategy. If
the kernel includes points that are too far away, the variance will be low but the bias high. If the
kernel only covers the closest points, the bias will be low but the variance high. Several statistical
criteria can help choose the most suitable bandwidth. The GW.model R package makes it possible
to determine the bandwidth that minimises either of the two criteria — the cross-validation criterion
and the adjusted Akaike criterion (see boxes 9.2.1 and 9.2.1).

The value of the bandwidth minimising these criteria is also a valuable indication of the
relevance of a Geographically Weighted Regression modelling. If the bandwidth tends to the
maximum possible – the entire extent of the study area, or all the points – then the local heterogeneity
is probably not significant and the GWR is not necessary. Conversely, an extremely small bandwidth
should be seen as an alert to the risk that the underlying process could be random (Gollini et al.
2013). It should also be remembered that the bandwidth that minimises the statistical criteria is
based on the prediction of the dependent variable, and not of the regression coefficients – which are
however those used later to test the validity of the non-stationarity hypothesis.

Box 9.2.1 — Cross-validation criteria.

CV =
n

∑
i=1

[
yi− ŷ 6=i(h)

]2
ŷ 6=i(h) is the value of y at point i predicted when calibrating the model with all the observations
except yi. If the model were estimated with all its observations, the optimum bandwidth would
indeed be 0 given that, when h = 0 there is no other point than yi in the regression; hence ŷi = yi

which is the attainable optimum.
Bandwidth h that minimises CV – the cross-validation score – maximises the model’s predictive
power.

Box 9.2.2 — Adjusted Akaike criterion.

AICc(h) = 2n ln(σ̂)+n ln(2π)+n
{

n+ tr(S)
n−2− tr(S)

}
n is the sample size; σ̂ is the estimate of the standard deviation of the error term; tr(S) is the
trace of the projection matrix (hat matrix) of observed variable y on estimated variable ŷ.
The AIC criterion favours a compromise between the predictive power of the model and its
complexity. The lower the bandwidth, the more complex the global model. The AIC criterion
generally favours larger bandwidths than the CV criterion.

9.3 Robust Geographically Weighted Regression

Just like standard linear regression, Geographically Weighted Regression is sensitive to outliers.
These points distort local parameters surface estimates (Brunsdon et al. 1996). Since Geographically
Weighted Regression takes into account a different model at each point of the space, it is sufficient
that one point be unusual relative to the local context for the estimate to be distorted. There is,
however, more chance for a point to be unusual in relation to the local context rather than the global.
By looking for outliers at global level, one thus may overlook points that are unusual locally, but
not globally. Two methods have been developed to remedy this problem.

Method 1: filter according to standardised residuals
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The aim of method 1 is to detect observations with very high residuals and exclude them from
the regression.

Let ei = yi− ŷi be the residual of the estimate at point i.If yi is an outlier, ei should have a very
high value. However, the residuals do not all have the same variance, so they must be standardised
so that they can be compared and a decision made as to which need to be removed from the
regression.

Note ŷ = Sy where S is the hat matrix defined above. e = y−Sy = (I−S)y with e the vector
of the residuals.
var(e) = (I−S)(I−S)Tvar(y) = (I−S)(I−S)Tσ2 with σ the standard deviation of y
The variances of the eis are therefore the leading diagonal elements on the matrix (I−S)(I−S)Tσ2,
which in general are not equal (Brunsdon et al. 1996).

Consider Q = (I−S)(I−S)T and qii the ith element of the diagonal of Q

ri =
ei

σ̂
√

qii
is called the internally standardised residual.

If point i is unusual, including it in the estimate of σ̂2 may produce a bias. The value of σ is thus
estimated by excluding the potentially outlier observation i, σ−i

r∗i =
ei

ˆσ−i
√

qii
is called externally standardised residual.

With method 1, the observations for which |r∗i |> 3 are filtered (the threshold of 3 is proposed
by Chatfield 2006).

Disadvantage: Q is a matrix n ∗ n of which the calculation time is prohibitive for large
databases, at this time and with a machine with conventional calculation power. For example:
Brunsdon et al. 1996 deem that this method cannot be used beyond 10 000 observations.

Method 2: reducing the weight of observations with high residuals

The objective of method 2 is to lower the weight of the observations with high residuals (Huber
1981). After an initial estimation of the model, weight wr(ei) is ascribed to each observation i. This
weight must be multiplied with the weight which varies according to the distance to the point i. A
new matrix W is thus created, which is the term by term product between the old matrix W and a
matrix Wr of the residual weights, defined as:

wr(ei) =


1 i f |ei| ≤ 2σ̂[

1− (|ei|−2)2
]2 i f 2σ̂ < |ei|< 3σ̂

0 otherwise

 (9.10)

If none of the residuals from the first regression is higher than two standard deviations, the
second model is identical to the first. The observations of which residuals are between two and
three standard deviations have their weight reduced in the second regression, while the observations
whose residuals exceed three standard deviations are excluded.

Discussion

Method 2 is much quicker to calculate than method 1 since each cycle only requires the
calculation of the n residuals rather than a matrix n ∗ n. However, it does not take into account
differences in variance between residuals and eliminates more points than does method 1.
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Application with R

Package GW model is used to implement Geographically Weighted Regression. The first step
consist in calculating the distances between all the observations thanks to function gw.dist. Then
function bw.gwr is used to calculate the bandwidth of the kernel function, optimal with respect to a
given statistical criterion. Lastly, the local coefficients of the Geographically Weighted Regression
are derived thanks to function gwr.robust. The results are contained in an object of class gwrm,
containing in particular an object of type SpatialPointsDataFrame, the contents of which are
detailed below.

Options of function gw.dist
— dp.locat: coordinates of observations;
— rp.locat: coordinates of points at which to calibrate the model (e.g. points on a regular

grid);
— p: governs the choice of distance (p=1: Manhattan - p=2: Euclidean);
— theta: angle to rotate the coordinates system (useful for Manhattan distance).

Options the function bw.gwr
— formula: the model y∼ x1 + x2 + ....+ xp

— approach: optimal bandwidth calculation method: CV (Cross Validation) or AIC (Akaike
Information Criterion).

— kernel: type of kernel: "gaussian", "exponential", "bisquare", "tricube", "boxcar”
— adaptive if TRUE, then the bandwidth is a number of neighbours, and the kernel is adaptive.

if FALSE, the bandwidth is a distance, and the kernel is fixed.
— dMat: pre-calculated distance matrix.

Options of function gwr.robust
— regression points: geographical coordinates of points where the model will be evaluated.
— bw: size of the bandwidth.
— filtered: if TRUE, filter the observations according to the value of standardised residuals

robust regression method 1) and if FALSE, estimate the model a second time by weighting
the observations according to the value of their residuals (robust regression method 2)

— F123.test: calculates the Fischer statistics (FALSE by default)
— maxiter: maximum number of iterations of the automatic approach (Method 2). It is equal

to 20 by default.
— cut1: σcut1 is the threshold value of the residuals beyond which the observations have a

weight < 1 (set to 2 by default).
— cut2: σcut2 is the threshold value of the residuals beyond which the observations have a

null weight (set to 3 by default).
— delta: tolerance threshold of the iterative algorithm (set to 1.0e−5 by default).

Interpreting the results: the contents of file $SDF
— The $SDF file is of "SpatialPointsDataFrame” type, which contains attributes associated with

geographic coordinates.
— c_x: estimation of the coefficient associated with characteristic x at each point.
— yhat: predicted value of y.
— intrinsic, Stud_residual: residual and standardised residual
— CV_score: cross validation score
— x_SE: standard error of the estimate of the coefficient associated with characteristic x.
— x_TV: t-value of the estimate of the coefficient associated with characteristic x.
— E_weight: weight of the observations in the robust regression (to be multiplied by the weight

obtained with the kernel function).
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� Example 9.2 — Application to the study of Lyon real estate prices. Geographically Weighted
Regression makes it possible to study the influence of a property’s location on its price, while
taking into account spatial heterogeneity — the fact that the influence of the characteristics of a
property on its price depends on its location. The coefficient associated with the constant of the
geographic regression is the price of a reference apartment — the price of an apartment, once the
influence of its physical characteristics has been taken into account.

Meaning of the variables in the example below:
f_lgpx: logarithm of the price per square metre.
c_epoqueA: dummy variable of construction before 1850
c_epoqueF: dummy variable of construction between 1981 and 1991
c_epoqueG: dummy variable of construction between 1992 and 2000
c_mmut1, 2, 3: dummy variable of a transfer in January, February, March, etc.
c_sdbn_2: dummy variable of the existence of two bathrooms.
c_cave1: dummy variable of the existence of a cellar.

library(GWmodel)
dm.calib <- gw.dist(dp.locat=coordinates(lyon2012))

#Calculation of a distance matrix between the points
bw0 <- bw.gwr(f_lgpx~c_epoqueG+c_mmut_1+c_mmut_2+

c_mmut_3+c_epoqueA+c_epoqueF+c_sdbn_2+c_cave1,
data=lyon2012, approach="AIC", kernel="bisquare",
adaptive=TRUE,dMat=dm.calib)

gwr.robust.lyon2012 <- gwr.robust(f_lgpx~c_epoqueG+c_mmut_1+c_mmut_2+
c_mmut_3+c_epoqueA+c_epoqueF+c_sdbn_2+c_cave1,
bw=bw0, kernel="bisquare", filtered=FALSE, adaptive=TRUE,

dMat=dm.calib)

#Extraction of the constant: price of the reference property (Figure 9.9)

lyon2012.intercept.robust <- gwr.robust.lyon2012$SDF[,c(1)]
# 1 is the position of the constant in the file containing the regression

results.
lyon2012.intercept.robust$Intercept <- exp(lyon2012.intercept.robust$

Intercept)

#Extraction of the coefficient linked to building before 1850 rather than
between 1948 and 1969 (reference period) - Figure 9.10

lyon2012.epoqueA.robust <- gwr.robust.lyon2012$SDF[,c(15)]
lyon2012.epoqueA.robust$c_epoqueA <- exp(lyon2012.intercept.robust$c_

epoqueA)

#Estimate of the (non robust) model on a grid of 100$*$100 metres (Figure
9.11)

#Let "quadrillage" be a file of type "SpatialGridDataFrame" covering the
area to be studied

dm.calib.quadrillage <-coordinates(quadrillage) gw.dist(dp.locat=
coordinates(lyon2012),rp.locat=coordinates(quadrillage))

gwr.lyon2012<-gwr.basic(f_lgpx~c_epoqueG+c_mmut_1+c_mmut_2+c_mmut_3+c_
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epoqueA+c_epoqueF+c_sdbn_2+c_cave1,regression.point=quadrillage,bw=bw0,
kernel="bisquare", filtered=FALSE, adaptive=TRUE, dMat=dm.calib.

quadrillage)

Figure 9.9 – Local constant: price of the reference property
Source: PERVAL base

Figure 9.10 – Coefficient associated with building before 1850 rather than between 1948 and
1969 (reference period)
Source: PERVAL base

Hedonic regression coefficients vary in space (Table 9.4). Geographically Weighted Regression
has made it possible to better understand the spatial richness of changes in the explanatory parame-
ters of real estate prices since the estimates are independent of the arrondissements’ administrative
boundaries. On Figures 9.9 and 9.10, the points at which the coefficients have been estimated
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Figure 9.11 – Estimate of real estate prices on a square grid of 100m*100m
Source: PERVAL base

Coefficient Min 1st quartile Median Average 3rd quartile Max
constant 1666 2220 2668 2705 3088 4030
period A 0.6250 0.9533 1.1480 1.1070 1.2470 1.8190

Table 9.4 – Descriptive statistics of the hedonic GWR parameter estimates
Source: PERVAL base
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are those where transactions have taken place. However, one of the interests of GWR also lies in
the ability to estimate the values of coefficients continuously. Figure 9.11 presents an estimate of
parameters on a grid of 100∗100 meters. Section 9.4 shows a method to assess the significance of
the spatial variation of parameters. �

9.4 Quality of estimates
9.4.1 Accuracy of parameter estimation

When we estimate a GWR with an adaptive kernel in an area where the observations are not
very dense, the points used to calibrate the model may have a very low weight – they are located at
a long distance from the point of estimation.

Let C be the matrix such that:

β̂ (ui,vi) = (XTW(ui,vi)X)−1XTW(ui,vi)y = CY (9.11)

The variance of the estimated parameter is:

Var
[
β̂ (ui,vi)

]
= CCT

σ
2 (9.12)

With σ2 the sum of the standardised residuals of the local regression:

σ
2 = ∑

i
(yi− ŷi)/(n−2ν1 +ν2) (9.13)

ν1 = tr(S) (9.14)

ν2 = tr(STS) (9.15)

Ŷ = SY (9.16)

Once the variance of each parameter has been estimated, the standard errors are calculated
using Equation 9.17

SE(β̂ (ui,vi)) =
√

V ar
[
β̂ (ui,vi)

]
(9.17)

One can thus calculate confidence intervals for the coefficients.

Application with R

The $SDF file containing the results of the Geographically Weighted Regression makes it
possible to access the standard errors associated with the various coefficients. For example, in the
case of the example of Lyon real estate prices developed previously:

— y: selling price.
— yhat: estimated selling price.
— Intercept_SE: standard error of the coefficient associated with the constant.
— Intercept_TV: variation rate of the coefficient associated with the constant.
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9.4.2 Testing non-stationarity of coefficients
The GWR does not take into account the hypothesis that the coefficients are stationary in a

certain geographic area. To verify the relevance of the model, it is interesting to test the non-
stationarity of the coefficients. Do the coefficients vary enough in space to reject the hypothesis
that they are constant throughout the study surface?

In statistical terms, the question can be stated:
— H0: ∀k,βk(u1,v1) = βk(u2,v2) = ...= βk(un,vn)
— H1: ∃k, all βk(ui,vi) are not equal.

To answer this question, a simulation method of the Monte Carlo simulation type can be used.

Principle: If there were no underlying spatial phenomena, the geographical coordinates of the
observations could be permuted randomly, and the variance would remain unchanged. In a Monte
Carlo simulation, the geographic coordinates of the observations can be permuted n times. This
results in n estimates of the spatial variance of coefficients. The next step consist in estimating the
p− value of the coefficients’ spatial variability and rejecting - or maintaining - the null hypothesis
that they are stable in space.
It should be remembered, however, that the methods simulating a spatial distribution of the
observations depend upon the initial dataset. Leung et al. 2000 describe a more robust and less
time-consuming calculation method for testing the coefficients’ non-stationarity.

Application with R

Function montecarlo.gwr
— same parameters as function gwr.robust
— nsims: number of simulations
— sortie: vector containing p-values of all GWR parameters

9.5 A predictive application
Geographically Weighted Regression has been used primarily to highlight spatial heterogeneity.

Like other regression methods, it can also be used for predictive purposes, for example to allocate
values to unsampled units in a survey. This section of the article is based on work carried out by
E.Lesage and J-M. Floch for the 2015 JMS 1, and presented at the 2016 workshop dedicated to
Advanced Methods for the Analysis of Complex Samplings. In the small area estimation methods,
approaches based on models using BLUP (Best Linear Unbiased Predictors) estimators (Chambers
et al. 2012) are more and more frequent. The values of unsampled units are replaced by the predicted
values from a model whose parameters are estimated using the values of the sampled units. An
extension of these methods has been proposed (Chandra et al. 2012) in a non-stationary framework,
using geographically weighted regression. The use of Geographically Weighted Regression in
small-area estimation methods appears to be favoured in recent literature over methods derived
from spatial econometrics, notably using spatial autoregressive models (SAR). Geographically
Weighted Regression provides a more flexible way of taking into account phenomena of spatial
variability. This consideration of spatial heterogeneity must theoretically improve the accuracy of
estimators.

9.5.1 Problem overview
At INSEE, empirical research has used GWR to build estimators of population census data on

priority neighbourhoods. In these neighbourhoods, 40% of housing is surveyed (over a five-year

1. Journée de Méthodologie Statistique – Workshop of Statistical Methodology, organised by INSEE every three
years
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period), but the sampling design is not optimal, because belonging to a priority neighbourhood
is not one of the balancing variables. As there is a high demand for precise information on these
neighbourhoods, we have sought to mobilise comprehensive or nearly-comprehensive administrative
sources (tax data, health insurance data) to improve the accuracy of the estimators. To do so, a
model was estimated over the housing units of the population census (RP), in which the variable
of interest was a variable of the census, and the auxiliary variables were variables derived from
administrative sources, well correlated to the variable of interest. The estimators made it possible
to predict a value for the housing units that had not been sampled. The estimator of the total
of the variable of interest is the sum of the values observed for the sampled units and of the
predicted values for the non-sampled units, the sampling weight no longer being taken into
account in this calculation.

This empirical work used Geographically Weighted Regression to model and take into account
the significant heterogeneity found in urban data. However, the gain in precision compared to a
non-spatial model had not been studied. This is why a comparison of three estimators is proposed
from an experimental system based on actual administrative data — the Filosofi source, which
makes it possible to calculate the population of low-income households, and the CNAM source
(data from the National health insurance fund) , which provides the number of CMUC beneficiaries
(Universal Supplementary Health Coverage). The Filosofi source is almost comprehensive and
provides access to "real" figures on the number of people with incomes below the poverty rate.

Both sources are localised and can theoretically be matched based on their geographic coordi-
nates. For reasons of confidentiality, it was not possible to do so, and we calculated the number of
low-income individuals and the number of CMUC beneficiaries on a grid made up of 100 m ∗ 100
m squares, a compromise with the use of individual data deemed acceptable. These 100m squares
play the role of statistical individuals on which we will carry out measurements.

The territory of interest is the municipality of Rennes. Inside the database, a sample of 40% of
the squares is drawn, such as what is done in the population census. These squares will serve as a
basis for estimating the number of low-income people (Figure 9.12). We have all the information,
but for the model, low incomes are only known for sampled squares, while the beneficiaries of the
CMUC are known for all squares. We select a sample of size n = 856, referred to as s, by simple
random sampling without replacement (less complex than the sampling made for the population
census). The sampling rate is n/N = 40%. In addition, we note r the complement of sample s in U
(the set of the inhabited squares in the Rennes region). The calculations made at square level allow
calculations on IRIS level, with each square being assigned to an IRIS 2.

There is a strong linear link between the number of people with low incomes and the number
of CMUC beneficiaries. The intercepts vary little from one square to the other. The slopes vary
significantly from 1.6 to 3.3. The gradient of local situations is depicted in Figure 9.13. In the
approach referred to as “model based”, the values yi of the non-sampled squares are predicted using
the model estimated with all the sampled data and with the auxiliary information x available for
non-sampled squares. We build three estimators, j representing the IRIS:

Definition 9.5.1 — Horvitz-Thompson Estimator.

t̂y( j) =
N
n ∑

i∈s j

yi (9.18)

2. IRIS are the smallest French administrative delineations
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Figure 9.12 – 100 m squares in Rennes, sampled (in red) or not (in gray)

Definition 9.5.2 — Estimator based on “classic”’ regression, without taking spatial het-
erogeneity into account.

t̂y,reg( j) = ∑
i∈s j

yi + ∑
i∈rl

ỹl (9.19)

where ỹl = β T xl

Definition 9.5.3 — The estimator based on Geographically Weighted Regression.

t̂y,RGP( j) = ∑
i∈s j

yi + ∑
i∈rl

y̆l (9.20)

where ỹl = β̂ T
l xl and β̂l is the vector of the coefficients of the Geographically Weighted Regres-

sion for square l.

9.5.2Results
This process is repeated K = 1000 times. For each IRIS, 1 000 values are derived for each of

the three estimators. From these 1 000 values, Monte Carlo estimates of the biases and the root
mean squared errors of estimators are developed.

If we note t̂y( j)(k) the estimator of the total of variable y for IRIS j and for simulation k, the
“Monte Carlo” root mean squared error can be calculated with the following equation:

EQM(t̂y( j)) = K−1
K

∑
k=1

(t̂y( j)(k)− ty( j))2 (9.21)

as the exact total ty( j)is known.
The indicator deduced will be used to compare the results of the three estimates, the square
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Figure 9.13 – Graphic representation of the slopes of the Geographically Weighted Regressions
Note: The scale used is a “heat scale” which ranges from the colour yellow (the highest values)
to the colour red (the lowest values).

root of the mean squared error:

RCEQMR(t̂y( j)) =

√
EQM(t̂y( j))

ty( j)
(9.22)

The IRISes of the municipality of Rennes are ranked in order of increasing population size and
the RCEQMs are represented on Figure 9.14 for each of the IRIS.

The first message is the improvement of the accuracy in both model-based approaches, due
to the good linear relationship between variable y (low-income individuals) and variable x (the
CMUC beneficiaries). The RCEQMR is approximately 0.4 for the Horwitz-Thompson estimator,
in the order of 0.12 for the models. The difference between the regression and the GWR is not very
visible on Figure 9.14. The results are very close. The box-plots of Figure 9.15 make it possible to
take the comparison slightly further.

In view of Figure 9.14 the GWR estimator nevertheless proves better than the regression
estimator — for 75% of the IRIS, the RCEQMR of the GWR estimator is less than 0.156, the
corresponding value for the regression estimator being 0.178.

9.6 Precautions to take
9.6.1 Multicolinearity and correlation between coefficients

Detecting colinearity

In order to estimate the numerous coefficients of a Geographically Weighted Regression, the
weighted least squares technique imposes many constraints on the regression parameters (Leung
et al. 2000). These constraints can link the GWR coefficients and create multicolinearity problems.
The multicolinearity between the coefficients may be responsible for great instability in the coeffi-
cients (change of sign when adding a new variable into regression), the counter-intuitive sign of
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Figure 9.14 – RCEQMR (RRMSE on the figure) of the Horwitz-Thompson estimator (in blue),
of the regression estimator (in black) and the estimator by GWR (in red), according to the IRISes,
ranked by increasing size
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Figure 9.15 – Box-plot of the RCEQMR of the Horwitz-Thompson Estimator (1), of the
regression estimator(2) and of the estimator by GWR (3)
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one of the coefficients of regression, or high standard errors of the parameters (Wheeler et al. 2005).
If the data correlation structure is heterogeneous in space, some regions may show colinearity
between their variables, while others will not.

Function gwr.collin.diagno of package GW model allows to implement several types of
colinearity detection, in particular local correlations between pairs of coefficients and the variance
inflation factors (VIF) for each coefficient. These elements are detailed in Gollini et al. 2013 where
examples of application with R are presented.

Box 9.6.1 — Variance inflation factor: VIF. Let R2
j be the coefficient of determination of the

regression of variable X j on the p−1 other variables.

V IFj =
1

1−R2
j

If R2
j tends towards 1, V IFj tends toward +∞ hence the term "variance inflation". In general, the

literature considers that there is a problem of multicolinearity when a VIF is greater than 10, or
when the average of the VIFs is greater than 2 (Chatterjee et al. 2015).

Taking colinearity into account
One method for reducing the colinearity problems implemented in package GW Model is

ridge regression. The principle is to increase the weight of the diagonal elements of the variance-
covariance matrix to reduce the weight of the non-diagonal elements (which contain the terms of
colinearity). In the general case, it can be written that:

β̂ = (XT X +λ I)−1XTY (9.23)

The disadvantage of this method is that β̂ is biased and standard errors are no longer available.
In the case of Geographically Weighted Regression, a local ridge regression can be defined, such
that:

β̂ (ui,vi) = (XTW (ui,vi)X +λ I(ui,vi))
−1XTW (ui,vi)Y (9.24)

λ I(ui,vi) is the value of λ at location (ui,vi). It is also possible to use a statistical criterion such as
the cross validation score to choose the bandwidth of the local ridge regression.

9.6.2 Interpreting the parameters
The multiple testing problem

When estimating a Geographically Weighted Regression, the result is, at each point, an evalua-
tion of the significance of each coefficient thanks to the calculated t-values. For each coefficient,
there are as many t-values as points at which they were estimated. We then come up against the
problem of multiple testing presented in Chapter 3, in the case of local spatial autocorrelation
indicators.

If we estimate the significance of a coefficient in 100 locations with a significance threshold
defined at 95%, we expect to estimate the coefficient as significative in at least 5 locations, simply
because of the statistical principle of the the test, regardless of any actual correlation between the
dependent variable and the explanatory variables. To remedy this problem, a Bonferroni adjustment
method can be used, which will increase the value of the threshold beyond which the result of
the local test will be judged non-significant - at a constant global significance level. However,
adjustment methods have the disadvantage of being often too restrictive, which may lead to some
coefficients being judged non-significant when they are actually significant.
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Brunsdon et al. 1998 advise caution when using the t-values produced when estimating a GWR.
They consider that an area with a large proportion of locally very different coefficients is a better
indicator of local non-stationarity than a surface where only a small proportion of coefficients
exceeds a significant value.

Effect of the local context or incorrect specification

Before interpreting local coefficient values as characteristics of the local context, it is important
to explore the possibility of a poor model specification. For example, the fact that the influence of
having a garage on a property price depends on the location may be due to the fact that the density
of public parking spaces varies in space, or that the hedonic model is poorly specified.

Interpreting the local constant

In a Geographically Weighted Regression, the constant can vary locally. It may therefore
capture all the explanatory power of the exogenous variables, particularly when they have a much
more marked influence in certain locations (phenomenon of spatial clustering). In this case, the
explanatory variables will appear to be non-significant. If such a phenomenon is suspected, a
so-called “mixed” Geographically Weighted Regression can be used, in which the constant does
not vary.

Conclusion
GWR which was first suggested in 1998 (Brunsdon et al. 1998) has been the subject of numerous

practical applications, in particular in geographic and epidemiological studies. The theoretical
foundations have been significantly developed. If some authors have highlighted certain limitations
of the method, particularly colinearity problems (Wheeler et al. 2005, Griffith 2008), GWR is
now an integral part of spatial analysis tools. It is presented in general works (Waller et al. 2004,
Schabenberger et al. 2017, Lloyd 2010, Fischer et al. 2009) as well as in spatial econometrics
textbooks (Arbia 2014). Extensions to the method – generalised linear models – have also been
proposed.

GWR can be used in two different ways. First of all, it can be used as an exploratory method to
detect areas where specific spatial phenomena occur and subject them to a comprehensive study.
Secondly, it can help in building a relevant model — the detection of spatial non-stationarity then
becomes symptomatic of a problem in the definition of the global model. Brunsdon et al. 1998
consider that most assertions made at a global level about the spatial relationship between objects
deserve to be reviewed locally using GWR to test their validity.

Spatial dependency between the error terms decreases when GWR is used, since spatial
autocorrelation is sometimes the result of a non modelled instability in parameters (Le Gallo 2004).
In addition, GWR makes it possible to calculate spatial autocorrelation indicators for a variable,
conditional on the spatial distribution of other variables, which is not possible with the univariate
spatial autocorrelation indicators presented in Chapter 3. We therefore encourage the joint study
of spatial dependency - with spatial autocorrelation indicators - and spatial heterogeneity - with
Geographically Weighted Regression.
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