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Abstract

This chapter offers a summary presentation of the spatial econometric methods applied to panel
data. We focus primarily on the specifications and methods implemented in the splm package
available in R. We illustrate our presentation with an analysis of Verdoorn’s second "law" before
presenting recent extensions to the spatial models on panel data.
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R Prior reading of Chapter 6: “Spatial econometrics: common models” is recommended.

Introduction
Panel data is a data structure consisting of a set of individuals (firms, households, local

authorities) observed on multiple time periods (Hsiao 2014). With respect to cross-section data, the
access to information on the individual and temporal dimensions offers three main advantages. The
additional information related to the use of the individual dimension of the data makes it possible
to account for the presence of unobservable heterogeneity. The larger sample sizes improves the
accuracy of the estimates. Lastly, panel data can be used to model dynamic relations.

After a first generation of spatial models specified for cross-sectional data (Elhorst 2014b),
many applications in spatial econometrics are currently based on panel data. While the a-spatial
specifications on panel data make it possible to control a certain form of unobserved heterogeneity,
the dependency of the cross-sections is not taken into account. In a way similar to cross-section
models, the introduction of spatial effects in panel data models makes it possible to better take into
account the interdependence between individuals.

In this chapter, we present the main specifications of the spatial panels, starting from standard
panel data specifications (section 7.1). Section 7.2 is dedicated to the presentation of estimation
methods, while section 7.3 describes the main specifications tests specific to spatial panels. We
propose an empirical application by testing Verdoorn’s second law as part of a panel of European
regions (NUTS3) between 1991 and 2008 (section 7.4). Section 7.5 presents a number of recent
extensions of spatial panels.

7.1 Specifications
This section presents the main specifications used for static models on panel data, taking into

account spatial interactions. We consider only the case of balanced panels — individuals are
observed for all periods. Research on estimation methods for unbalanced spatial panels is still
less developed. Dynamic models will be briefly discussed in section 7.5.1. After a brief review
of what characterises standard panel data specifications (without spatial dependence) and what
distinguishes specific fixed effects from random effects, we present the different ways of taking
spatial autocorrelation into account in the context of these models.

7.1.1 Standard model: modelling individual specific effects
Regarding cross-section data, the panel data, i.e. multiple observations for the same individuals,

make it possible to take into account the influence of some non-observed characteristics invariant
over time for these individuals.
For a sample with information on a set of individuals indexed by i = 1, ...,N that are assumed to be
observable throughout the study period t = 1, ...,T (i.e. there is no attrition or missing observations),
the standard (a-spatial) model is written:

yit = xitβ + ziα + εit (7.1)

The k explanatory variables of the model are grouped in k vectors xit with dimension (1,k) (which
does not include a unit vector) and are assumed to be exogenous. The vector β dimension (k,1)
refers to the vector of unknown parameters to be estimated. Heterogeneity, or individual specific
effect, is captured by the term ziα . Vector zi includes a constant term and a set of variables specific
to individuals that are invariant over time, whether observed (gender, education, etc.) or not
observed (preferences, skills, etc.). The assumptions on the error terms εit depend on the type
of model considered. Depending on the nature of the variables taken into account in vector zi,
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three model classes can be considered — the pooled data model, the fixed-effect model and the
random-effect model.

The first type of model, based on pooled data, reflects a case in which zi includes only one
constant:

yit = xitβ +α + εit (7.2)

where εit
i.i.d.∼ N (0,σ2). Individual heterogeneity is not modelled. The specification results in

simple data pooling into cross-sections. In this case, a consistent and efficient estimator of β and α

is obtained using Ordinary Least Squares (OLS).

In the second so-called “fixed effects” model, individual heterogeneity is modelled by taking
into account specific individual effects that are constant over time. This model is written:

yit = xitβ +αi + εit (7.3)

where the fixed effect αi is a parameter (conditional average) to be estimated constant over time and
εit

i.i.d.∼ N (0,σ2). In this model, the unobservable differences are thus captured by these estimated
parameters. This model is then particularly suitable when the sample is exhaustive with regard to
the population to which it pertains, and the modeller wishes to restrict the results obtained to the
sample that made it possible to obtain them. Individual effects αi can be correlated with explanatory
variables xit and the estimator within, i.e. the estimated OLS derived from a model where the
explanatory and explained variables are centered on their respective individual average, or Equation
7.20, remain consistent.

In the third model — the random effect model — individual heterogeneity is modelled by
taking random individual specific effects into account (constant over time). We assume that this
unobservable individual heterogeneity is not correlated with xit :

yit = xitβ +α +uit

uit = αi + εit
(7.4)

where εit
i.i.d.∼ N (0,σ2).

Unlike the fixed-effect model, individual effects are no longer parameters to be estimated, but
realisations of a random variable. This model is therefore appropriate if individual specificities
are linked to random causes. It is also preferable to the fixed effects model when the individuals
in the sample are drawn from a larger population and the objective of the empirical study is to
generalise to the population the results obtained. This model offers the advantage of providing
more accurate estimates than those derived from the fixed effects model. It is usually estimated
using the Generalised Least Squares (GLS) method.

In the rest of this chapter, we adopt a general presentation of the specification of the nature of
individual effects by distinguishing fixed individual effects from random effects. We also present
the usual specification tests used to choose the appropriate estimation method and therefore the
most suitable specification for modelling heterogeneity. However, while these models make it
possible to take individual heterogeneity into account, they are, like the standard cross-section
model, based on the assumption that individuals are independent from one another. If the data
relate to individuals for whom geolocated information is available, and if it is assumed that spatial
interactions do exist, then this hypothesis is no longer acceptable. The specifications presented
above therefore need to be extended, taking spatial autocorrelation into account.

7.1.2 Spatial effects in panel data models
As with cross-section models, spatial autocorrelation can be taken into account in multiple

ways – by lagged, endogenous or exogenous spatial variables, or by spatial error autocorrelation.
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Spatial effects in pooled data models
The pooled data model is used by incorporating these three potential spatial terms:

yit = ρ ∑
i 6= j

wi jy jt + xitβ +∑
i 6= j

wi jx jtθ +α +uit

uit = λ ∑
i 6= j

wi ju jt + εit
(7.5)

wi j is part of a spatial weighting matrix WN of dimension (N,N) in which neighbourhood relation-
ships between sample individuals are defined. By convention, the diagonal elements wii are all
set to zero. The weight matrix is generally row-standardised. Most academic research examines
a spatial weighting matrix constant over time. Variable ∑i 6= j wi jy jt refers to the spatially offset
endogenous variable. It is equal to the average value of the dependent variable taken by neigbours
of observation i (within the context of the weight matrix). Parameter ρ captures the endogenous
interaction effect. Spatial interaction is also taken into account by specifying a spatial autoregressive
process in errors ∑i 6= j u jt according to which unobservable shocks affecting individual i interact
with shocks affecting the said individual’s neighbours. Parameter λ captures a correlated effect of
the unobservables. Lastly, a contextual effect (or exogenous interaction) is captured by vector θ

with dimension (k,1). As previously, it is assumed that εit
i.i.d.∼ N (0,σ2).

By pooling data for each period t, the previous model is written as follows:

yt = ρWNyt + xtβ +WNxtθ +α +ut

ut = λWNut + εt
(7.6)

where yt is the vector with dimension (N,1), observations of the variable explained for period t, xt

is the matrix (N,k) for observations on explanatory variables over period t. Lastly, pooling the data
for all individuals, the model is written in matrix form as follows:

y = ρ(IT ⊗WN)y+ xβ +(IT ⊗WN)xθ +α +u

u = λ (IT ⊗WN)u+ ε
(7.7)

where ⊗ refers to the Kronecker product and (IT ⊗WN) is a dimension matrix (NT,NT ) with the
following form:WN ... 0

...
. . .

...
0 ... WN


As shown in the previous chapter: "Spatial Econometrics: Common Models”, the parameters of

this model are generally not identifiable (Manski 1993a). Choices must be made about the nature of
the spatial terms to be preferred in the model. These choices can be based on theoretical modelling
and/or a specification strategy ranging from the specific to the general, based on the results of the
Lagrange multiplier tests used for cross-sectional models.

However, the interest of the pooled data model remains limited, as it does not allow for the
presence of individual heterogeneity to be taken into account, whereas individuals are likely to differ
due to characteristics that are unobservable or difficult to measure. Depending on how unobservable
heterogeneity (fixed versus random) is modelled, omitting these characteristics may compromise
the convergence of estimators for parameters β , θ and α . Consequently, models with specific fixed
or random effects should be given priority. We now present the specifications involving one or two
of the spatial terms presented above, for which we have estimators documented in the literature.
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Spatial effects in fixed effects models
Various spatial specifications may be considered to take into account spatial autocorrelation in

the fixed effects model. The first specification is the spatial autoregressive model (SAR) , which is
written:

yit = ρ ∑
i 6= j

wi jy jt + xitβ +αi +uit (7.8)

where uit
i.i.d.∼ N (0,σ2). Spatial interaction here is modelled through the introduction of the

spatially lagged dependent variable (∑i6= j wi jy jt). As in cross-section models, introducing this
variable entails global spillover effects: on average, the value of y in time t for observation i is
explained not only by the values of the explanatory variables for this observation, but also by those
associated with all the observations (neighbouring i or otherwise). This is the spatial multiplier
effect. A global spatial spillover effect is also in play: a random shock in an observation i in time t
affects not only the value of y from this observation at the same period, but also has an effect on the
values of y from other observations.

The second model is known as the spatial error model (SEM) :

yit = xitβ +αi +uit

uit = λ ∑
i 6= j

wi ju jt + εit
(7.9)

with uit
i.i.d.∼ N (0,σ2). Spatial interaction is captured through spatial autoregressive specifica-

tion of the error term (λ ∑i 6= j wi ju jt). Only the spatial diffusion effect is found in the SEM model,
but it remains global.

A third model recommended by Lesage et al. 2009 is the Durbin spatial model (DSM) which
contains a spatially lagged dependent variable (∑i6= j wi jy jt) and spatially lagged explanatory vari-
ables (∑i 6= j wi jx jt):

yit = ρ ∑
i 6= j

wi jy jt + xitβ +∑
i6= j

wi jx jtθ +αi +uit (7.10)

where uit
i.i.d.∼ N (0,σ2).

An alternative to this model is the Durbin spatial error model (SDEM), which consist in a spa-
tially autocorrelated error term (∑i6= j wi ju jt) and spatially lagged explanatory variables (∑i 6= j wi jx jt):

yit = xitβ +∑
i 6= j

wi jx jtθ +αi +uit

uit = λ ∑
i 6= j

wi ju jt + εit
(7.11)

where εit
i.i.d.∼ N (0,σ2). Through spatial autocorrelation of errors, there is indeed a global spatial

diffusion effect but no spatial multiplier effect. Introducing lagged explanatory spatial variables in-
duces local and non-global spatial spillover effects (see chapter 6: "Spatial Econometrics: Common
Models").

Lastly, some authors use modelling that simultaneously calls upon a spatial autoregressive lag
and error model (SARAR), with spatial weights (wi j and mi j) different for each of the processes
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(Lee et al. 2010b; Ertur et al. 2015):

yit = ρ ∑
i 6= j

wi jy jt + xitβ +αi +uit

uit = λ ∑
i 6= j

mi ju jt + εit
(7.12)

with εit
i.i.d.∼ N (0,σ2).

Spatial Error Model-Random Effect
In random effect models, unobserved individual effects are assumed to be uncorrelated with the

other explanatory variables in the model and can therefore be treated as components of the error
term. In this context, the SAR model is written in a way similar to that proposed in the fixed effects
model, except for the individual effect:

yit = ρ ∑
i 6= j

wi jy jt + xitβ +α +uit

uit = αi + εit

(7.13)

with εit
i.i.d.∼ N (0,σ2).

Since the random effect is part of the error term, two SEM specifications are proposed in the
literature. In the first (SEM-RE), the spatial diffusion effect is considered only for the idiosyncratic
error term 1 and not for the random individual effect (Baltagi et al. 2003). We can write:

yit = xitβ +uit

uit = αi +λ ∑
i 6= j

wi ju jt + vit
(7.14)

where vit
i.i.d.∼ N (0,σ2).

In a second specification (RE-SEM), suggested by Kapoor et al. 2007 (this specification is
often referred to as KKP), it is considered that the spatial correlation structure applies both to the
individual effects and to the remaining component of the error term:

yit = xitβ +α +uit

uit = λ ∑
i 6= j

wi ju jt + vit

vit = αi + εit

(7.15)

where εit
i.i.d.∼ N (0,σ2).

These two specifications imply quite different spatial spillover effects governed by various
structure of the variance-covariance matrices, which have implications in terms of estimation.
Furthermore, as Baltagi et al. 2013 emphasise, these two models have different implications: in
the first, only the component that varies over time diffuses spatially, while in the second it also
characterises the permanent component.

Lastly, a more general specification as suggested by Baltagi et al. 2007 2:

yit = xitβ +uit

uit = αi +λ ∑
i 6= j

wi ju jt + vit

αi = η ∑
i6= j

wi jα j + ei

(7.16)

1. i.e. the individual time error term.
2. can be considered. This model allows for the specification of Kapoor et al. 2007 as a special case for η = λ and

Baltagi et al. 2003 for η = 0.
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where ei
i.i.d.∼ N (0,σ2).

The spatial autoregressive process on the individual effect is interpreted as a permanent spatial
diffusion effect over the period.

7.1.3 Interpretation of coefficients in the presence of a spatial autoregressive term
As in cross-section regression models, based on the previous specifications, it is possible to

derive the marginal effects of the explanatory variables, along with the direct, indirect and total
impacts that facilitate the interpretation of coefficients in the estimated models. This is because,
unlike a-spatial models, the marginal effect of a variation in an explanatory variable may be different
between individuals. This is because, due to spatial interactions, the variation of an explanatory
variable for a given individual directly affects its outcome and indirectly affects the outcome of all
other zones. The impacts.splm function, of package splm in R, extends the impact calculation
methods developed for the cross-section models taking into account the specificity of the dimension
(NT,NT ) of the spatial weighting matrix called upon in panel data specifications 3.

Regardless of the nature of the data taken into account, due to spatial interactions, any variation
of an explanatory variable xk for an individual i results in a change in the dependent variable
for the same individual (direct effect) but also for the others (indirect effect). For the same unit
variation, these effects may differ from one individual to another. The impact measures proposed
by Lesage et al. 2009 are therefore average effects, the expression of which will depend on the
spatial specification chosen.

In the cross-section regression model, based on the reduced form of the spatial autoregressive
model (SAR), the impact measurements of explanatory variable k are derived from the following
equation:

Sk(WN) = (IN−λWN)
−1INβk. (7.17)

By analogy, in a static spatial panel, to calculate direct and indirect effects, simply replace WN ,
invariant over time, by diagonal block matrix WN = IN ⊗WN . This matrix appears on the WN

diagonal in the previous equation (Piras 2014), or:

Sk(IN⊗WN) = (INT −λ (IN⊗W ))−1INT βk. (7.18)

More generally, looking at a Durbin spatial model (DSM; Equation 7.10), the matrix of partial
derivatives of the dependent variable, for each unit, relative to explanatory variable k at any given
time t is written:

Γ =

(
∂y

∂x1k
. . .

∂y
∂xNk

)
t
= (I−ρWN)

−1


βk w12θk . . . w1Nθk

w21θk βk . . . w2Nθk
...

...
...

...
wN1θk wN2θk . . . βk

 . (7.19)

Lesage et al. 2009 define the direct effect as the average of the diagonal elements in the matrix
in the right-hand term of Equation 7.19 and the indirect effect as the average of the sum of the items
in rows (or columns) other than those located on the main diagonal.

In the case of the SEM model, the matrix of the right-hand term of Equation 7.19 is a diagonal
matrix with elements equal to βk. Accordingly, the direct effect of a variation in explanatory
variable k is equal to βk and the indirect effect is null, as in a-spatial models and cross-sectional
spatial models.

3. Readers may refer to Piras 2014 for further details on calculating direct, indirect and total effects under R.
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In the case of the SAR model, although the elements outside the main diagonal of the second
matrix in the right-hand term of Equation 7.19 are null, due to the size of W , the calculation of
direct and indirect effects requires that matrix calculations be implemented and that the trace of
matrix Γ involving powers of W be calculated. Moreover, the statistics used to test the significance
of these impact measurements are found by Monte Carlo simulation (for more details see Piras
2014).

7.2 Estimation methods
Two broad categories of methods for estimating spatial models using panel data are primarily

used: methods based on the principle of maximum likelihood and methods based on the generalised
method of moments (including instrumental variables). As before, we limit our presentation to
the standard case of a cylinder panel and a spatial weighting matrix fixed over time. Generally,
maximum likelihood estimators (MLE) are more effective, but require stronger conditions on the
distribution of the error term. The generalised method of moments (GMM) is often preferred as it
is less costly in calculation time and easier to implement. Furthermore, in the majority of cases,
since these estimators are not based on the hypothesis of normality, the estimators found using this
method are more robust to heteroskedasticity. Lastly, the flexibility allowed by the definition of
conditions on moments also allows spatial models to be estimated in the presence of an endogenous
explanatory variable. Both methods can be implemented under R.

This section presents the estimators of fixed-effect models (section 7.3.1), then random effect
models (section 7.3.2).

7.2.1 Fixed effects model
Box 7.2.1 — Estimating a fixed effects maximum likelihood model. When the specific
individual effect is considered fixed, the most commonly used procedure (direct approach)
consists in transforming the model variables so as to remove the fixed effect and then directly
estimate the model on these transformed variables. The most common transformation is intra-
individual deviation (within). It consists in differentiating each variable from its intra-individual
average:

y∗it = yit −
1
T

T

∑
t=1

yit et x∗it = xit −
1
T

T

∑
t=1

xit (7.20)

Secondly, the estimate is based on the transformed variables. In a model without spatial autocor-
relation, the likelihood function is written:

LogL =−NT
2

log(2πσ
2)− 1

2σ2

N

∑
i=1

T

∑
t=1

(y∗it − x∗itβ )
2 (7.21)

If the model includes a lagged endogenous variable (∑i6= j wi jy jt), then the likelihood function
must be derived by taking into account the endogenous nature of ∑i6= j wi jy jtvia a Jacobian term
(Anselin et al. 2006) :

LogL =−NT
2

log(2πσ
2)+T log|In−ρW |− 1

2σ2

N

∑
i=1

T

∑
t=1

(y∗it −ρ ∑
j 6=i

wi jy∗jt − x∗itβ )
2 (7.22)

This function is very similar to that derived for the SAR cross-section model. Its estimate
follows a similar procedure. As the estimators of β and σ2 are a function of ρ , Elhorst 2003



7.2 Estimation methods 187

proposes to use a concentrated log-likelihood function that can be maximised from residuals (u∗0
and u∗1) of two regressions of y∗it and ∑i 6= j wi jy∗jt of x∗it :

LogLC =C+T log|In−ρW |− NT
2

((u∗0−ρu∗1)
′
(u∗0−ρu∗1)) (7.23)

An iteration procedure must be used, which requires that ρ be initially fixed to calculate β̂

and σ̂2. Subsequently, ρ̂ must be estimated, so as to maximise the concentrated log-likelihood
function and re-calculate β̂ and σ̂2 by fixing ρ̂ until results converge numerically.

Modelling spatial autocorrelation through a spatially autocorrelated error term only modifies
the estimate of σ2 (the estimate of β is not affected). The generalised least squares method makes
it possible to identify an estimator of σ2 if λ was known. In general, this is not the case and
the estimation needs to be carried out again iteratively β , λ followed by σ2. The concentrated
likelihood function can be maximised using residues (ε∗it ) of the regression of y∗it on x∗it :

LogLC = T log(IN−λW )− NT
2

log(ε∗it(IN−λW )′ε∗it(IN−λW )) (7.24)

Lee et al. 2010b have challenged this approach by showing that it does not necessarily make
it possible to find consistent estimators of coefficients and standard deviations. The size of the
bias and the parameters affected differs depending on the case. For example, when the model
contains an individual fixed effect, σ2 is biased for large N and fixed T . If the model includes
both time and individual effects, β and σ2 will be biased for N and large T . Based on these
results, Lee et al. 2010b suggest corrections specific to each case to obtain consistent estimators
from the direct approach. These corrections are available in the main econometrics software
tools. We refer readers to Lee et al. 2010b and Elhorst 2014b for further details on this approach.

Box 7.2.2 — Estimating a fixed effects model using the generalised method of moments.
An alternative estimation strategy is based on the generalised method of moments. In spatial
models, the strategy proposed by Kelejian et al. 1999 for cross-sectional data is extended to panel
data by Kapoor et al. 2007 and Mutl et al. 2011.

For a SAR model, the estimation strategy implemented is based on the instrumental variables
method proposed by Kelejian et al. 1998 on the intra-individual deviation model (within). The
instruments used are the exogenous variables of the model as well as their spatial lag.

In the case of a SEM model, the strategy for estimating the spatial autocorrelation parameter
on errors is based on the three conditions on moments proposed by Kelejian et al. 1999 for
cross-sectional data, these being extended to residues of the intra-individual deviation model.
The other model parameters can then be estimated by the ordinary least squares, based on a
model to which a Cochrane-Orcutt transformation has been applied.

7.2.2 Random effects model
Box 7.2.3 — Estimating a random effects maximum likelihood model. When considering
a random effects model, it is assumed that unobserved individual effects are not correlated with
the explanatory variables of the model. As in the case of the fixed effects model, a two-step
method can be implemented using variables for which the transformation depends on φ such as
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φ 2 = σ2/(T σ2
α +σ2), or:

yo
it = yit − (1−φ)

1
T

T

∑
t=1

yit et xo
it = xit − (1−φ)

1
T

T

∑
t=1

xit (7.25)

It can be noted that if φ = 0, then the transformation within applies, and the random-effects
model amounts to a fixed-effect model.
In a model without spatial autocorrelation, the likelihood function is written:

LogL =−NT
2

log(2πσ
2)+

N
2

log(φ 2)− 1
2σ2

N

∑
i=1

T

∑
t=1

(yo
it − xo

itβ )
2 (7.26)

If the model includes a lagged endogenous variable, then the likelihood function is written:

LogL =−NT
2

log(2πσ
2)+T log|In−ρW |+ N

2
log(φ 2)− 1

2σ2

N

∑
i=1

T

∑
t=1

(yo
it−ρ ∑

j 6=i
wi jyo

jt−xo
itβ )

2

(7.27)

For a given φ , this function is very close to that derived for the SAR fixed effects model. Its
estimate therefore follows an analogous procedure, using a concentrated log-likelihood that can
be maximised from residues eo(φ) of the regression of yo

it on ∑i 6= j wi jyo
jt and xo

it :

LogLC =−NT
2

log
[
(eo(φ))′(eo(φ))

]
+

N
2

log(φ 2) (7.28)

In the same way as previously, initial values need to be set for unknown parameters, then an
iterative procedure is used until the results found converge numerically.

In the case of a spatially auto-correlated error model (SEM), the most general way of deriving
the likelihood is quite complex (Elhorst 2014b) and the resolution method used depends on the
form of the variance-covariance matrix of errors that results from the hypothesis put forward on
the spatial correlation structure of errors.

In the context of the SEM-RE specification (only the idiosyncratic error term is spatially
correlated) the likelihood is written as follows:

LogL =−NT
2

log(2πσ
2)− 1

2
log|V |+(T −1)

N

∑
i=1

log|B|

− 1
2σ2 e′(J̄T ⊗V−1)e− 1

2σ2 e′(ET ⊗ (B′B))e (7.29)

where V = T φ ′IN +(B′B)−1, e = y− xβ , B = (IN−λW ), φ ′ = σ2

σα

with JT = iT i
′
T a matrix (T,T ) 1, J̄T = JT

T , ET = IT − J̄T

Given this complex structure, the spatial filtering algorithm suggested by Elhorst 2003 is
particularly suited to the specification in which the spatial autoregressive term affects the entire
error term. Within the scope of the specification considered by Kapoor et al. 2007 (KKP), the
variance covariance matrix has a specific form that is simpler than in the previous case, making it
considerably easier to implement the two-step estimation by the MV (Millo et al. 2012).
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This same procedure can be implemented for many other specifications combining hypotheses
on the spatial autocorrelation structure. These estimation methods are implemented via the
spreml function which makes it possible to estimate – using the MV – more specifications than
the spml function (Millo 2014).

Box 7.2.4 — Estimating a random effects model using the generalised method of mo-
ments. As in the fixed effects model, implementing the estimation process using the generalised
method of moments relies on the strategy proposed by Kelejian et al. 1999 for cross-sectional
data, and extended to panel data by Kapoor et al. 2007 et Mutl et al. 2011. For example, in the
SEM-RE model, in order to estimate autoregressive parameter λ and variances of error terms
σ2

1 = σ2
v +T σ2

α and σ2
v , a set of 6 conditions is defined on moments. Millo et al. 2012 detail

the different variants of this estimator according to the conditions formulated on the moments.
Secondly, for the parameters of the model, an estimator of realisable generalised least squares is
defined based on a Cochrane-Orcutt transformation of the initial model.

7.3 Specification tests
We first present the Hausman specification test which makes it possible to arbitrate between a

model where the individual effects are not correlated with the explanatory variables and a model
where such a correlation exists. This test determines which estimation method to use. Secondly, we
present the other specification tests that can be used to choose the most appropriate specification.

7.3.1 Choosing between fixed and random effects
The random effect model is valid since the unobservable characteristics are not correlated with

observable explanatory variables. The null hypothesis of the test can be stated in the general form
E[α|X ] = 0. If this hypothesis is not rejected, both GLS and within estimators will be consistent.
Otherwise, the GLS estimator will not converge while the estimator within will remain consistent.

The Hausman specification test (Hausman 1978) may apply to test the random effects model
against the fixed effects model. In our case, this test is constructed by measuring the gap (weighted
by a covariance variance matrix) between the estimates produced by the estimators within (fixed
effects model) and GLS (random effect model) of which it is known that one of the two (within)
is converging regardless of the hypothesis made regarding the correlation between variables and
unobservable characteristics, while the other (GLS) is not converging in the sole case where this
hypothesis is not verified. Therefore, a significant difference in both estimates implies a poor
specification of the random effect model.

Mutl et al. 2011 have shown that these properties remain valid in a spatial setting when replacing
each estimator within and GLS by its spatial "analogue" (taking the terms of spatial autocorrelation
into account). Hausman’s robust test of spatial autocorrelation is written:

Shausman = NT (β̂MCG− β̂within)
′( ˆ
∑within−

ˆ
∑MCG)

−1(β̂MCG− β̂within) (7.30)

where β̂MCG and β̂within are the estimates of the parameters obtained respectively by GLS and
within, ∑̂within and ∑̂MCG correspond to the elements of the variance-covariance matrices of the two
estimates.

7.3.2 Specification tests for spatial effects
In this section, we present some of the tests that can be used to retain the most appropriate

specification for taking spatial dependency into account. We insist on the tests implemented in
package splm in R. The most commonly used spatial autocorrelation specification tests are based
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on the Lagrange multiplier test. They test the absence of each spatial term without having to
estimate the unconstrained model. A set of tests was developed by Debarsy et al. 2010 as part of a
fixed-effect model.

These two tests are generally complemented by their robust version in the alternative form taking
into account spatial autocorrelation. In this case, the aim is for the RLMlag to test for the absence
of a spatial autoregressive term when the model already contains a spatial autoregressive term in the
errors (RLMlag), or vice versa for RLMerr to test for the absence of a spatial autoregressive term
in the errors when the model contains a spatial autoregressive term. The interpretation of the results
of these tests is similar to that presented in Chapter 6 "Spatial econometrics: common models" on
cross-section data.

Baltagi et al. 2003 and Baltagi et al. 2007 derive a set of tests for all random effect and spatial
autocorrelation combinations in the errors. These tests were completed by Baltagi et al. 2008
offering a joint test on the absence of a spatial autoregressive term in the presence of random
individual effects. The assumptions of these tests, also based on the Lagrange multiplier principle,
are described in Table 7.1.

Test null hypothesis alternative hypothesis

LMjoint λ = σ2
α = 0 λ 6= 0 or σ2

α 6= 0
SLM1 σ2

α = 0 by stating that λ = 0 σ2
α 6= 0 by stating that λ = 0

SLM2 λ = 0 by stating that σ2
α = 0 λ 6= 0 by stating that σ2

α = 0
CLMerr λ = 0 by stating that σ2

α >= 0 λ 6= 0 by stating that σ2
α >= 0

CLMrandom σ2
α = 0 by stating that λ >= 0 σ2

α 6= 0 by stating that λ >= 0

Table 7.1 – Spatial autocorrelation test in the presence of random effects and/or serial correlation

Lastly, as in cross-section models, it is possible to implement significance tests on the co-
efficients insofar as some of the models presented above are interlinked. Thus, it is possible to
find the SAR model and the SEM model based on the DSM model with the following testable
constraints on the parameters, respectively H0 : θ = 0 (significance test on parameter vector θ ) and
H0 : ρβ −θ = 0 (common factor test). Similarly, using the SDEM model, the SEM model can be
found if the hypothesis H0 : θ = 0 cannot be rejected.

7.4 Empirical application

7.4.1 The model
Our empirical application pertains to Verdoorn’s second law Verdoorn 1949. This law links,

in linear fashion, labour productivity growth rates p with those of output q in the manufacturing
sector for a range of economies. The basic specification is given by:

pit = b0 +b1qit + εit (7.31)

where b0 and b1 are the unknown parameters to be estimated and εit is an error term for which we
initially assume that εit

i.i.d.∼ N (0,σ2). Parameter b1 is called the Verdoorn coefficient for which a
positive value reflects the presence of increasing yields (Fingleton et al. 1998). This specification
has been refined by Fingleton 2000, 2001 in command to characterise the endogeneity of the
technical progress observed. It presupposes, in particular, a technical change proportional to the
accumulation of per capita capital and growth in per capita capital equal to productivity growth and
geographical spillover effects, linked in particular to the dissemination of technologies and human
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capital between spatial units. The extensive specification of Verdoorn resulting from these analyses
is 4:

pit = b0 +b1qit +b2Git +b3uit +b4dit + εit (7.32)

where G corresponds to the technological gap (approached by the labour productivity differential)
at the beginning of the period between each unit and the "leader" spatial unit. In the context of
endogenous growth models, spatial units with a technological lag are likely to experience lower
productivity growth than that of more developed spatial units. u is a measure of urbanisation,
measured by population density and is aimed at capturing the effect of economic activity density.
Lastly, d measures the initial level of labour productivity in the manufacturing sector (Angeriz et al.
2008).

This specification is defined with R as follows:

## Specify the model to be estimated
verdoorn<-p~q+u+G+d

Taking into account spatial spillover effects requires estimating the specification augmented by
a spatial autoregressive term (Fingleton 2000, 2001):

pit = b0 +ρ ∑
i 6= j

wi j p jt +b1qit +b2Git +b3uit +b4dit + εit (7.33)

This specification is theoretically warranted by Fingleton 2000 and 2001and reflects the es-
timable specification of a model inspired by the New Geographic Economy. For illustration purpose,
we also consider an alternative specification that can be linked to a spatial autoregressive error
model:

pit = b0 +b1qit +b2Git +b3uit +b4dit + εit

εit = αi +λ ∑
i 6= j

wi jε jt + vit
(7.34)

where:

εit = λ ∑
i6= j

wi jε jt + vit (7.35)

The estimation of panel data models with R requires the plm (panel without spatial autocor-
relation, object management pdata.frame adapted to the panel) and splm (estimate and tests for
spatial panels) packages. Packages sp, maps and maptools also must be loaded for importing and
managing spatial objects.

# Packages needed
library(plm)
library(splm)
library(sp)
library(maps)
library(maptools)

4. The original analysis of Fingleton 2000, 2001 is based on a cross-section model, we extend it to the case of
panel data.
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The most common specifications are estimated using spml and spreml orders for maximum
likelihood and spgm for the generalised method of moments. These all have a relatively identical
structures with additional options depending on the case:

# Maximum Likelihood
spml(formula, data, index=NULL, listw, listw2=listw, na.action,

model=c("within","random","pooling"),
effect=c("individual","time","twoways"),
lag=FALSE, spatial.error=c("b","kkp","none"),
...)

The first step consists in defining the specification (formula=...) without indicating spatial ef-
fects (which are defined by the specific options), indicating the name of the pdata.frame(data=...)
and the listw needed to create spatially lagged variables (listw=...). The nature of the spe-
cific effects is determined by the option model — the user may choose between pooling for
a pooled data model, within for a fixed-effect model or random for a randomised model. It
is also possible to define whether the effects relate to individuals or/and periods using the op-
tion effects that can be established as equal to individual, time or twoways. We can also
choose whether the specification includes spatial terms: lag=T in the SAR model, or lag=Fin all
other cases. Lastly, it is possible to choose the nature of the specification in the random effects
model: spatial.error="b"for a Baltagi specification, spatial.error="kkp"for the KKP-style
specification (Kapoor et al. 2007) or spatial.error="none" in all other cases.

The spreml command makes it possible to estimate, by maximum likelihood, more specifica-
tions with random effects (errors=) with the possibility of considering different configurations
including the possibility of introducing serial correlation in the error term. Given the matrix calcu-
lations which this entails, it includes multiple options for configuring the calculation algorithm:

spreml(formula, data, index = NULL, w, w2=w, lag = FALSE,
errors = c("semsrre", "semsr", "srre", "semre",

"re", "sr", "sem","ols", "sem2srre", "sem2re"),
pvar = FALSE, hess = FALSE, quiet = TRUE,
initval = c("zeros", "estimate"),

x.tol = 1.5e-18, rel.tol = 1e-15, ...)

Lastly, the spgm command makes it possible to estimate the parameters using the generalised
method of moments.

spgm(formula, data=list(), index=NULL, listw =NULL, listw2 = NULL,
model=c("within","random"), lag = FALSE, spatial.error=TRUE,
moments = c("initial", "weights", "fullweights"), endog = NULL,
instruments= NULL, lag.instruments = FALSE, verbose = FALSE,
method = c("w2sls", "b2sls", "g2sls", "ec2sls"), control = list(),
optim.method = "nlminb", pars = NULL)

The specification tests have largely incorporated these options. The Hausman test, which is
robust to heteroskedasticity, is activated using the sphtest command. The slmtest command
triggers the implementation of the specification tests for spatial autocorrelation. Specification tests
on the error term (random effect, spatial autocorrelation, serial autocorrelation) are run using the
bsjktest command. These tests are easily interpretable since the alternative hypothesis is always
recalled in the output.



7.4 Empirical application 193

7.4.2 Data and spatial weights matrix
Our analysis is based on a sample of 1,032 European regions at the NUTS3 level in 14 member

states of the EU15 (only Greece is not present in our sample). The data are available for the period
1991-2008. We aggregate the annual data by periods of 3 years in order to control for short-term
economic variations (cycles). We obtain a panel of 6 periods for which we construct growth rates
of labor productivity (p) and of gross added value (q) in the manufacturing sector. The estimations
are therefore done for 5 periods. Figure 7.1 displays the perimeter of our analysis.

Figure 7.1 – Perimeter of the study

# Import data
data_panel <- read.csv("panel_average_3_years_1991_2008.csv", sep=";")
# Import shapefile (Gisco) as a "SpatialPolygonDataFrame"
shape_nuts3<-readShapeSpatial("NUTS_RG_60M_2006")
# Select NUTS3 (by NUTS3 level)
shape_nuts3<- shape _nuts3[shape_nuts3$STAT_LEVL_== 3,]
# Select NUTS3 from the sample
data_panel_code<- data_panel[,"NUTS3"]
shape_nuts3<- shape _nuts3[shape_nuts3$NUTS_ID %in% data_panel_code,]
# Visualising the sample
plot(shape_nuts3)

In order to generate a table of descriptive statistics in LATEXformat of the explained variables
and the explanatory variables of the model, it is possible to use package stargazer and apply the
stargazer command on the database including the model variables. The result is shown in Table
7.2.

library(stargazer)
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variables <-data.frame(data_panel$p,data_panel$q,data_panel$u,data_panel$G,
data_panel$d)

stargazer(variables, title="Descriptive statistics ")

Statistic N Mean St. Dev. Min Max

p 5,160 0.402 0.078 0.000 0.888
q 5,160 0.399 0.081 0.000 0.900
u 5,160 51.761 110.371 0.187 2,084.284
G 5,160 45.667 12.054 0.000 90.055
d 5,160 3.801 0.335 1.746 5.405

Table 7.2 – Descriptive statistics

Regarding the spatial weight matrix, as there are islands in the sample (Madeira, Canaries, etc.),
a weight matrix based on a criterion other than simple contiguousness due to the presence of a
common boundary is required (see chapter 2 : “Codifying neighbourhood structure”). We build a
matrix of the 10 closest neighbours to ensure a connection between the regions of Great Britain and
continental Europe.

# Creation of a k matrix plus close neighbours, k = 10
map_crd <- coordinates(shape_nuts3)
Points_nuts3 <- SpatialPoints(map_crd)
nuts3.knn_10 <- knearneigh(Points_nuts3, k=10)
K10_nb <- knn2nb(nuts3.knn_10)
wknn_10 <- nb2listw(K10_nb, style="W")

7.4.3 The results
To select the most appropriate specification, we start from the model without spatial autocorre-

lation and implement the Hausman test and the Lagrange multiplier tests.
Table 7.3 shows the results of the estimation of a spatial error autocorrelation model. Column

(1) shows the pooled data model while columns (2) and (3) take into account the unobserved
individual heterogeneity, respectively, through fixed effects and random effects. Regarding the
Verdoorn coefficient, the results are similar: with a significant and positive coefficient greater
than 0.5 in all three cases, the presence of increasing returns to scale is confirmed for our sample.
Employment growth rate in the manufacturing sector of a region is also all the greater as this
region is urbanised (the coefficient associated with u positive and significant in the first and third
cases), especially as the gap with the leading region at the beginning of the period is significant
(the coefficient associated with G positive and significant in the first and third cases) and even less
important as initial productivity is high, which reflects a phenomenon of convergence of labour
productivity in the manufacturing sector (the coefficient associated with d is negative and significant
in all three cases).

# Table 7.3: estimation without consideration for spatial autocorrelation
summary(verdoorn_pooled <- plm(verdoorn, data = data_panel, model = "

pooling"))
summary(verdoorn_fe1<- plm(verdoorn, data = data_panel,

model = "within", effect="individual"))
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summary(verdoorn_re1<- plm(verdoorn, data = data_panel,
model = "random", effect="individual"))

p

Model: pooled data fixed effects (within) random effects (GLS)

(1) (2) (3)

q 0.692∗∗∗ 0.604∗∗∗ 0.701∗∗∗

(0.009) (0.010) (0.010)

u 0.0001∗∗∗ −0.0002 0.0001∗∗∗

(0.00001) (0.0002) (0.00001)

G 0.0001 0.002∗∗∗ 0.0003∗∗∗

(0.0001) (0.0001) (0.0001)

d −0.008∗∗∗ −0.182∗∗∗ −0.033∗∗∗

(0.003) (0.005) (0.003)

Constant 0.146∗∗∗ 0.228∗∗∗

(0.012) (0.014)

Observations 5 160 5 160 5 160
R2ad justed 0.523 0.587 0.552

Table 7.3 – Estimates without consideration for spatial autocorrelation
Note: ∗p < 0.1 ; ∗∗p < 0.05 ; ∗∗∗p < 0.01.

The results of the standard Hausman test and the Hausman test robust to spatial autocorrelation
of errors leads to rejection of the null hypothesis on absence of correlation between individual
effects and explanatory variables. For the rest of the empirical analysis, a fixed effects model is
thus chosen.

# Hausman test (plm)
print(hausman_panel<-phtest(verdoorn, data = data_panel))
## Hausman Test
## data: verdoorn
## chisq = 1040.8, df = 4, p-value < 2.2e-16
## alternative hypothesis: one model is inconsistent

# Hausman test robust to spatial autocorrelation (splm)
print(spat_hausman_ML_SEM<-sphtest(verdoorn,data=data_panel,

listw =wknn_10, spatial.model = "error", method="ML
"))

## Hausman test for spatial models
## data: x
## chisq = 1263.8, df = 4, p-value < 2.2e-16
## alternative hypothesis: one model is inconsistent



196 Chapter 7. Spatial econometrics on panel data

print(spat_hausman_ML_SAR<-sphtest(verdoorn,data=data_panel,
listw =wknn_10,spatial.model = "lag", method="ML"))

## Hausman test for spatial models
## data: x
## chisq = 1504, df = 4, p-value < 2.2e-16
## alternative hypothesis: one model is inconsistent

The results of the Lagrange multiplier tests in a fixed effects model encourages favouring a
SEM specification (code to tests below). If the test statistics for taking spatial autocorrelation into
account by SAR (Test 1) or SEM (Test 2) confirm the rejection of the hypothesis that these two
terms (taken independently) are null, the simultaneous reading does not make it possible to conclude
on the most appropriate specification to take spatial autocorrelation into account (these two tests
are not included). However, it should be noted that the test statistic for a SEM alternative is higher
than that for a SAR alternative. To conclude in a more credible way, robust tests are used in the
presence of the alternative specification of spatial autocorrelation (Tests 3 and 4). In other words,
the aim is for the RLMlag to test for the absence of a spatial autoregressive term when the model
already contains a spatial autoregressive term in the errors (RLMlag), or vice versa for RLMerr to
test for the absence of a spatial autoregressive term in the errors when the model contains a spatial
autoregressive term. The robust RLMerr version is highly significant (Test 4) while RLMlag is not
(Test 3). We therefore estimate a fixed-effect model with an autoregressive spatial process in the
errors. In some cases, these last two robust tests do not make it possible to discriminate between
a SAR and a SEM. Several possibilities are possible. The first consists in estimating a model
containing both these spatial terms (SARAR). The second consists in discriminating between the
two specifications on the basis of RLMerr and RLMlag test statistics (by using the specification
with the highest associated statistics) or comparing the two specifications’ Akaike criteria.

# Fixed effects model
# Test 1
slmtest(verdoorn, data=data_panel, listw = wknn_10, test="lml",

model="within")
## LM test for spatial lag dependence
## data: formula (within transformation)
## LM = 326.41, df = 1, p-value < 2.2e-16
## alternative hypothesis: spatial lag dependence

# Test 2
slmtest(verdoorn, data=data_panel, listw = wknn_10, test="lme",

model="within")
## LM test for spatial error dependence
## data: formula (within transformation)
## LM = 1115.5, df = 1, p-value < 2.2e-16
## alternative hypothesis: spatial error dependence

# Test 3
slmtest(verdoorn, data=data_panel, listw = wknn_10, test="rlml",

model="within")
## Locally robust LM test for spatial lag dependence sub spatial error
## data: formula (within transformation)
## LM = 0.0025551, df = 1, p-value = 0.9597
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## alternative hypothesis: spatial lag dependence

# Test 4
slmtest(verdoorn, data=data_panel, listw = wknn_10, test="rlme",

model="within")
## Locally robust LM test for spatial error dependence sub spatial lag
## data: formula (within transformation)
## LM = 789.08, df = 1, p-value < 2.2e-16
## alternative hypothesis: spatial error dependence

p

Model: pooled data fixed effects (MV) fixed effects (MMG)

Baltagi error KKP error
(1) (2) (3) (4)

q 0.716∗∗∗ 0.650∗∗∗ 0.650∗∗∗ 0.836∗∗∗

(0.017) (0.008) (0.008) (0.009)

u 0.0001∗∗∗ 0.0001 0.0001 0.0001
(0.00001) (0.0002) (0.0002) (0.0002)

G -0.0004∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.0003∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)

d -1.70∗∗∗ -0.163∗∗∗ -0.163∗∗∗ -0.164∗∗∗

(0.003) (0.0005) (0.0005) (0.005)

Constant 0.2∗∗∗

(0.02)
λ 0.566∗∗∗ 0.566∗∗∗ 0.513∗∗∗

(0.02) (0.02) (0.02)

Observations 5 160 5 160 5 160 5 160

Table 7.4 – Estimations of the pooled data model and fixed effects model with spatial
autocorrelation of errors
Note:∗p < 0.1 ; ∗∗p < 0.05 ; ∗∗∗p < 0.01

Table 7.4 displays model estimation results taking spatial autocorrelation into account in the
form of a spatial autocorrelation of errors. In contrast to the SAR model, the estimated parameters
of an SEM are interpreted in traditional manner 5. The first column shows the pooled data model,
while the following three columns show the results from the fixed effects model with different
estimation methods (maximum likelihood in columns (2) and (3); MMG in column (4)) and different
specifications for the error term (Baltagi in column (2) and KKP in column (3)). In all cases, the
autocorrelation coefficient is positive and significant. Regarding the Verdoorn coefficient, it remains

5. It is not necessary to calculate direct, indirect and total effects in an SEM as there is no spatial multiplier effect.
However, readers may refer to (Piras 2014) on the calculation of these effects in a static panel SAR.
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positive and significant and of greater magnitude than previously. The impact of urbanisation is no
longer significant when a fixed effect is introduced. Temporary variations in population density do
not significantly affect the growth rate in labour productivity. The effect of urbanisation observed
on pooled data is likely due to unobservable characteristics conducive to urbanisation (for instance,
first-nature location benefits, Krugman 1999).

# Table 7.4: Estimates of pooled-data model and fixed-effect
# model with spatial errors autocorrelation

# Likelihood Maximum estimation
summary(verdoorn_SEM_pool <- spml(verdoorn, data = data_panel,
listw = wknn_10, lag=FALSE,model="pooling"))
# Fixed-effect SEM
summary(verdoorn_SEM_FE<- spml(verdoorn, data = data_panel,
listw = wknn_10, lag=FALSE,model="within", effect="individual", spatial.

error="b"))
summary(verdoorn_SEM_FE<- spml(verdoorn, data = data_panel,
listw = wknn_10, lag=FALSE,model="within", effect="individual", spatial.

error="kkp"))
# Generalised moments method estimation
summary(verdoorn_SEM_FE_GM <- spgm(verdoorn, data=data_panel,

listw = wknn_10, model="within", moments="fullweights",
spatial.error = TRUE))

7.5 Extensions

In this section, we present some extensions of spatial models on panel data. The methods
presented in these extensions are not implemented in R at present.

7.5.1 Dynamic spatial models
The models studied at in the previous sections are static models. However, spatial interactions

can also be dynamic in nature. For instance, the values used for an observation i at a given point in
time t may depend on the values taken by the observations close to i in the previous period. The
same type of process may apply for error terms. The dynamic nature can be taken into account by
building from Equation 7.6, where time lags are introduced on the explained variable and its spatial
lag:

yt = τyt−1 +ρWNyt +ηWNyt−1 + xtβ +WNxtθ +α +ut (7.36)

This model can be interpreted as a dynamic spatial Durbin model (Debarsy et al. 2012; Lee et al.
2015). In this model, the value of the explained variable used for an observation i over time period
t depends on the value of the variable explained for observation i during the previous period (time
lag), the value of the variable explained for observations neighbouring i in period t (simultaneous
spatial lag) and lastly the value of the variable explained for observations neighbouring i in previous
period t−1 (delayed spatial offset). For the latter term, one possible route is that of spatial spillover
effects — a shock occurring in a zone i at a time period t which spreads to neighbouring zones
in subsequent periods. Time lags on explanatory variables Xt or the error term ut could also be
incorporated. However, as Anselin et al. 2008 and Elhorst 2012 show, the parameters of such a
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model are not identifiable. Finally, in all generality, this model may include an individual, fixed or
random effect. Debarsy et al. 2012 detail the nature of the impacts (direct, indirect, total) in this
model. To give an idea of these impacts, the model described is re-written into Equation 7.36 in the
following form:

yt =(IN−ρWN)
−1(τyt−1ηWNyt−1)+(IN−ρWN)

−1(xtβ +WNxtθ)+(IN−ρWN)
−1(α+ut) (7.37)

The matrix showing the partial derivatives of the expected value of yt with respect to the kth

explanatory variable of X in period t is thus:

[
∂qE(y)

∂x1k
... ∂qE(y)

∂xnk

]
t
= (IN−ρWN)

−1(βkIN +θkWN) (7.38)

These partial derivatives reflect the effect of a change affecting an explanatory variable for an
observation i on the explained variable of all other observations in the short term only. Long-term
effects are defined by:

[
∂qE(y)

∂x1k
... ∂qE(y)

∂xnk

]
t
= [(1− τ)IN− (ρ +η)WN ]

−1(βkIN +θkWN) (7.39)

The direct effects consist of diagonal elements of the term to the right of Equation 7.38 or
Equation 7.39 and indirect effects such as the sum of the lines or columns of the non-diagonal
elements of these matrices. These effects are independent of period t. There is therefore no indirect
short-term effect if ρ = θk = 0 and there is no indirect long-term effect if ρ =−η and if θk = 0.

Two main categories of methods have been proposed to estimate this model. On the one hand,
based on the principle of maximum likelihood, Yu et al. 2008 build an estimator for the model
described by Equation 7.36 including individual fixed effects. This estimator is extended by Lee
et al. 2010a for a model that also includes temporal fixed effects. Intuition recommends estimating
the model using the maximum likelihood method conditional upon first observation. They also
propose a correction when the number of spatial units and the number of periods tend towards
infinity. On the other hand, Lee et al. 2010a propose an optimal Generalised Moments estimator
based on linear conditions and quadratic conditions. This estimator is convergent, even if the
number of periods is small compared to the number of spatial observations.

Readers may refer to Elhorst 2012 or Lee et al. 2015 for a more detailed presentation of the
dynamic spatial panel models.

7.5.2 Multidimensional spatial models
In some cases, panel data show a more complex multidimensional structure. For example,

in gravity models, economic flows (trade flows, FDI, etc.) between spatial objects (countries or
regions) are modelled in three-dimensional panel models by introducing fixed individual, temporal,
or even bilateral interaction effects. The introduction of spatial autocorrelation in these gravitational-
type models is discussed by such authors as Arbia (2015). The multidimensional structure can also
be hierarchical in nature. For instance, European regional data are available on multiple spatial
scales: NUTS3, NUTS2, NUTS1, as the NUTS3 regions are intermeshed in the NUTS2 regions, the
latter being themselves intermeshed in the NUTS1 regions. In the case of a-spatial panel models,
a series of articles from the 2000s (e.g. Baltagi et al. 2001) models this hierarchical structure
through a distinct specification of random effects. Recently, authors have extended this literature on
hierarchical models to the analysis of spatial panels (see Le Gallo et al. 2017 for a review of the
recent literature). We present here the general logic of these models.
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Formally, given a 3-dimensional panel where the dependent variable is observed according to
three indices: yi jt with i = 1,2, . . . ,N, j = 1,2, . . . ,Mi and t = 1,2, . . . ,T . N is the number of groups.
Mi is the number of individuals in group i, such that there are S = ∑

N
i=1 Mi individuals. T represents

the number of periods. In general, there may be a different number of individuals between N groups,
however, the cylinder structure remains in the panel as regards the time dimension. In the case of a
spatial hierarchical structure, it is assumed that index j refers to individuals (for example, in the
NUTS3 regions) that are intertwined in N groups (for example, in the NUTS2 regions). Assuming
that spatial autocorrelation occurs at the individual level and that the coefficients are homogeneous,
the following DSM model can be used:

yi jt = ρ

N

∑
g=1

Mg

∑
h=1

wi j,ghyght + xi jtβ +
N

∑
g=1

Mg

∑
h=1

wi j,ghxghtθ + εi jt , (7.40)

where yi jt is the value of the dependent variable for individual j in group i over period t. xi jt is a
vector (1,K) of exogenous explanatory variables, whereas β and θ are (K,1) vectors of unknown
parameters, waiting to be estimated. εi jt is the error term with properties as detailed hereafter.
Spatial weight wi j,gh = wk,l is the element (k = i j; l = gh) of the spatial weighting matrix WS with
i j denoting individual j in group i, and similarly for gh. For instance, k, l = 1, . . . ,S and WS are
a dimension weighting matrix (S,S) with the usual properties. ρ is the spatial lag parameter.
In general, spatial error autocorrelation can also be specified as an autoregressive model at the
individual level:

εi jt = λ

N

∑
g=1

Mg

∑
h=1

mi j,ghεght +ui jt . (7.41)

Weight mi j,gh is an element of weight matrix MS. For the purpose of simplicity, we can assume
that MS = WS. λ is the spatial parameter to be estimated. ui jt is a random composite term that
captures the hierarchical structure of the data. To this end, it is assumed that ui jt is the sum of a
specific group component αi that is invariable over time, an individual-group specific component
µi j that is invariable over time and a residual term vi jt :

ui jt = αi +µi j + vi jt , (7.42)

with the following assumptions: (i) αi
i.i.d.∼ N

(
0,σ2

α

)
, (ii) µi j

i.i.d.∼ N
(
0,σ2

µ

)
, (iii) vi jt

i.i.d.∼ N
(
0,σ2

v
)

and (iv) the three terms are independent from one another. Readers may refer to Le Gallo et al.
2017 for estimation methods (maximum likelihood, generalised method of moments), statistical
inference and forecasting appropriate for these models.

7.5.3 Panel models with common factors
The major benefit of panel data lies in its modelling unobserved heterogeneity. The models

presented above are intended to represent unobserved heterogeneity by using a transformation
of variables (fixed effects model) or by setting out assumptions about the structure of the error
term (random effects model). In both cases, a restriction is made on the form of the heterogeneity
— for each individual, it is constant in the temporal dimension. In other words, there is a total
separation of the two individual and temporal dimensions: the individual specific effects vary
between individuals but remain constant over time and the specific temporal effects vary over time
but remain constant in the individual dimension. While this hypothesis remains credible in the
context of short panels, it is too restrictive for panels with a significant time dimension.
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In some cases, the databases also include an important time dimension. Common factor models
have been developed to take advantage of this data configuration. This new class of models
allows to model the effect of unobserved common factors which affect individuals differently, by
summarising the information found in the data into a limited number of common factors:

yit = xitβ +
d

∑
l=1

λil flt + εit (7.43)

where ∑
d
l=1 λil flt are the common factors in the model. Readers are referred to Bai et al. 2016 for a

more precise presentation of this class of models, while our focus is on that which links them to the
spatial panels.

By definition, common factors and spatial panels make it possible to capture interactions
between individuals. However, they adopt different strategies for this purpose. The spatial econo-
metric models are based on a given structure of interactions between individuals in a panel. This
structure is generally constructed from a geographical metric (distance between individuals). In
common factor panels, the structure of interactions is not constrained a priori (only the number of
common factors is constrained).

Initially, spatial panels were used for panels comprising a large number of individuals (relative
to the temporal dimension), while the use of the common factor models was preferred when
the temporal dimension was large enough to adequately build common factors. Recently, a
series of studies has highlighted, through applications, the synergies between the two approaches
(Bhattacharjee et al. 2011; Ertur et al. 2015) and proposed methods combining spatial effects and
common factors (Pesaran et al. 2009; 2011; Shi et al. 2017a; 2017b). A recent application is
proposed by Vega et al. 2016 which studies the development of unemployment disparities between
Dutch regions using a model that takes into account spatial and temporal dependencies but also the
presence of common factors. Their study emphasises the importance of simultaneously considering
these three dimensions (and not using multi-step methods) at the risk of ending up with skewed
results. Their results suggest that spatial dependence remains an important factor in understanding
the dispersion of regional unemployment rates, even once time dependency and the presence of
common factors are taken into account.

Conclusion
Spatial econometrics on panel data is now one of the most active fields in spatial econometrics,

both theoretically and empirically. In this context, this chapter has presented the main spatial
econometric models on panel data. It is not intended to be exhaustive on all specifications, estimation
and inference methods, but has focused on the procedures that can currently be implemented
in software R. These procedures concern static panel spatial models, for cylindrical data, with
invariable weight matrices over time. Libraries or scripts also exist for proprietary software such as
Matlab (commands put forward by Elhorst 2014a) and Stata (module XSMLE, Belotti et al. 2017b)
and can beneficially supplement the procedures proposed under R.
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