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Abstract

Kernel smoothing is one of the key methods for analysing data and spatial organisation. The
idea consist in filtering information to reveal underlying spatial structures.

From a conceptual point of view, kernel smoothing is a non-parametric estimation method of
the intensity function of a point process with values in R2, based solely on one of its realisations
(which has been observed). The theoretical intensity function in one point x is found by calculating
the average points observed per unit surface on neighbourhoods containing x, these neighbourhoods
being increasingly smaller.

However, in practice, there is only one (observed) realisation, and this approach, consisting of
changing to the limit no longer makes sense. The non-parametric kernel methods circumvent this
limitation, not by directly suggesting an estimation of the intensity function but by suggesting a
smoothed estimation of it. Notwithstanding this approximation, when the bandwidth parameter is
well chosen, the resulting estimates are statistically robust and geographically relevant, and make it
possible to detect whether the intensity function is constant or variable in space.

Spatial analysis tools are used to produce appropriate geographical analyses. The aim is to
develop simplified, clear mapping, relieved of the arbitrariness of territorial boundary lines, as
well as partly mitigating the "Modifiable Area Units Problem". In this case, the bandwidth is a
geographic generalisation parameter that maintains or deletes, depending on the requirements of
the analysis and the details of the geographical phenomena observed. In practice, it is possible to
smooth weighted data according to Brunsdon et al. 2002 — each point in the space is assigned a
numerical value. Multiple types of smoothing can be carried out, including "classic" smoothing,
based on local calculations of averages, or "quantile" smoothing using local calculations of quantiles
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(median, decile), see Brunsdon et al. 2002. In addition, operations on smoothed values make it
possible, in particular, to calculate “smoothed” ratios, such as the percentage of a sub-population
within the population as a whole.

It has become fairly easy to implement smoothing, in particular using R software, for which
several packages include functions that make such smoothing possible.

8.1 Kernel smoothing
The theoretical intensity function at point x is found by calculating the average of the points

observed per surface on neighbourhoods containing x (see chapter 4: “Point configuration”) smaller
and smaller point configurations. Kernel smoothing is a non-parametric estimation method for the
intensity function of a point process with values in R2 based solely on one of its realisations. To
find the theoretical intensity function based on a single known realisation, it is not the intensity
function itself that is estimated, but a function thereof.

From a practical point of view, kernel smoothing is a local modelling based on a selection of
parameters.
The kernel describes how the neighbourhood is approached.
The bandwidth is the fundamental parameter in the analysis. It quantifies the «size» of the
neighbourhood. This parameter results from a bias-variance trade-off between the spatial accuracy
of the analysis and its statistical quality.
The way in which edge effects are handled explains how the geographical boundaries and the
limits of observation territory are taken into account in the analysis.

Furthermore, a set of geographic coordinates can be set out, for which the smoothed values will
be estimated (possibly different from all the geographical coordinates of the original data). Most of
the applications made by INSEE smooth the data on tile grids (the new coordinate being the centre
of the tile).

In this chapter, we will start out by discussing the foundations and formalism of kernel smooth-
ing and then proceed to its implementation.

8.1.1 Origin and formalism of kernel smoothing
Historically, the first non-parametric intensity estimation method was based on building terri-

torial intensity. It consist in calculating, for each territorial unit, the point intensity observed per
surface unit. In this case, the intensity is also referred to as density. Within each of these territorial
units, the estimated intensity is constant. For example, when calculating the density of a region, the
said region is considered to be the same throughout the territory.

The practical interest of understanding intensity is based on the possibility of representing
territorial densities in the form of choropleth maps, the first versions of which date back to the
work of Baron Pierre Charles Dupin, see Palsky 1991. Geographers and statisticians then used
this method to represent the distribution of the population within administrative regions. From a
technical point of view, density maps generalise the histograms of the monodimensional analyses
to the two-dimensional geographical areas. A sample density map is shown on Figure 8.1.

In the 20th century, geographers and statisticians gradually came to question the statistical
and geographical relevance of this type of approach. Openshaw theorised its limits under the
name Modifiable Area Units Problem (MAUP) . MAUP (see Figure 8.2) is broken down into two
interdependent sub-problems — the scale effect and the zoning effect. The scale effect describes
the dependence of the phenomenon observed on the average size of the spatial units. The larger
the size, the smaller the local specificities and the more the analyses show the global structures. In
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Figure 8.1 – Example of map density
Source: INSEE

contrast, small sizes retain local specificities and detail them. However, it should also be noted that
the resulting analyses are sensitive to statistical noise, data quality and data accuracy. The zoning
effect explains that the phenomena observed are dependant on the form of the spatial units. The
concept of form includes the morphology of spatial units but also their position in space. Thus,
if the spatial units’ contours are displaced uniformly, the phenomenon observed is likely to be
profoundly changed.

Kernel smoothing has inherited these reflections and aims to overcome the arbitrariness of
territorial divisions. Kernel smoothing is rigorously defined in the context of spatial analysis, but
similar methods in geography and statistics can be detected from the end of 19th century with the
work of Louis-Leger Gauthier and Victor Turquan. This proximity (or entanglement) between the
approach of spatial statisticians and the approach of geographers, justifies this chapter’s focus on
smoothing both from the standpoints of pure spatial analysis and a more operational geographical
analysis.

In practice, the challenge for statisticians lies in observing only a single realisation. In concrete
terms, to circumvent the challenge of estimating an intensity function based on a single realisation,
kernel smoothing does not directly estimate that realisation, but a smoothed version obtained by
convolution with a kernel Kh:

(Kh ∗λ )(x) =
∫

R2
λ (t)K(x− t)dt (8.1)

with Kh(u) =
1
h2 K(

u
h
)

and K a symmetrical function R2 in R positive and of integral 1
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Figure 8.2 – MAUP Diagram: scale effect and zoning effect
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R A simple metaphor for understanding the convolution operation consists in imagining that
λ represents the distribution of the density of rabbit holes in space. Each hole is associated
with a single rabbit. Each rabbit, to satisfy its needs, moves within a given proximity of its
hole, so that its probability of being in position t in relation to its hole is Kh(t). Convolution
(Kh ∗ λ )(x) in this case represents the local density of rabbits in x. If h is small, rabbits
concentrate around their holes and the rabbit intensity function differs little from that of the
holes. In contrast, if h is high, rabbits tend to mix in space and the rabbit intensity function is
«blurred» compared to that of the holes.

To find an estimator for (Kh ∗λ )(x) from a set of points {xi} resulting from the realisation of
a point process, a simple idea consists in substituting the integral for R2 by a sum on the points
observed in the Equation (8.1).

Definition 8.1.1 — Kernel smoothing. Given Kh on a bandwidth kernel h and x a point R2, the
estimated smoothed intensity in x is defined by:

λ̂h(x) = ∑
i

Kh(x− xi) (8.2)

Figure 8.3 – Kernel smoothing scheme
Note: At each point of estimation lies a kernel function. The value of this function is highest at
point level and decreases as one moves away.

Kh in this formula plays a role similar to a territorial unit centred on each point in space R2 with
size h. In contrast to analyses based on a geographical split, the estimator in smoothed intensity
controls the zoning effect of the MAUP, with the choice of kernel having little impact on the
smoothing results. In contrast, the arbitrariness of the scale effect is maintained through the choice
of bandwidth. Different kernels have been proposed in the literature. The most frequently used
kernels are listed below.

Definition 8.1.2 — Common kernels. x is a point of R2. KN and KB are respectively referred
to as the Gaussian kernel and quadratic kernel:

KN
h (x) =

1
2π

e−||
x
h ||

2
(8.3)

KB
h (x) =

9
16

1||x||<h (1−|| x
h
||2)2 (8.4)
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(a) Gaussian kernel KN (b) Quadratic kernel KB

Figure 8.4 – Gaussian and quadratic kernels
Note: The quadratic kernel KB gives greater weight to the closest points than to the remote
points. It cancels itself out beyond the smoothening radius. On the contrary, Gaussian kernel KN

takes all points in the study area into account.

8.1.2 Adjusting to edge effects

As regards kernel estimation of the probability densities, kernel smoothing methods are im-
pacted by an additional problem that arises when edge effects are taken into account. In the case of
density estimation, the estimate is made on Rn. Where kernel smoothing is concerned, the observed
points are generally contained in an analysis window W , or, concretely, a polygon.

The nature of the window’s borders can be of two kinds. Firstly, the window may result from
the information collection protocol. For example, during an archaeological excavation, only a
restricted area is dug for reasons of costs and opportunities. In this case, the borders are not inherent
to the process observed, and without further information it is reasonable to assume continuity of
intensity inside and outside the window. Secondly, the window may be induced by geographic
configurations that have an impact on the underlying process generating the set of points observed.
In geography, rivers, reliefs and coasts are all borders that restrict the settlement of human activities.
Beyond such borders, the intensity of the phenomenon observed is null.

The formula (8.2) is the estimation formula, without adjusting for edge effects. In end-effect,
the analysis window is ignored.

The purpose of adjusting to edge effects is to take into account the impact of the border when
estimating the intensity. A variety of solutions has been suggested to this end. They differ in their
approach of the outside ofthe observation area and in how fast they are carried out (Baddeley, see
Baddeley et al. 2015a).

Definition 8.1.3 — Adjusting for edge effects. x is a point of R2, whereby the uniform and
Diggle estimates (see Diggle 2013) are found using the following formulas:

uniform correction: λ̂U
h (x) =

1
eh(x)

∑
i

Kh(x− xi) (8.5)

Diggle’s correction: λ̂ D
h (x) = ∑

i

1
eh(xi)

Kh(x− xi) (8.6)

where eh(u) =
∫

W Kh(u− v)dv



8.1 Kernel smoothing 211

When the analysis window is independent of the underlying process, the uniform estimate
ensures continuity of intensity between the inside and outside of the window. However, if the
intensity outside the window is deemed to be null, it is more opportune to use Diggle’s estimation
method, see Diggle 2013, which is conservative. In this case, the intensity integral estimated in
the analysis window exactly matches the number of points observed. From an algorithmic point
of view, Diggle’s estimation method requires significantly more calculation time than the uniform
estimate.

R The term eh(x) can be interpreted as the intersection probability between two sets. Let us
assume, again using our rabbit metaphor, that the window’s spatial footprint matches that of
an enclosure. Kh(x−u) approximately describes a rabbit’s exploration territory around a hole
found in x if the rabbit does not encounter any obstacles. eh(x) =

∫
W Kh(u− x)du is the part

of the territory explored by the rabbit contained in the spatial footprint of the enclosure. eh(x)
is strictly lower than 1 if x immediately neighbours the border of the enclosure. However, if
the “natural” exploration zone of the rabbits occupying the whole is entirely contained in the
enclosure, eh(x) is equal to 1.

In formula (8.5) the term eh(x) is applied overall to the density estimate. Near the boundary
of the enclosure, this term makes it possible to restore the estimated intensity. The closer
the point is to the border, the lower eh(x) and the greater the compensation will be. Uniform
correction considers that at the window’s boundary, the distribution of rabbit holes is almost
homogeneous inside and outside the window. Intuitively, this correction amounts to postulat-
ing that the enclosure has no effect on the mobility of rabbits, which walk across its boundary
without realising. More specifically, it is considered that rabbits whose holes are located
outside the enclosure also contribute to the intensity calculated within the enclosure.

Diggle’s estimation method, formula (8.6), assumes that the window is an integral part of the
properties of the underlying process. In other words, the enclosure forms an insurmountable
boundary for the rabbits and all the rabbits are contained in the enclosure. By dividing
Kh(x− xi) with the term eh(xi), we ensure that the rabbit of hole i has a probability equal to 1
of remaining in the spatial footprint of the enclosure.

8.1.3 Choosing bandwidth
The choice of bandwidth determines the extent to which the estimation of intensity function

will be "smoothed". In spatial analysis, bandwidth results from a bias-variance compromise. The
bias is caused by the fact that the intensity function estimator does not directly estimate the intensity
function but a smoothed version thereof. The greater the bandwidth, the greater the bias. The
variance, on the contrary, decreases according to the bandwidth. The greater the bandwidth, the
greater the number of points involved in calculating local estimations, which tends to reduce the
estimation variance.

Several methods are available to automatically suggest a bandwidth that minimizes an error
criterion. As the desired intensity function is obviously not available, some of these methods are
based on cross-validation methods. They use the point distribution observed, and assume that it
follows a Poisson distribution in order to estimate optimal bandwidth. In section 8.3, examples
using the package’s cross-validation functions spatstat of R will be suggested. These examples
highlight the high variability of the proposed bandwidths based on the selected error criteria.
Furthermore, the existence of a single bandwidth relevant for the entire extent of the zone studied is
a central hypothesis. Several adaptive smoothing methods have been suggested to overcome this
limit. Readers will find interesting material in Baddeley’s book (Baddeley et al. 2015a) on this
topic, which makes use of package spatstat in R.

In fact, no bandwidth is optimal: all are capable of providing an apposite depiction of the world
as defined in the MAUP. Some geographers recommend adopting a multi-scale approach to study
the multiplicity of spatial aspects within a single phenomenon.
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8.2 Geographical smoothing

Geographical smoothing is based on the intensity estimation method presented above. It is
not intended to calculate intensities, but to come up with simplified mapping representations. The
principle of this form of use in geography is to represent not the value observed at a single point, but
a weighted average of the values observed in the neighbourhood of this point, within a predefined
radius.

R Smoothing can be interpreted as a tool capable of guaranteeing a form of confidentiality. It
makes it possible to represent initially ad hoc and confidential data in aggregate form. It is
nevertheless important to remain vigilant regarding the number of points used to produce the
smoothed estimate.

8.2.1 Smoothing weighted data
In this case, each point xi is assigned a numerical value wi. For example, xi can represent a

housing unit, and wi the number of inhabitants in this housing unit. For this, we need only (see
Brunsdon et al. 2002) use a weighted version of the kernel estimators described above. In formula
(8.2), weight wi is multiplied by the contribution of a point to the intensity estimator.

Definition 8.2.1 — Weighted kernel estimators. Given Kh a bandwidth kernel h and xi one
point on R2 with assigned weighting wi, the smoothed intensity estimated in x is defined by:

λ̂h(x) = ∑i wiKh(x− xi) (8.7)

While the choice of the kernel Kh has little influence on the smoothing results (see Figure 8.5),
the choice of bandwidth h is of fundamental importance, although fairly arbitrary.

As has been noted above, the bandwidth acts like a smoothing parameter, controlling the balance
between bias and variance. A high radius leads to a significantly smoothed density and high bias. A
small radius generates a density subject to little smoothing, with high variance. It is generally up to
the user whether a compromise should be made, depending on the desired level of aggregation. It is
advisable to test several bandwidth values, making it possible to reveal local variations at different
scales. The maps in Figure 8.6 are examples of smoothed maps for Paris and its suburbs, with three
different smoothing radii.

This estimate is valuable in that it focuses attention not on the points and their distribution, but
on their environment. The bandwidth thus makes it possible to define this environment.

R
Multiple algorithms exist to determine a so-called "optimal" smoothing radius. These tests
can yield various and sometimes very widely-differing results (see implementation). It is
advised that they be used only for indicative purposes, and that the user choose the smoothing
radius based on experience with the data and the issue.

Operations can be carried out on smoothed variables, in particular ratios. The theoretical
rationale for this can be found on pp. 34 to 37 of Floch’s working document (Floch 2012b). In
practical terms, to find the smoothed value of the ratio of two variables, it is essential to separately
calculate the smoothed values of the numerator and denominator, then to calculate the ratio between
the smoothed value of the numerator and the smoothed value of the denominator. Do not directly
calculate a smoothed ratio value. The map would be distorted, as the same importance would
wrongly be given to all territories, despite their being unequally populated.
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Figure 8.5 – Comparison of results found using four different kernels from the function
density.ppp of package spatstat
Source: INSEE, Localised Tax Revenues System (RFL) as at 31 December 2010 and Housing
Tax (TH) as at 1 January 2011
Note: The variable shown is the smoothed number of households on Reunion Island.
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(a) 200 meter radius (b) 400 meter radius

(c) 1000 meter radius

Figure 8.6 – Three different smoothing radii for population density in Paris and its suburbs —
200 meters, 400 meters, 1000 meters
Source: INSEE-DGFIP-CNAF-CNAV-CCMSA, Localised social and tax file 2012
Note: the tiles depicted contain more than 11 households.
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8.2.2 Application using non-parametric regression

In this example, the focus is on average income calculation per person. We have two variables
— income, and number of people. Average income is equal to the sum of the total income, divided
by the sum of the number of people. Income and the number of people are smoothed separately.
The ratio can then be calculated.

The maps are derived from Figure 8.7 as regards Paris and the surrounding municipalities in
the immediately-surrounding suburbs (i.e. the three departments bordering Paris).

(a) Total standard of living of all households (in
euros) (b) Household population (density per km2)

(c) Average standard of living

Figure 8.7 – Calculation of a smoothed average standard of living
Source: INSEE-DGFIP-CNAF-CNAV-CCMSA, Localised social and tax file 2012
Note: The tiles shown contain more than 11 households. As to maps depicting levels of income,
the markers “++”, “+” and “∼”, “-” and “–” respectively reflect very high, high, average, low or
very low values for the indicator in question. They were used for questions of non- profiling of
the population.

Map 8.7a of the total standard of living of households does not give much information on its
own. The total standard of living per square needs to be compared to population in each tile.
On map 8.7a showing the number of people, the population is very dense within the municipality
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of Paris, mainly north-east of the Seine, and to a lesser extent deeply southward.
On map 8.7a, the average standard of living per person is very high in the heart of Paris, essentially
in the west.

R This is no longer a theoretical framework. This calculation is based on tools comparable to a
non-parametric regression. Roughly speaking, it is as if a weighted geographical regression
were carried out, limited to a single variable — the constant (see chapter 9: “Geographically
Weighted Regression”).

8.2.3 Application using a non-parametric conditional density estimate
The focus is on the proportion of poor households across all households. The smoothed value

of the number of poor households in a territory is calculated, and the smoothed value of the total
number of households in the territory is calculated. The ratio is then calculated.

(a) Households (density per km2) (b) Poor households (density per km2)

(c) Proportion of poor households as a whole

Figure 8.8 – Calculating the smoothed proportion of poor households
Source: INSEE-DGFIP-CNAF-CNAV-CCMSA, Localised social and tax file 2012
Note: The tiles depicted contain more than 11 households.

According to the map from Figure 8.8a, the most populated areas are found in the heart of
Paris, both in the north-east quarter and the south-west quarter. In Figure 8.8b, there are many poor
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households in Paris, that tend to be located in the north-east quarter. In Figure 8.8c, the proportion
of poor households in all households provides additional information. The map highlights the less
densely populated areas, where the share of households living below the poverty line is nonetheless
high. These are municipalities located north of Paris.

Thus, depending on the map produced, the messages derived can be different. When analysing
the rates, it is also of fundamental importance to analyse the distribution of the number of people
alone (population density, for example), in order to verify the robustness of the calculated rates and
their representativeness.

R This calculation can be likened to a conditional probability calculation. The result is a map of
poverty rates at the local level, which is close to the idea of identifying the likelihood of a
household’s being poor, on the basis of its having settled in a given place.

R Important! In theory, it is always possible to calculate the ratio of two smoothed variables.
In practice, it is important to pay attention to the small numbers. In the example where
the proportion of poor people was calculated, areas with small numbers could wrongly be
shown separately in the smoothed map. Having a low population, they would not appear on
a map showing raw data. Thus, by failing to take this phenomenon into account, we could
mechanically give the - skewed - impression that all territories are populated.

8.2.4 Application using quantile smoothing
The smoothing described up to this point is an average smoothing, in the sense that it is based

on local calculations of averages. In the article by Brunsdon et al. 2002, the authors extend this
concept, in order to define local statistics based on quantiles (median, deciles, etc.). These indicators
are deemed, in the exploratory analysis of "traditional" data, to be less sensitive to extreme values.
Quantile smoothing makes it possible above all to calculate indicators that considerably enrich the
analysis of certain variables, in particular income variables.

The four thumbnails in Figure 8.9 represent multiple smoothed indicators calculated based on
standard of living (source INSEE-DGFIP-CNAF-CNAV-CCMSA, Localised Social and Tax File
2012), i.e. the disposable income of a household divided by the number of consumer units in the
household.

The maps in Figure 8.9 are centred on Paris, and include the immediately surrounding suburbs.
Smoothing is performed on 50-meter tiles, with a 400-meter bandwidth. Only the tiles for which
the number of observations (of households) contributing to the estimate is strictly greater than 50
have been used for viewing.

Map 8.9a represents the median standard of living. Zones can be seen in the west where
residents are much more affluent. Maps 8.9b and 8.9c show the 1st decile and 9th deciles of living
standard. Map 8.9d depicts the interdecile ratio (ratio between the 9th and 1st deciles) and provides
additional insight. Interdecile ratio is stated without units. It shows the minimum standard of living
of the richest 10% relative to the maximum standard of living of the poorest 10% and brings out
the gap between the top and bottom of the distribution. This is one of the measures of inequality
in this distribution. In the aforementioned zones in the west, the interdecile ratios are very high.
These neighbourhoods are home to populations with a very high standards of living, as well as
populations with much lower standards of living.

8.3 Implementation with R
R offers multiple packages that can be used to perform smoothing. The practical implementation

process is detailed below, using packages spatstat and btb, applied to data pertaining to Reunion
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(a) Median standard of living

(b) 1st decile of standard of living

(c) 9th decile of standard of living (d) Interdecile ratio of standard of living

Figure 8.9 – Standard of living distribution
Source: INSEE-DGFIP-CNAF-CNAV-CCMSA, Localised social and tax file 2012
Note: The tiles shown contain more than 11 households. As to maps depicting levels of income,
the markers “++”, “+” and “∼”, “-” and “–” respectively reflect very high, high, average, low or
very low values for the indicator in question. They were used for questions of non- profiling of
the population.
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Island. The data used in the example are the dataframe reunion.Rdata provided in package btb.
An overview of this dataframe is provided in Figure 8.10.

Figure 8.10 – The first 15 lines of the data.framereunion.Rdata in package btb
Source: INSEE, Localised Tax Revenues System (RFL) as at 31 December 2010 and Housing
Tax (TH) as at 1 January 2011
Scope: Reunion Island

This is 200-meter grid data, downloadable on insee.fr. The source is INSEE, Localised Tax
Revenues System (RFL) as at 31 December 2010 and Housing Tax (TH) as at 1 January 2011.

The variables are thus defined:
— x: longitude (projection system: WGS 84 / UTM zone 40S, EPSG code: 32740)
— y: latitude (projection system: WGS 84 / UTM zone 40S, EPSG code: 32740)
— houhold: number of households
— phouhold: number of poor households (poverty definition at 60%)

8.3.1 Under R, with package spatstat
The R package known as spatstat is a comprehensive package dedicated to analysing spatial

point processes. It is available on the CRAN website at the following address: https://CRAN.
R-project.org/package=spatstat

The function density.ppp available in package spatstat makes it possible to run data smooth-
ing. The use of this function requires the use of an object in format .pppupon entry. To use this
function, the x and y coordinates of the data.frame must be converted to .ppp.

#smoothing of the houhold variable (number of households) with Spatstat

library(spatstat)

insee.fr
https://CRAN.R-project.org/package=spatstat
https://CRAN.R-project.org/package=spatstat
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library(btb)#only for the meeting dataframe
data(reunion)

# duplicate coordinate aggregation and deletion
base_temp <- aggregate(houhold ~ x+y, reunion, sum)

# x,y transformation into .ppp objects
base.ppp = spatstat::ppp(base_temp$x, base_temp$y,
c(min(base_temp$x), max(base_temp$x)),
c(min(base_temp$y), max(base_temp$y)) )

#density.ppp function call
#the sigma parameter is h/2 with h the bandwidth
densite <- spatstat::density.ppp (base.ppp, sigma = 200, weights=base_temp$

houhold )

#map display
plot(densite, main = "Spatstat smoothing, user defined radius")

8.3.2 Under R, with package btb
Package btb ("beyond the border") 1 is online on the CRAN website, at the following address:

https://CRAN.R-project.org/package=btb. It offers functions dedicated to urban analysis
and implements a density estimate using the KDE method (kernel density estimator), i.e. a
kernel method. The kernel used is a quadratic kernel.

In the estimation produced by the package, the edge effect is taken into account in the smoothing
function kernelSmoothing via Diggle’s correction (Diggle 2013). This correction makes it
possible in particular to deal with the case of boundaries depicting geographical limits (coasts,
for example). Within the observation area, the intensity is non-null. Outside the observation area,
it is null. The method implemented is conservative (thanks to standardisation). Before and after
smoothing, the number of points observed is the same.

R Calculation times have been significantly reduced, in several ways:
— by coding in C++ all the most time-consuming methods;
— by limiting, for each point, to an observation window around this point, making it

possible to limit the number of operations (calculations of distances) to be carried out.

#smoothing with btb: calculating the proportion of poor households
#the numerator (number of poor households), and the denominator (total

number of households) are smoothed separately

library(btb)

#data loading
data(reunion)

#smoothing

1. There will soon be a version of package btb adapted to new package sf (simple features).

https://CRAN.R-project.org/package=btb
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#parameter setting
pas <- 200 #200-meter square
rayon <- 400 #400-meter bandwith

#smoothing function call
#the function automatically smoothes all the variables contained in the

database
#here, phouhold and houhold are smoothed

dfLisse <- btb::kernelSmoothing(dfObservations = reunion, iCellSize = pas,
iBandwidth = rayon, sEPSG="32740")

#rate of poor households : ratio of smoothed variables
dfLisse$txmenpa = 100 * dfLisse$phouhold / dfLisse$houhold

#overview in R
library(sp)
library(cartography)
#map display
cartography::choroLayer(dfLisse, var = "txmenpa", nclass = 5, method = "

fisher-jenks", border = NA, legend.pos = "topright", legend.title.txt =
"txmenpa (%)")

#title and outline added
cartography::layoutLayer(title = "Reunion Island : rate of poor households"

,
sources = "",
author = "",
scale = NULL,
frame = TRUE,
col = "black",
coltitle = "white")

The resulting map is shown in Figure 8.11.

The user can also export the result in shapefile format, then rework it in a GIS.

#export in shapefile format

rgdal::writeOGR(as(dfLisse, ’Spatial’), "txmenpauvre.shp", "txmenpauvre",
driver = "ESRI Shapefile")

Package btb also enables the use of quantile smoothing, described above. The user need only
specify as a parameter vQuantiles the quantile vector to be calculated. For example c(0.1, 0.25,
0.5) will return the first decile, the first quartile and the median of each of the variables of the input
data.frame .

# quantile smoothing
library(btb)
data(reunion)
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Figure 8.11 – Rate of poor households on Reunion Island after smoothing
Source: INSEE, Localised Tax Revenues as at 31/12/2010 and Housing Tax as at 01/01/2011
Note: Ratio between number of smoothed poor households and the total number of smoothed
households. The black outlines show the municipal boundaries.
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#parameter setting
pas <- 200
rayon <- 400

#smoothing function call
dfLisse_quantile<- btb::kernelSmoothing(dfObservations = reunion,

iCellSize = pas,
iBandwidth = rayon,
vQuantiles = c(0.1, 0.5, 0.9),
sEPSG="32740")

#export to QGIS
rgdal::writeOGR(as(dfLisse_quantile, ’Spatial’), "lissage_quantile.shp", "

lissage_quantile",
driver = "ESRI Shapefile")

R Package btb defaults to an automatic tile grid. The smoothing function can also be queried
using a grid of the user’s choice. In this case, the user must have a data.frame consisting of
two columns x and y, which match up with the desired centroid coordinates.

#smoothing function with grid, optional to user
kernelSmoothing(dfObservations, iCellSize, iBandwidth, dfCentroids)

8.3.3 Optimal bandwidth tests
In R, multiple methods proposing to calculate an "optimal" bandwidth can be implemented,

based on different criteria. The aim is generally to minimise an error measurement. In spatstat for
example, the following four functions are found: bw.diggle, bw.ppl, bw.frac and bw.scott.

With function bw.diggle in spatstat
Function bw.diggle in spatstat chooses a bandwidth that minimises a criterion M(σ ) based

on average quadratic error (MSE for Mean Square Error) in the estimator.

The chart in Figure 8.12 represents criterion M( σ ), which must be minimised. To find value σ ,
we will need to identify the value on the x-axis, which matches up with the minimum value on the
y-axis.

For more details, see https://www.rdocumentation.org/packages/spatstat/versions/
1.49-0/topics/bw.diggle.

#the base.ppp created above is used again
# bw.diggle test for optimal bandwidth
bw_diggle <- spatstat::bw.diggle(base.ppp)
plot(bw_diggle, main = "cross validation")

#density.ppp call with the automatically calculated bandwidth
densite_optim <- spatstat::density.ppp(base.ppp,bw_diggle, weights=base_

temp$houhold)

https://www.rdocumentation.org/packages/spatstat/versions/1.49-0/topics/bw.diggle
https://www.rdocumentation.org/packages/spatstat/versions/1.49-0/topics/bw.diggle
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The result is:

bw_diggle
## sigma
## 141.9445

Using the default settings, the proposed value for σ is 142 metres or 284 metres for bandwidth
h (σ = h/2 , see package documentation).

With function bw.ppl of spatstat

The bandwidth is chosen by calculating a maximum likelihood estimator, using a cross-
validation method (likelihood cross-validation criterion). The calculations are then iterated. Each
time, we work only on n−1 observations, then validate the model on the observation that had been
discarded. We repeat this n times.

The graph below shows the CV criterion( σ ) that we wish to minimise. To find value σ , we will
need to identify the value on the x-axis, which matches up with the maximum value on the y-axis.

For more details, see https://rdrr.io/cran/spatstat/man/bw.ppl.html.

#the base.ppp created above is used again

# bw.ppl test for optimum bandwidth
bw_ppl <- spatstat::bw.ppl(base.ppp)
plot(bw_ppl, main = "bw.ppl")

The result is:

bw_ppl
## sigma
## 286.0097

Using the default settings, the proposed value for the σ value is 286 metres.

With function bw.frac of spatstat

This method selects a bandwidth based solely on the geometry of the observation window.

The bandwidth is a quantile (specified by the user) of the distance between two independent
points, chosen randomly in the window. By default, the first distribution quartile is used. If CDF(r)
is used to denote the cumulative distribution function of the distance between two independent
points randomly and uniformly distributed in the window, then the value that is returned is the
quantile with probability f. The bandwidth is then the r value, such that CDF(r)=f. First, the
algorithm calculates the cumulative CDF(r) distribution function with the function distcdf of
package spatstat. This function makes it possible to calculate the function CDF(r) = P(T<=r) of the
ECU T=|X1-X2| between two randomly-chosen independent points X1 and X2. Then we look for the
smallest number r such that CDF(r)>= f .

The chart below shows the CDF(r) function. To obtain the bandwidth, we read the value of
x-axis r such as CDF(r) = 0.25 (by default, the first quartile is used).

For more details see https://www.rdocumentation.org/packages/spatstat/versions/
1.48-0/topics/bw.frac.

https://rdrr.io/cran/spatstat/man/bw.ppl.html
https://www.rdocumentation.org/packages/spatstat/versions/1.48-0/topics/bw.frac
https://www.rdocumentation.org/packages/spatstat/versions/1.48-0/topics/bw.frac
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By zooming in on the proposed value:

Figure 8.12 – Criteria M(σ ) found using function bw.diggle of package spatstat in R
Source: INSEE, Localised Tax Revenues System (RFL) as at 31 December 2010 and Housing
Tax (TH) as at 1 January 2011
Scope: Reunion Island
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By zooming in on the proposed value:

Figure 8.13 – The CV criterion(σ ) derived using function bw.ppl of package spatstat in R
Source: INSEE, Localised Tax Revenues System (RFL) as at 31 December 2010 and Housing
Tax (TH) as at 1 January 2011
Scope: Reunion Island
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#base.ppp created above is used again

# bw.frac test for optimum bandwidth
bw_frac<- spatstat::bw.frac(base.ppp)
plot(bw_frac, main = "bw.frac")

The result is:

bw_frac
## [1] 19747.02

Using the default settings, the proposed value for the σ value is 19,747 metres.

Figure 8.14 – The cumulative CDF(r) distribution function obtained by function bw.frac of
package spatstat in R
Source: INSEE, Localised Tax Revenues System (RFL) as at 31 December 2010 and Housing
Tax (TH) as at 1 January 2011
Scope: Reunion Island

With function bw.scott of spatstat
This function is based on the "Scott rule" (see Scott 1992). The idea consist in assuming that

the sample is distributed according to a normal law. In this case, a bandwidth estimator is derived,
minimizing an error called "mean integrated squared error". The estimator formula includes in
particular the sample’s standard deviation.

The result is a vector composed of two values — the bandwidths suggested in the direction of
the x and y values.

#the base.ppp created above is used again

#bw.scott test for optimal bandwidth
bw_scott<- spatstat::bw.scott(base.ppp)
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The result is:

bw_scott
## [1] 2973.548 3455.256

With the default parameters, the proposed value is the couple (2974; 3455): 2,974 metres in the
direction of the x and 3,455 in the direction of y values. According to the package documentation,
the value suggested by this test is generally higher than that provided by bw.diggle.

Summary of results found

Function σ (in metres)
bw.diggle 142
bw.ppl 286
bw.frac 19747
bw.scott 2974 (x) et 3455 (y)

Table 8.1 – "Optimal" bandwidths (h = 2σ ) found using the functions of package spatstat
Source: INSEE, Localised Tax Revenues System (RFL) as at 31 December 2010 and Housing
Tax (TH) as at 1 January 2011
Scope: Reunion Island

In this example, the results sometimes vary widely depending on the methods. The disparities
are exacerbated by the unusual distribution of the population on Reunion Island, almost exclusively
located on the coast.

Conclusion
Behind the aesthetic quality of the smoothed maps, however, lies a major trap. By construction,

smoothing methods mitigate breakdowns and borders and induce continuous representation of
geographical phenomena. The smoothed maps therefore show the spatial autocorrelation locally.
Two points close to the smoothing radius have mechanically comparable characteristics in this
type of analysis. As a result, there is little point in drawing conclusions from a smoothed map of
geographical phenomena whose spatial scale is of the order of the smoothing radius. Intuitively,
this amounts to commenting on the homogeneity observed within the spatial units of a choropleth
map. In other words, the smoothing radius (the bandwidth) implicitly defines a minimum level
of information restitution. As a corollary to these remarks, it is essential to comment only on the
phenomena whose order of magnitude is much higher than the smoothing radius.
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