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Abstract

Statisticians carry out close examination of spatialized data, such as the distribution of household
income, the location of industrial or commercial establishments, the distribution of schools in
cities, etc. Answers can be found through analyses of one or more predefined geographical scales
such as neighbourhoods, districts or statistical blocks. However, it is tempting to preserve the
individual data and to work with the exact position of the entities that are being studied. If that
is the case, statisticians have to conduct analyses based on geolocation data without carrying out
any geographical aggregation. Observations are taken as points in space and the objective is to
characterise these point distributions.

Understanding and mastering statistical methods that process this individual and spatialized
information enables us to work on data that are now increasingly accessible and sought after
because they provide very precise analyses of distributions studied (Ellison et al. 2010; Barlet et al.
2013). In this framework of analysis, statisticians who have sets of points to analyse are faced with
several important methodological questions: how can such data with thousands or even millions of
observations be represented and characterised spatially? What statistical tools exist that can be used
to study these observations relating to households, employees, firms, stores, equipment or travel, for
example? How can the qualitative or quantitative characteristics of the observations being studied
be taken into account? How can any attractions or repulsions between points or between different
types of points be highlighted? How can we assess the significance of the results obtained, etc?

The purpose of this chapter is to help statisticians to provide statistically robust results from
the study of spatialized data that is not based on predefined zoning. To do this, we will review
the literature on the subject of statistical methods used to characterise point distributions and we
will explain the associated issues. We will use simple examples to explain the advantages and
disadvantages of the most frequently adopted approaches. The code provided in R will be used to
reproduce the examples covered.

Acknowledgements: The authors would like to thank Gabriel LANG and Salima BOUAYAD
AGHA for their careful review of the first version of this chapter and for all their constructive
comments. Thanks also to Marie-Pierre de BELLEFON and Vincent LOONIS who provided the
initiative for this project: this chapter has undeniably benefited from all their editorial efforts and
those of Vianney COSTEMALLE.



73

Introduction

The study of spatial distributions of points may seem more removed from the concerns of public
statisticians than some other methods. So why give them a place in this manual? The answer is sim-
ple: geolocation of data provides numerous localised observations on firms, facilities and housing.
This swiftly leads us to consider the possibility of gathering together these observations, the spatial
configuration of their random, or non-random setting, and their dependence on other processes (the
proximity of industrial establishments with strong input-output links may be desirable and therefore
lead to spatial interactions between establishments from different sectors). The aim of this chapter
is to present an introduction to a body of methods that are sometimes complex in their mathematical
foundations, but which often serve to illustrate quite simple questions. The development of these
methods was based in the issues facing ecologists, foresters and epidemiologists. P.J. Diggle, the
author of the first reference work (Diggle 1983), is known for his extensive epidemiology work
(Diggle et al. 1991). As a result, educational examples illustrating point processes often come from
forestry or epidemiological data. In this chapter we will use examples of this type provided in
certain R packages such as spatstat (Baddeley et al. 2005) or dbmss (Marcon et al. 2015b). We will
also use data on the location of facilities in France.

Unlike zoning or geostatistical methods, when studying spatial distribution, a variable is not
measured locally, but the very location of the points is at the heart of the subject in question. We
will build models and make inferences based on these points.

The maps in Figure 4.1, produced from data in the permanent database of facilities (BPE), show
four examples of the location of activities in the city of Rennes (France). 1

Figure 4.1 – Four examples of the location of activities in the municipality of Rennes in 2015
Source: INSEE-BPE, authors’ calculations

1. If equipment is positioned imprecisely, it is assigned by default to the centroid of the associated IRIS (INSEE
zoning in "Ilots Regroupés pour l’Information Statistique" that can be translated as "aggregated units for statistical
information", see https://www.insee.fr/en/metadonnees/definition/c1523).
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library("spatstat")
library("sp")
# BPE file on the INSEE.fr site: https://www.insee.fr
# Data for these examples:
load(url("https://zenodo.org/record/1308085/files/ConfPoints.gz"))
bpe_sch <- bpe[bpe$TYPEQU=="C104", ]
bpe_pha <- bpe[bpe$TYPEQU=="D301", ]
bpe_clo <- bpe[bpe$TYPEQU=="B302", ]
bpe_doc <- bpe[bpe$TYPEQU=="D201", ]
par(mfrow=c(2,2), mar=c(2, 2, 2, 2))
plot(carte, main="Schools") ; points(bpe_sch[, 2:3])
plot(carte, main="Pharmacies") ; points(bpe_pha[, 2:3])
plot(carte, main="Clothing stores") ; points(bpe_clo[, 2:3])
plot(carte, main="Doctors") ; points(bpe_doc[, 2:3])
par(mfrow=c(1,1))

These four simple figures provide an initial overview of the major differences in the locations
of these facilities. There is a large number of clothing stores, but they are extremely concentrated
in the center of Rennes. On the other hand, primary schools seem to be distributed more evenly.
Pharmacies are also evenly distributed, but with a greater presence in the city center. The location
of doctors is more aggregated than that of pharmacies, but less so than that of clothing stores. These
initial conclusions on the distribution of activities could be supplemented by more advanced spatial
analyses, for example by applying data for population distribution or accessibility (closer to or
further away from the main communication routes). The methods presented in this manual make
it possible to go beyond the conclusions of these first maps, which are certainly informative but
insufficient to characterise and explain the location of the entities in question.

In this chapter, we have chosen not to deal with methods that discretise space, i.e. approaches
based on study zoning (such as employment zones in France based on commuting patterns) or
administrative zoning (such as the breakdown of the Nomenclature of Territorial Units for Statistics
- NUTS - from Eurostat). Specific works (Combes et al. 2008) provide a very good introduction
to this subject for any interested readers. This chapter will be limited to methods that take into
account the exact geographical position of the entities studied. Our choice is motivated by at least
two factors. The first is linked to access to such data on a large scale and the development of
appropriate technical methods to analyse them in a meaningful way. Different packages are, for
example, accessible in the R software. The second is that by favouring methods that preserve the
nature of the individual data analysed (position in space, characteristics), the Modifiable Areal Unit
Problem - MAUP, well known to geographers (Openshaw et al. 1979a), will be avoided. MAUP
refers to the fact that the discretisation of initially non-aggregated data potentially creates several
statistical biases linked to the position of borders, aggregation level etc. (Briant et al. 2010).

4.1 Framework of analysis: basic concepts
This section aims to define the fundamental concepts we will use in this chapter to explain

statistical methods of spatial analysis of point data.

4.1.1 Configurations and processes
To study these empirical spatial distribution of points (or set of points), we use the random

point process theory. A point process can be used to randomly generate an infinity of outcomes,
which share a number of properties.
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Usually, we note the point process as X and a realization from this process as S. Spatial
distributions are modelled using inferential methods that apply to objects that are observed only
once. For example, for many data, statisticians only have one set of points observed at a given
date. Therefore, there is only one distribution of doctors in the city of Rennes (see figure 4.1), bus
stops in London, housing in Friesland in the Netherlands or cinemas in Belgium on a given date.
However, the unique observed realization must not alter our analysis: we will, therefore, ensure
that the available data is able to provide a good approximation of the point process that generated it.
We will come back to this in this chapter.

Definition 4.1.1 — Spatial distribution. A distribution of n points, written C = {x1, ...,xn} is
a set of points from R2 in this chapter: the objects are located on a map. The theory does not
limit the dimension of space but applications in three-dimensional spaces are rare, and almost
non-existent in Rd , d > 3. The number of points in the distribution is noted as n(C). The points
are not considered to be duplicated, as this would prevent many methods from being used. The
combined points in the region B is written C∩B , and n(C∩B).

The process X is defined if the number of points n(X ∩ B) is known for any region B. The
number of points is also written N(B) if no confusion is possible. In general, we are limited to
locally finite processes, for which n(X ∩ B)<+∞,∀B.

4.1.2 Marked processes

One or more characteristics can be associated with each point. These characteristics are known
as marked points. In this case, we talk about marked point processes. This approach has been
widely used in forest studies (see for example Marcon et al. 2012).

The marks used can be qualitative (different tree species) or quantitative (trunk diameter, tree
size). If we take the example of clothing shops, qualitative markers could be the type of store
(ready-to-wear or made-to-measure) and quantitative marks could be store surface area or number
of employees. Marks can be more sophisticated. For example, Florent Bonneu characterised the
spatial distribution of incidents in the Toulouse region in 2004 using the associated workload for
each fire service intervention (Bonneu 2007). This quantitative mark is obtained by multiplying the
duration of the intervention and the number of firefighters mobilised.

To begin, we will limit ourselves to unmarked processes.

4.1.3 Observation window

The area to study the location of points is often called the window and it is often arbitrary. The
authors take an area for study that may be square (Møller et al. 2014), rectangular (Cole et al. 1999),
circular (Szwagrzyk et al. 1993), an administrative area (Arbia et al. 2012) or study zone (Lagache
et al. 2013).

The indicators used to detect the underlying spatial structures are based on an analysis of the
neighbourhood of points: for example, for all the points studied, the average number of similar
points within a radius of 2 km, 4 km, etc. It may then be necessary to take into account points
located on the edge of the area of interest. The risk is to underestimate the neighbourhood of
points located on the edge of the area, as some of their neighbours are located outside the area. For
example, we can see this in figure 4.2. Let us assume that the area being studied is a square plot
within a forest and that the points represent trees. The neighbourhood of points i is described as
the circle with a radius r, centred on point i. If you want to estimate the number of neighbours for
point i, counting only the points in the circle that are included within the parcel would underestimate
the actual number of its neighbours. The reason is simple: a part of the circle is located outside the
field of study.
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Figure 4.2 – Edge effect example
Source: the authors

The study by Marcon et al. 2003 illustrates, for example, the importance of not taking this
bias into account when estimating the concentration of industrial activities in France. Generally,
regardless of the area of application, this potential bias is deemed severe enough for the use of
a corrective technique to account for “edge effects". There is a great deal of literature on these
edge effects and their correction (overall or individual correction, creation of a buffer zone around
the area, use of toroidal correction 2...) Interested readers may refer to traditional spatial statistics
manuals for further information (Illian et al. 2008 ; Baddeley et al. 2015b). From a practical point
of view, calculation software (and in particular R) can be used to treat these effects using different
correction methods. An example will be provided in chapter 8: "Spatial smoothing".

4.2 Point processes: a brief presentation
4.2.1 The homogeneous Poisson process

To begin, let’s look at the point process that is used to generate completely random spatial
point distributions (Complete Spatial Randomness - CSR). To achieve this, we can start with a
particularly simple process, U , which generates a single point that can be randomly located in
an area of interest W . If u1 and u2 are the coordinates of the point, it is possible to calculate the
probability that the point generated by U is located in a small space B, which is selected arbitrarily:

P(U ∈ B) =
∫

B
f (u1,u2)du1du2. (4.1)

The distribution is uniform over W if f (u1,u2) =
1
|W |where |W | designates the area of W .

Therefore, we have: P(U ∈ B) =
∫

B f (u1,u2)du1du2 =
1
|W |

∫
B du1du2 =

|B|
|W | . This process

allows another process to be defined - the binomial process. n points are distributed evenly across
the region W , independently. Traditionally, we would write that:

P(n(X ∩B) = k) =
(

n
k

)
pk(1− p)n−k (4.2)

with p =
|B|
|W | . The runifpoint function in the R package spatstat generates spatial distributions

of points from a uniform binomial process. For example, in figure 4.3, 1,000 points are expected in
a 10 x 10 observation window.

2. The toroidal correction can be applied to a rectangular window. The window is folded over onto itself to form a
torus: continuity is established between the right and left limits (upper and lower, respectively) of the window, which,
therefore, no longer has any edge
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Figure 4.3 – 1 000 points sample using a uniform binomial process
Source: package spatstat, authors’ calculations

library("spatstat")
plot(runifpoint(1000, win=owin(c(0, 10),c(0, 10))), main="")

Why is such a process, in which each point is placed uniformly at random, not appropriate to
define a CSR process? Initially, we require two properties from such a process:

— homogeneity which corresponds to the absence of “preference” for a particular location (this
is indeed the case for the binomial process).

— Independence, to reflect the fact that realizations in one area of the space have no influence
on realizations in another region. This is not the case for the binomial process.

If there are k points in the B area of W , there are n− k in the rest of the area.
Homogeneity induces that the number of points expected in the B region is either proportional to its
surface, or E [n(X ∩B)] = λ |B|. λ is a constant that corresponds to the average number of points
per unit of surface area. The Poisson law, which will be used to characterise a CSR process, can be
introduced heuristically based on the property of independence. This implies that all counts in grids
are independent, regardless of the size of the square. When cells, numbered m, become extremely
small, most of them contain no points and some contain only one. The probability of a region
containing more than one point becomes negligible. Based on the hypothesis of independence,
n(X ∩B) is the number of successes from a large number of independent drawings, with each
drawing having a very low probability of success. This number of successes follows a binomial law
of parameters m and λ |B|/m, which tends towards the Poisson law for the λ |B| parameter when m
becomes large:

P(n(X ∩B) = k) = e−λ |B|λ
k |B|k

k!
. (4.3)

Therefore, we come to this conclusion on the basis of the hypotheses of homogeneity and indepen-
dence.

Definition 4.2.1 — CSR process. The CSR process or homogeneous Poisson process is often
defined as follows:
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— P(n(X ∩B) = k) = e−λ |B|λ
k |B|k
k! .

This defines the Poissonian nature of the distribution (PP1);

— E [n(X ∩B)] = λ |B|.
This defines the homogeneity (PP2);

— n(X ∩B1),..., n(X ∩Bm) are m independent random variables (PP3);

— once the number of points is set, the distribution is uniform (PP4).

Properties PP2 and PP3 are sufficient to define the CSR process (Diggle 1983), and it can
be demonstrated that others are consequential. Other properties result from this. Firstly, the
superposition of independent Poisson processes with parameters λ1 and λ2 gives a Poisson
process with a parameter of λ1+λ2. If points are eliminated randomly with a constant probability
p in a Poisson process (thinned process), the resulting process is always a Poisson process with
parameter pλ , where p is the thinning parameter.

The homogeneous Poisson process plays a decisive role in modelling spatial distributions of points 3

Many spatial processes have been defined, and we will give a few examples in this chapter. These
can be implemented using package spatstat. For example, the rpoispp function will be used to
simulate homogeneous Poisson processes. Figure 4.4 is a realization of a homogeneous Poisson
process in a 1 x 1 observation window: 50 points are expected and the points are distributed
completely randomly over the window.

Figure 4.4 – 50 points sample by a homogeneous Poisson process
Source: package spatstat, authors’ calculations

library("spatstat")
plot(rpoispp(50), main="")

4.2.2 Intensity, first-order property
Process laws are very complex (Møller et al. 2004), which in practice leads to the preferred

use of indicators that are qualified as first-order or second-order, in the same way as first-order
and second-order moments (expectation and variance) are used to identify a random variable of
unknown law.

3. A little like the Normal law in classical inferential statistics (although its properties make it closer to the uni-
form law).
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Definition 4.2.2 — Intensity of a process. Intensity featured in the presentation of the Poisson
process, where it was constant (λ ). There are other processes in which this hypothesis is rejected,
and in which the intensity function λ (x) is variable. It is defined as E[n(X ∩B)] = µ(B) =∫

B λ (x)dx.

By applying the definition of expectation to a small region centred on x and surface dx, we
can define the intensity at this point x as the number of points expected in this small area
when it tends towards 0, or:

λ (x) = lim
|dx|→0

E [N(dx)]
|dx|

. (4.4)

If it is not constant, it may be estimated using non-parametric methods that are used for density
estimation. In its simplest version, without correcting edge effects, the intensity estimator is written:
λ (u) = ∑

n
i=1 K(u− xi), K designating the kernel, which can be Gaussian, or with finished support

(Epanechnikov kernel, Tukey’s biweight kernel). They must check that
∫

R2 K(u)du = 1. As in all
non-parametric methods, the choice of kernel has a limited impact. In contrast, the choice of
bandwidth is extremely important (see, for example Illian et al. 2008). A presentation of these
estimation methods can be found in chapter 8 of this manual: "Spatial smoothing". The function
used in the R software is density in package spatstat, which provides contours, 3D representations
and colour degradations. Several examples will be given in section 4.6.1 of this chapter.

4.2.3 The Inhomogeneous Poisson Process
Inhomogeneous Poisson processes are of variable intensity and their points are distributed

independently of each other (the PP3 condition is maintained). The PP1 condition regarding the
Poissonian nature of the distribution, conditional to n, is maintained, as the parameter for the law is
no longer λ |B|, but µ(B) as defined above. The PP4 condition is modified. Subject to a number of
fixed points n, the points are independent and identically distributed, with a probability density of

f (x) = λ (x)∫
B f (u)du .

Figure 4.5 shows two examples of inhomogeneous Poisson processes, characterised by their
intensity function (with coordinates x and y).

library("spatstat")
par(mfrow=c(1, 2))
plot(rpoispp(function(x, y) {500*(x+y)}), main=expression(lambda==500*(x+y)

))
plot(rpoispp(function(x,y) {1000*exp(-(x^2+y^2)/.3)}), main=expression(

lambda==1000*exp(-(x^2+y^2)/.3)))
par(mfrow=c(1,1))

4.2.4 Second-order properties
To introduce the second-order properties of a point process, we will look at the variance and

covariance of point counts, defined below:

var(n(X ∩B) = E[n(X ∩B)2]−E[n(X ∩B)]2 (4.5)

cov [n(X ∩B1),n(X ∩B2)] = E[n(X ∩B1)n(X ∩B2)]−E[n(X ∩B1)]E[n(X ∩B2)] (4.6)
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Figure 4.5 – Examples of inhomogeneous processes
Source: package spatstat, authors’ calculations

Definition 4.2.3 — Second-order moment of a process. Rather than using these indicators,
the second-order moment is defined as follows:

ν|2|(A×B) = E[n(X ∩A)n(X ∩B)]−E [n(X ∩A∩B)] , (4.7)

which, for the Poisson process, gives: λ 2 |A| |B|. When this measure includes a density, it is
called order 2 intensity and noted λ2. It is defined as ν|2|(C) =

∫
C λ2(u,v)dudv.

This second-order intensity can be interpreted as:

λ2(x,y) = lim
|dx|→0|dy|→0,

E [N(dx)N(dy)]
|dx| |dy|

. (4.8)

First- and second-order intensities are used to define a function, called the point pair
correlation function, as follows:

g2(u,v) =
λ2(u,v)

λ (u)λ (v)
. (4.9)

In the case of a homogeneous Poisson process,λ2(u,v) = λ 2, g2(u,v) = 1.

When a process is stationary (at the second order) 4, the intensity of the second order is not
affected by translation and depends only on the difference between the points: λ2(x,y) = λ2(x− y).

When it is also isotropic, the process is not affected by rotation and the second-order intensity
depends only on the distance between x and y. Note that second-order stationarity and isotropy are
essential for many spatial statistical tools.

4. The term stationary, without any further details, is often used for constant order 1 and 2 intensity processes;
first-order stationarity is synonymous with homogeneity.
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4.3 From point processes to observed point distributions

4.3.1 Distribution by random, aggregation, regularity
When you look at a distribution of points, two main questions arise: are the observed points

distributed randomly or is there an interaction? If there is interdependence, is it aggregate or
repellent? Depending on the answers to these questions, three spatial distributions are generally
found: a so-called completely random distribution, an aggregate and a regular distribution. An
example of these three theoretical distributions is shown in figure 4.6. These spatial distributions
are obtained from known point processes, simulated using package spatstat.

Figure 4.6 – The three standard spatial distributions of points
Source: package spatstat, authors’ calculations

library("spatstat")
par(mfrow=c(1, 3))
plot(rpoispp(50), main="Random")
plot(rMatClust(5, 0.05, 10), main="Aggregate")
plot(rMaternII(200,0.1), main="Regular")
par(mfrow=c(1,1))

The completely random configuration is central to the theory. All spatial distributions, as
point process realizations, are random but this corresponds to a “completely random” distribution
of points on a surface: points are located everywhere with the same probability and independently
of each other. This distribution corresponds to a realization of a homogeneous Poisson process.
In this case, there is no interaction between the points but only the use of indicators makes it
possible to judge whether the observed distribution differs significantly from a completely random
distribution. Indeed, it is extremely difficult to identify such a configuration with the naked eye. In
this example, we selected the rpoispp function in package spatstat to simulate the homogeneous
Poisson processes.

The second distribution of points is said to be regular: consider the spatial distribution of
trees in an orchard or along streets in town, the distribution of deckchairs on a beach, etc. In
such a configuration, the points are more regularly spaced than they would be in a completely
random distribution. Points repel each other and create a dispersed points distribution. A dispersion
phenomenon can be seen for certain commercial activities, such as gas stations in Lyon (France, see
Marcon et al. 2015a). Location constraints can also create dispersions, the geographic distribution
of the capitol buildings in the USA is a good example of this (Holmes et al. 2004). In the right-
hand chart of figure 4.6, we used a realization of a Matern process to represent a dispersed point
distribution. Specifically, two simple examples of repellent processes are provided by the Matern I
and II processes (see Baddeley et al. 2015b). In process I, all point pairs located at distances below
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a threshold r are deleted. In process II, each point is marked by an arrival time, a random variable
in [0,1]. Points located at a lesser distance than r from a previously determined point are deleted.
Using package spatstat, the rMaternI and rMaternII functions can be used to simulate these two
Matern processes. In the example given in figure 4.6, we used a sample of a Matern type II process
obtained using this package. It should be noted that other dispersed distributions can be observed:
intuitively, for example, a dispersion phenomenon can be seen in a distribution of points located at
the intersections of a honeycomb pattern: in this case the distance between the points is maximum
(and it is greater than it would have been if the distribution was random).

Finally, the last possible configuration is known as aggregated. In this case, an interaction
between the points can be seen. They attract each other, creating aggregates: a geographic
concentration can then be detected. Looking at figure 4.1 in the introduction, it seems that the
clothing stores in Rennes are mainly located in the city centre. This observation could be shared
with other types of shops, such as clothing in specialised stores in the city Lyon (Marcon et al.
2015a). An aggregated configuration corresponds, for example, to the central theoretical case
in figure 4.6 which is obtained by drawing a Matern cluster process. The idea of this process
to simulate aggregates is quite intuitive. Around each "parent" point, in a circle with radius r,
"offspring" points are distributed uniformly. In package spatstat, the rMatClust function can be
used to simulate Matern cluster process realizations. We used this function to obtain the aggregated
distribution in figure 4.6. In particular, we specified the intensity of the Poisson process for the
parent points (equal to 5) and the average number of offspring points (10) drawn around the parent
points in a circle of radius r (equal to 0.05).

4.3.2 Warnings

These spatial structures (aggregated, random or dispersed) are open to a very intuitive inter-
pretation based on the hypothesis of stationarity of the process: by comparing the distributions of
observed points to a random distribution, it seems easy to detect the interactions of repellent or
attractions that cause dispersion or spatial concentration phenomena.

However, any conclusions should not be too hasty as it should be kept in mind that the same
aggregated or dispersed structures can be obtained with an inhomogeneous Poisson process in
which the intensity of the process varies in space but the points are independent of each other (see
figure 4.5). A single observation of a spatial distribution does not allow for any distinction between
first- and second-order properties of a process in the absence of additional information such as
that provided by a model that links a covariable to the intensity. Ellison et al. 1997, showed that
natural advantages (involving greater intensity) have an effect on the location of establishments that
is indistinguishable from that of positive externalities (causing the aggregation): confusion between
these two properties may also concern processes.

One final warning concerns homogeneity. Indeed, initially, the methods developed in spatial
statistics consisted of testing for the existence of aggregation or repulsion, assuming the homogene-
ity of the process: the aim was, therefore, to test a spatial distribution against the null hypothesis of
complete spatial randomness (CSR). To analyse such datasets, measurements such as the original
K function, proposed by B.D. Ripley (widely used in statistical literature) are adequate. However,
if the null hypothesis of a completely random point distribution is considered too strong, other
functions must be favoured. This is the case, for example, for earthquake studies (Veen et al. 2006).
Figure 4.7 illustrates 5,970 earthquake epicentres in Iran between 1976 and 2016 (of a magnitude
greater than 4.5). This data comes from package etas.

data(iran.quakes, package = "ETAS")
plot(iran.quakes$lat~iran.quakes$long , xlab="Longitude", ylab="Latitude")
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Figure 4.7 – Location of 5,970 earthquake epicentres in Iran from 1976 to 2016
Source: package etas, authors’ calculations.

It is easy to see that any reference to the homogeneity of space is not optimal because there are
geological predispositions in this case. B.D. Ripley’s K function would be unsuitable for analysis
of this type of data and other tools should be used, such as the inhomogeneous K function from
Baddeley et al. 2000, which we will present in this chapter. Duranton et al. 2005 also highlighted
this limitation of homogeneity of space to analyse the distribution of industrial activities and
proposed a new function Kd .

Thorough knowledge of the available functions is, therefore, essential to characterise point
distribution accurately. This will be the subject of the next section.

4.4 What statistical tools should be used to study spatial distributions?
Unfortunately, the answer to this question is not straightforward. The answer lies in precise

analysis of the question that we are attempting to answer, using distance-based measures (partic-
ularly with regards to the reference value) and examination the properties of the functions. To
fully understand this point and, therefore, the difficulty associated with the choice of the measure,
this section will begin with a presentation of the original Ripley’s K function and significant
developments that have resulted from this work (sections 4.4.1 and 4.4.2). We will then take time
to better explain the determining factors in the choice of measure (section 4.4.3). We will then see
the advantages and disadvantages of the existing measures. For an overview of the literature or an
in-depth and more complete comparison of measurements, please refer to the work of Baddeley
et al. 2015b or the typology of distance-based measures proposed by Marcon et al. 2017.

4.4.1 Ripley’s K function and its variants
The most widely used indicator for illustrating correlation in point processes is the K̂ empirical

function, proposed by B.D. Ripley in 1976 (Ripley 1976; Ripley 1977). This function is commonly
known as Ripley’s function and has been the subject of many comments and developments
and several variants. Specifically, this function will allow us to estimate the average number of
neighbours relative to the intensity.
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Definition 4.4.1 — Ripley’s K function. Its estimator is written as follows:

K̂(r) =
|W |

n(n−1) ∑
i

∑
j 6=i

1
{∥∥xi− x j

∥∥≤ r
}

c(xi,x j;r), (4.10)

where n is the total number of points in the observation window, 1
{∥∥xi− x j

∥∥≤ r
}

is an indicator
that is worth 1 if points i and j are at least equal to r and 0 otherwise. c(xi,x j;r) corresponds to
the correction of edge effects and W to the study area.

K is a cumulative function, giving the average number of points at a distance less than
or equal to r from any point, standardized by the intensity of the process (n/|W |), which is
assumed to be homogeneous.

In practical terms, to study the neighbourhood of points, we will analyse all the distances r, by
calculating the value of the K function for each of these distances. This is done as follows:

1. for each point and distance r, the number of neighbours (other points) located on the circle
with radius r is counted;

2. we then calculate the average number of neighbours (taking into account any edge effects)
for each distance r;

3. lastly, these results will be compared to those obtained on the assumption of a homogeneous
distribution (completion of a homogeneous Poisson process), which will be the expected
reference value.

Finally, we will try to detect if there is a significant difference between the estimates of the observed
and expected number of neighbours.

In Figure 4.8 we compare the three typical spatial distributions that we considered previously
and the three resulting K function curves. The distance r is represented graphically in abscissa
and the value of the K function estimated at this distance is represented in ordinate. With package
spatstat, the K function is calculated using the Kest. function. In Figure 4.8, the estimated K
function is shown in black on the three graphs and the reference value in red dotted lines.

Findings:
— when the process is completely random, the curve deviates relatively little from πr2.

This can be seen on the graph at the bottom left of Figure 4.8. The K curve remains close to
the reference value πr2, for all radii r.

— in the case of a regular process, we obtain: K̂(r) < Kpois(r) because if the points are
repulsive, they have fewer neighbours on average in a radius r than they would have based
on the assumption of a random distribution of points. Graphically, the K curve reflects this
repulsion: we see on the right-hand graph that the K curve is located below the reference
value (πr2) for all radii.

— in the case of an aggregated process, there are on average more points in a radius r around
the points than the expected number under a random distribution: consequently, the points
attract each other and K̂(r)> Kpois(r). Graphically, the K curve is this time located above the
reference value for all areas of study, as can be seen on the central graph shown in Figure 4.8.

library("spatstat")
par(mfrow=c(2, 3), mar=c(1, 2, 2, 2))
plot(rpoispp(50), main="")
plot(rMatClust(5, 0.05, 10), main="")
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Figure 4.8 – K functions for the three standard configurations of points
Source: package spatstat, authors’ calculations

plot(rMaternII(200,0.1), main="")
par(mar=c(4, 4.1, 2, 3))
# Function K calculated by spatstat
plot(Kest(rpoispp(50),correction="isotropic"),legend=FALSE,main="Random")
plot(Kest(rMatClust(5, 0.05, 10),correction="isotropic"),legend=FALSE,main=

"Aggregate")
plot(Kest(rMaternII(200,0.1),correction="isotropic"),legend=FALSE,main="

Regular")
par(mfrow=c(1, 1))

Let’s go over a few important points.

Firstly, the K function is defined using the (strong) stationarity hypothesis. In the case of an
inhomogeneous Poisson processes, the difference from the empirical function may be due to the
variation in intensity rather than to a phenomenon of attraction, i.e. related to the second order
property.

Similarly, the interpretation is subject to the same questions as for “conventional” statistics. Cor-
relation does not lead to causality. A lack of correlation does not necessarily lead to independence
either.

In addition, the cumulative nature of the function K must be taken into account. A high K
value at distance r0 may be due to the combination of phenomena at smaller distances, whereas no
interaction exists between points far from r0.

Note that there is a link between the K function and the point pair correlation function.
This can be approached as follows: draw two concentric circles with radii r and r+ h, and you
count the points in the resulting ring. The expected number is λK(r+h)−λK(r) If the expression
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is standardised by the expected value in the ring for a Poisson process, we obtain:

gh(r) =
λK(r+h)−λK(r)
λπ(r+h)2−λπr2 =

K(r+h)−K(r)
2πrh+πh2 . (4.11)

If we make h tend to 0, g(r) = K′(r)
2πr or K(r) =

∫ 1
0 sg(s)ds, the link between the g function and

the K function is clear.
Finally, the values returned by the K function enable possible interactions to be detected between

the points for each of the distances studied, on the whole of the analysed territory. However, it may
be worthwhile to have local information, as for surface data models for which we calculate local
indicators known as LISA alongside spatial autocorrelation indicators (such as Moran) (see Chapter
3: "Spatial autocorrelation indices"). In point models, there are also local indicators built on the
principle of Ripley indicators. An indicator is calculated for each point K̂(r,xi). The only pairs
of points taken into account are those that contain the point xi. One of the local values or all the
values can then be represented graphically. Different points can be identified graphically or even by
using functional data analysis methods.

The L function of Besag 1977

The particular interest of the Ripley function and more generally of distance-based methods
lies in the fact that they analyse the space studied by running all distances and not using just
one or a few geographical levels. The spread of points is very carefully studied and no analysis
distance is omitted. Consequently, only these methods can be used to detect exactly at what
distance(s) attraction or dispersion phenomena are observable, with no scale bias associated
with a predefined zone. If there are, for example, aggregates of aggregates in spatialized data,
such functions can detect the distances at which spatial concentrations occur: down to the size
of the aggregate and the distance between aggregates. More complex spatial structures may also
be detected, such as multiple agglomeration phenomena for certain distances and repulsion for
other distances (this will be the case if several aggregates are regularly spaced, for example). An
additional benefit is to be able to compare the values produced by the functions between several
distances. This can be done with the K function. In the original version of the K function, it is not
easy to directly compare the estimated values for several areas because the reference value, πr2,
requires new calculations (since hyperbolic graphic comparisons are not immediate). As we will
see, this has been one of the motivations for development of Ripley’s original function.

Two transformations of the Ripley function are frequently used. It is not uncommon to find
applications with these variants in statistical literature rather than the original K function (e.g.
Arbia 1989 concerning the distribution of industrial companies, Goreaud et al. 1999 concerning
the distribution of trees or Fehmi et al. 2001 for plants). The first variant is the L(r) function

proposed by Besag (Besag 1977), which is defined by: L(r) =
√

K(r)
π , and which is valid in a

random process LPois(r) = r. With package spatstat, the L function can be calculated using the
Lest function. Another possible version is L(r)− r, which is compared to 0 in the case of a
completely random distribution. The two advantages to these variants are one the one hand a more
stable variance (Goreaud 2000) and, on the other hand, almost immediately interpretable results
(Marcon et al. 2003). For example, by using the second variant, if the L(r)− r function reaches 2
for a radius r of 1, this means that on average there are as many neighbours within a radius of 1
around each point in this configuration as there would be in a radius of 3 (=2+1) if the distribution

were homogeneous. A better standardisation is K(r)
πr2 whose expected value is 1 and whereby the

empirical value is the ratio between the number of neighbours observed and neighbours expected
(Marcon et al. 2017).
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By way of illustration, we have used the example of an aggregated distribution that was given
in Figure 4.9, with the four estimated results of the functions K, L, L− r and K(r)/πr2 for this
distribution.

Figure 4.9 – Representation of functions K, L, L− r and K(r)/πr2

Source: package spatstat, authors’ calculations

library("spatstat")
AGRE<- rMatClust(10, 0.08, 4)
K<- Kest(AGRE,correction="isotropic")
L<- Lest(AGRE,correction="isotropic")
par(mfrow=c(2, 2))
plot(K,legend =FALSE, main="") # K
plot(L,legend =FALSE, main="") # L
plot(L, .-r~ r, legend =FALSE, main="") # L defined as L(r)-r
plot(K, ./(pi*r^2)~ r, legend =FALSE, main="") # K(r)/(pi r^2)
par(mfrow=c(1, 1))

The D function of Diggle et al. 1991
K and L functions may be used in the studies if the hypothesis of homogeneity of the analysed

space is verified. Another variant of the K function allows the non-homogeneity of space to be
taken into account: this is the D function as proposed by Diggle et al. 1991. This indicator is
directly derived from the work of epidemiologists, seeking to compare the concentration of “cases”
(children with a rare disease in North Britain) and “controls” (healthy children in the same study
area). This function is very simply defined as the difference between two Ripley K functions: cases
and controls. We obtain:

D(r) = Kcas(r)−Kcontrols(r) (4.12)

The D function enables distributions of two sub-populations to be compared. Intuitively, it is
understood that if cases are more localised than controls, a spatial concentration of cases will be
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detected by the D function. Conversely, if the distribution of cases is less concentrated than that of
controls, the D function will detect that cases will be spatially more dispersed than controls. The
benefit of using this function is to be able to detect differences in the distribution being studied
compared to a reference distribution. This may be interesting, for example, if we want to know
whether a certain type of housing is geographically more concentrated than other types of housing,
or whether a type of business is more concentrated within cities than other types of businesses
etc. The difference in two K functions gives a comparison value for D of 0 for all areas of study.
However, it is impossible to compare the estimated D values due to changes in the reference
sub-population. This D function can be implemented in the R software using package dbmss: we
will then use the function called Dhat. Just like the K function, it is also possible to associate
a level of significance of the results by randomly labelling points (see below). The DEnvelope
function will then be favoured. Various applications are available in the literature regarding the
spatial concentration of economic activities (such as Sweeney et al. 1998). Interested readers may
also find a variant of the D function proposed by Arbia et al. 2008.

The Kinhom function of Baddeley et al. 2000.
Kinhom, the version of Ripley’s K function in inhomogeneous space was proposed by Baddeley

et al. 2000. The estimated value of Kinhom therefore involves the estimated values of the intensity
(the hypothesis of an identical intensity at any point in the territory being studied must be rejected
since the space in question is no longer homogeneous). By noting λ̂ (xi) as the estimation of the
process around point i and λ̂ (x j) as the estimation of the process around point j, the cumulative
function Kinhom can be defined as follows:

K̂inhom(r) =
1
D ∑

i
∑
j 6=i

1
{∥∥xi− x j

∥∥≤ r
}

λ̂ (xi)λ̂ (x j)
e(xi,x j;r) (4.13)

with D = 1
|W | ∑i

1
λ (xi)

.

We can show that in the case of an inhomogeneous process: Kinhom,pois(r) = πr2. Estimates
of Kinhom are therefore interpreted in the same way as in the case of the homogeneous K function.
From a practical point of view, the Kinhom function in package spatstat enables the Kinhom function
to be calculated.

In theory, the treatment of non-stationary processes could be considered resolved, but the
practical difficulty lies in estimating local densities using the kernel method. Beyond the technical
difficulties, the theoretical impossibility of separation in a single observation based on first order
phenomenon (intensity) and based on aggregation of the phenomenon being studied results in
significant biases when the window used to estimate local densities is of the same order of magnitude
as the r value in question. There are still few empirical applications for this indicator (Bonneu
2007; Arbia et al. 2012).

4.4.2 How can we test the significance of the results?
Several statistical methods can be used to assess the significance of the results obtained using

the various, previously presented functions. The most common technique is the use of the Monte
Carlo method to simulate a confidence interval, which we will begin by explaining.

Monte Carlo methods
Without any knowledge of the theoretical distribution of Ripley’s K function under the null

hypothesis of a completely random distribution, the significance of the difference between ob-
served values and theoretical values is tested by the Monte Carlo method. This method can
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be used to determine confidence intervals for all derivative functions of K that have been presented.
The function in question will be designated generically by S. To do this, we proceed as follows:

1. A number q of datasets is generated, corresponding to the null hypothesis of the test. If the
null hypothesis is a completely random process, we generate q Poisson intensity processes,
corresponding to the spatial distribution being tested.

2. Curves U(r) = max
{

S(1)(r), ...,S(q)(r)
}

and L(r) = min
{

S(1)(r), ...,S(q)(r)
}

are defined,
which can be used to define an envelope, represented in grey in the graphs produced with the
R software.

3. For a bilateral test, the defined envelope corresponds to a first type of risk α = 2
q+1, i.e.

39 simulations for a test at 5 %.

For each of the functions, we can build this envelope that allows us to compare the statistics
built from the data to statistics derived from the simulation of a random process corresponding to
the tested null hypothesis (a homogeneous Poisson process of the same intensity for the function K).
In package spatstat, the generic envelope command is used to run Monte Carlo simulations and
construct curves corresponding to the upper and lower values of the envelope. The envelope should
not be interpreted as a confidence interval around the indicator being studied: it indicates the critical
values of the test. To give a simple example, let’s use dataset paracou16 relating to the location
of trees in the Paracou forest research station in French Guiana. This data is available in package
dbmss. Let’s calculate the confidence interval associated with the K function with 39 simulations.
In Figure 4.10, the obtained K curve is shown (full black line), the red dotted curve represents the
middle of the confidence interval and the two envelope markers are given as well as the envelope
(curves and grey envelope). We can see that, up to a distance of close to 2 metres, we cannot reject
the null hypothesis of a CSR process based on the Ripley function.

Figure 4.10 – Example of a confidence envelope for the K function
Source: packages spatstat and dbmss, paracou16 data, authors’ calculations

library("dbmss")
# Envelope calculated using package dbmss, data: 2,426 points.
env <- KEnvelope(paracou16, NumberOfSimulations=39)
plot(env,legend =FALSE, main="", xlim=c(0,5), xlab = "r (metres)", ylab= "K

(r)")
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With increased computing power, a common practice is to simulate the null hypothesis many
times (1,000 or 10,000 times rather than 39) and to define the envelope from quantiles α/2 and
1−α/2 for values of S(r).

The test is repeated for each value of r: the risk of mistakenly rejecting the null hypothesis
is therefore increased beyond α . This underestimation of the first type of risk is not very large
because the values of the cumulative functions are auto-correlated to a great degree. The test is
therefore commonly used without any particular precautions. However, authors such as Duranton
et al. 2005 consider this to be serious and try to remedy it. A method to correct the problem is
presented in Marcon et al. 2010 and implemented in package dbmss under the name of the overall
confidence interval of the null hypothesis (as opposed to the local confidence intervals calculated at
each r value). It consists of repeatedly removing a part α of simulations of which at least one value
contributes to U(r) or L(r).

One important point: when calculating an envelope under R, it is systematically associated with
a particular function. In other words, the calculation routines available in the packages take into
account the specific nature of the functions: the confidence intervals are therefore simulated by
considering the correct null hypothesis. For example, to simulate the envelope for the K function,
the null hypothesis is constructed from points that are distributed randomly and independently
in the study area. However, for the D function of Diggle et al. 1991, to develop a confidence
interval with the same assumptions as for the K function would be incorrect. For D, you must
take into account variations in intensity in the area studied. What next? Remember that the null
hypothesis for this function corresponds to a situation where the sub-population of the cases and
the sub-population of the controls have the same spatial distribution. The solution suggested by
Diggle et al. 1991 is random labelling which involves, for each simulation, assigning a “case” or
“control” label for each location. This random permutation of labels in unchanged locations is a
quite intuitive technique that will also be used to develop confidence intervals for other functions
that we will study in section 4.5. Under R, packages spatstat or dbmss have options for calculating
functions that allow this hypothesis of random labelling to be simulated.

Analytical tests

There are few analytical tests in the literature and they are rarely used in studies, even though
they have the advantage of saving calculation time for confidence intervals. For K, for example,
analytical tests exist in simple areas of study (Heinrich 1991). In the particular case of the CSR
character test in a rectangular window, Gabriel Lang and Eric Marcon recently developed a classic
statistical test (Lang et al. 2013) available in the Ktest function of package dbmss (Marcon et al.
2015b). It returns the probability of mistakenly rejecting the null hypothesis of a completely
random distribution from a spatial distribution, without using simulations: the distribution of the
K function with no correction for side effects follows an asymptomatically normal distribution of
known variance. The test can be used from a few dozen points. It should be noted that such tests
for lesser known functions are also proposed in the literature (Jensen et al. 2011).

4.4.3 Review and focus on important properties for new measurements

Measures derived from the Ripley’s K function are useful in many configurations to explain the
interactions between the points studied. We have, incidentally, given many references in various
areas of application. However, specific developments can still be considered to answer certain
questions, such as the location of economic activities. To understand this point, we will consider
the strengths and limitations of the measures taken by Ripley’s K function as part of this framework
of analysis.
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Review: Are the functions derived from Ripley’s K suitable for describing the spatial con-
centration of economic activities?

The statistical tools presented in the previous sections are valuable, but their use in illustrating
data for equipment or companies is not straightforward. To further consider this notion, let’s go back
to the examples in the introduction (the four facilities) and select Ripley’s K function to characterise
the spatial structures of each of these facilities. The results are shown in Figure 4.11: the estimated
function of Ripley’s K is shown as an continuous line, the confidence intervals obtained from 99
simulations by the grey area, the centre of the confidence interval is indicated by the dotted curve
and the edge effects were calculated by the Ripley method. This correction of edge effects is based
on the idea that, for a given point, the part of the crown outside the area (see Figure 4.2) contains the
same density of neighbours as the part located within the study area. This hypothesis is acceptable
because, let’s remember, we consider there to be a completely random point distribution in the case
of Ripley K function. 5

Figure 4.11 – Ripley functions for the four facilities
Source: INSEE-BPE, packages spatstat and dmbss, authors’ calculations

library("dbmss")
load(url("https://zenodo.org/record/1308085/files/ConfPoints.gz"))
bpe_sch<- bpe[bpe $TYPEQU=="C104", ]
bpe_pha<- bpe[bpe $TYPEQU=="D301", ]
bpe_clo<- bpe[bpe $TYPEQU=="B302", ]
bpe_doc<- bpe[bpe $TYPEQU=="D201", ]

schools <- as.ppp(bpe_sch[ ,c ("lambert_x", "lambert_y")], owin(c(min(bpe_
sch[,"lambert_x"]),max (bpe_sch[,"lambert_x"])),c (min(bpe_sch[,"

5. Technically, let us assume that a neighbour of a given point is located in the crown width (inside the domain).
The Ripley correction consists in assigning to this neighbour a weight equal to the inverse of the ratio of the perimeter
of the crown over the total perimeter of the crown.



92 Chapter 4. Spatial distribution of points

lambert_y"]), max(bpe_sch[,"lambert_y"]))))
bpe_schools_wmppp <- as.wmppp(schools)
pharma <- as.ppp(bpe_pha[ , c("lambert_x", "lambert_y")], owin(c(min(bpe_

pha[,"lambert_x"]), max(bpe_pha[,"lambert_x"])), c(min(bpe_pha[,"
lambert_y"]), max(bpe_pha[,"lambert_y"]))))

bpe_pharma_wmppp <- as.wmppp(pharma)
clothing <- as.ppp(bpe_clo[ , c("lambert_x", "lambert_y")], owin(c(min(bpe_

clo[,"lambert_x"]), max(bpe_clo[,"lambert_x"])), c(min(bpe_clo[,"
lambert_y"]), max(bpe_clo[,"lambert_y"]))))

bpe_clothing_wmppp <- as.wmppp(clothing)
doctors <- as.ppp(bpe_doc[ , c("lambert_x", "lambert_y")], owin(c(min(bpe_

doc[,"lambert_x"]), max(bpe_doc[,"lambert_x"])), c(min(bpe_doc[,"
lambert_y"]), max(bpe_doc[,"lambert_y"]))))

bpe_doctors_wmppp <- as.wmppp(doctors)

kenv_schools <- KEnvelope(bpe_schools_wmppp, NumberOfSimulations=99)
kenv_pharma <- KEnvelope(bpe_pharma_wmppp, NumberOfSimulations=99)
kenv_clothing <- KEnvelope(bpe_clothing_wmppp, NumberOfSimulations=99)
kenv_doctors <- KEnvelope(bpe_doctors_wmppp, NumberOfSimulations=99)
par(mfrow=c(2, 2))

plot(kenv_schools, legend=FALSE, main="Schools", xlab = "r (metres)")
plot(kenv_pharma, legend=FALSE, main="Pharmacies", xlab = "r (metres)")
plot(kenv_clothing, legend=FALSE, main="Clothing stores", xlab = "r (metres

)")
plot(kenv_doctors, legend=FALSE, main="Doctors", xlab = "r (metres)")
par(mfrow=c(1, 1))

The results obtained in Figure 4.11 confirm the notions that we had regarding the spatial distribution
of each of the facilities in Rennes (see Figure 4.1). For doctors, clothing shops and pharmacies,
significant levels of spatial concentration are detected (graphically, the K curves are located above
the confidence interval). With regard to schools, the trend towards concentration as well as
dispersion is not evident since the K curve for this sector remains within the confidence interval
below a radius of one kilometre and then, beyond this radius, the observed distribution of schools
in Rennes does not seem to deviate significantly from a random distribution. Finally, note that the
spatial concentration is particularly high for clothing stores (the difference between the K curve
and the upper band of the confidence interval is greatest in this sector).

Can we consider these results sufficient to describe the spatial structure of these facilities
or should they be pursued further? The answer is simple: these conclusions are based on
statistically correct calculations, but they may seem economically irrelevant. These results come up
against several important limits, in particular the hypothesis of homogeneity. First of all, remember
that a spatial concentration detected with the Ripley K function satisfies a particular definition
here: the distributions observed are more concentrated than they would be under the hypothesis of
random distribution. This null hypothesis may seem very strong. Let us consider the case of the
location of pharmacies: we know that in France that this has to meet certain regulatory provisions
linked to the population. The CSR reference distribution does not, therefore, appear to be the most
relevant in this case. A solution would then be to take into account this non-homogeneity of the
space, for example by retaining the function D of Diggle et al. 1991 to compare the distribution
of pharmacies with that of residents. Provided that the data are available and accessible, this
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would allow us to monitor the heterogeneity of the territory. This technique would also make
it possible for us to regulate to a certain extent the severe constraints of setting up operations
(which would prevent an equal probability of being located at any point in the territory analysed)
such as the impossibility of being located in non-buildable areas in Rennes, in urban parks, etc.:
the population and shops cannot be located there. It has to be said that although this strategy is
attractive, it is not completely satisfactory. For example, in the case of facilities, and even more
so in the case of companies, we have observations that are generally weighted very differently
(number of employees, etc.). It is therefore difficult to consider that the points analysed all have
the same characteristics. However, all the functions presented to date (K, L, D and Kinhom) cannot
include a weighting of points. This observation may be very problematic, especially considering
that studies of industrial concentration in the sense of Ellison et al. 1997, Maurel et al. 1999 brought
together economists’ and spatial statisticians’ concerns in the late 1990’s toward zoning-based
spatial concentration indicators. Further developments in this regard must therefore be made for the
measures resulting from Ripley’s K.

Development of distance-based measures to meet economic criteria
In the 2000s’, lists of economically relevant criteria were proposed to characterise the spatial

concentration of economic activities (Duranton et al. 2005; Combes et al. 2004; Bonneu et al. 2015)
as:

— the insensitivity of the measure to a change in the definition of geographical scales;

— the insensitivity to a change in definition of sectoral level (according to the selected sectoral
classification);

— the comparability of results between sectors;

— taking into account the productive structure of industries (i.e. industrial concentration in the
sense of Ellison et al. 1997 which depends on both the number of establishments within the
sectors and the workforce);

— a reference must be clearly established.

These questions have been discussed in many studies, in particular to distinguish between
appreciable criteria such as the comparability of results between sectors, essential criteria such
as the criterion regarding insensitivity of the measure following a change in the definition of
geographical scales (this refers to the previously mentioned MAUP). The benefit of all distance-
based measures presented in this chapter is avoiding the pitfall of MAUP. On the other hand, no
measure has yet tackled sectoral divisions: the problem raised by the second criterion in the above
list therefore remains intact.

What research options exist for extending the presented measures?
Several significant developments were proposed in the 2000s. Continued work by spatial

statistical specialists and the inclusion of spatial concerns in economic studies have contributed
to important innovations in concentration indicators. Not all of the studies will be covered in this
context, but we will consider some of the most widely used information. In the first instance, we will
introduce a slightly counter-intuitive notion of the reference value. When we try to characterise
a point distribution, we implicitly compare it with a reference distribution (the statistician’s null
hypothesis) and it is the difference from this theoretical distribution that makes it possible to assess
the geographical concentration, the dispersion or if the difference is not sufficient to conclude if
there is any interdependence between the points. Let’s re-examine the example of clothing stores
and look at three types of indicators (Marcon et al. 2015a; Marcon et al. 2017 ) to characterise their
location:
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— the topographical measures use physical space as a reference value (Brülhart et al. 2005).
The number of neighbours of points of interest is relative to the surface area of the neighbour-
hood in question: this is part of the mathematical framework of point processes. This kind of
analysis allows the following question to be answered: is the density of clothing shops high
around footwear stores? A positive response, for example, will show a topographical concen-
tration of clothing stores (in the vicinity of these stores, the density of clothing stores is high).
The measures presented in K, L, D and Kinhom accommodate this topographical definition
of the reference value (depending on the functions, the theoretical density is considered to
be constant or not). It is interesting to note that, for this reference value, the hypothesis of a
homogenous or inhomogeneous space can be used;

— the relative measures use a distribution that is not physical space as a reference value.
The number of neighbours is not shown on the surface, but in the number of points in the
reference distribution. This is a clear departure from the theory of point processes, except
to consider the reference distribution as an estimate of the intensity of the process based on
the null hypothesis of independence between the points. In our example, this amounts to
testing the existence of an over-representation or under-representation of clothing stores in
the vicinity of clothing stores compared to a reference, such as all business activities. Note:
the D function is not a relative measure under these hypotheses as it compares density to
another density, based on difference. On the other hand, a relative measure would answer the
following question: around clothing stores, is the frequency of clothing stores is greater than
average, throughout the territory? A positive response leads us to conclude that there is a
relative concentration of clothing stores;

— lastly, absolute measures do not require any standardisation (by space or by comparison
with any other reference). In our example, this amounts to simply counting the number of
clothing shops around the clothing stores. The number obtained can then be compared to its
value under the chosen null hypothesis, obtained using the Monte Carlo method.

Based on the works presented above, in particular regarding the K function, statistical indicators
have been proposed in the statistical literature to characterise these spatial structures under the three
reference values, as mentioned above (Marcon et al. 2017). We will develop several indicators
in the following sections and we will see that another important difference lies in the notion of
neighbourhood. For example, it is possible to study the proximity of the points analysed up to a
certain distance r. In practical terms, this means characterising the proximity of points on discs of
radius r, which defines cumulative-type functions (such as Ripley’s K). Another possibility is to
assess the proximity of the points not up to a distance r but at a certain distance r. Neighbourhood
is assessed in a crown (also called a ring) and density functions are used to characterise it (like
the g function that we have already considered). A graphic illustration of these two definitions is
given in Figure 4.12. In the figure on the left, the grey area corresponds to the surface of a disc with
radius r and, in the figure on the right, to the surface of a crown with a radius r.

The choice of neighbourhood is not insignificant. Therefore, density functions are more
precise around the study radius but do not provide information on spatial structures at smaller
distances, unlike cumulative functions. Only a cumulative function may, for example, detect whether
aggregates are randomly located or whether there is a spatial interaction between aggregates (e.g.
aggregates of aggregates). However, as cumulative functions accumulate spatial information up to
a certain distance, local information at the radius r is unclear, unlike density functions. The use of
one or other of these neighbourhood concepts has advantages and disadvantages (Wiegand et al.
2004; Condit et al. 2000).

Marcon et al. 2017 proposed an initial classification of distance-based functions according to
these two criteria:
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Figure 4.12 – Two possible neighbourhood concepts: on a disk or on a crown
Source: the authors

— the type of function: probability density, like the g function or cumulative , such as Ripley’s
K function;

— the reference value that can be topographical (Ripley functions and their direct variants),
related to a reference situation (such as M that we will present in the next section) or absolute
(i.e. without reference such as the Kd function, also presented in the next section).

It is easy to see why the choice of the correct measure is not immediately clear: first of all, the
question being asked must be identified in order to select the most appropriate measure.

4.5 Recently proposed distance-based measures

In this section, we will present two measures relating to two references that have not yet been
dealt with: the absolute and relative reference.

4.5.1The Kd indicator of Duranton and Overman
Unlike the previously presented functions, this indicator was developed by economists and

was drawn up without any direct links with Ripley’s work (although it was referred to in the
bibliography). The idea of this function is to be able to estimate the probability of finding a
neighbour at a distance r from each point.

Definition 4.5.1 — Kd function of Duranton and Overman. Through standardisation, Du-
ranton et al. 2005 define Kd as a function of density of probability of finding a neighbour at
a distance r. This function can therefore be qualified as an absolute measurement of density
because it has no reference. The proposed indicator is written:

Kd(r) =
1

n(n−1) ∑
i

∑
j 6=i

κ
(∥∥xi− x j

∥∥ ,r) (4.14)

with n designating the total number of points of the sample and κ , the Gaussian kernel as
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2h2

)
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Here we can see the technical difficulty of counting neighbours at a distance r because it requires
the use of a smoothing function (hence the use of the Gaussian kernel in the function). This
smoothing function allows you to count neighbours whose distance is “around” r. The bandwidth
can be defined in several ways but the Silverman 1986 method is mentioned in the original article
of Duranton and Overman. As with other distance-based functions, a confidence interval of the null
hypothesis can be assessed to assess the significance of the results obtained. The marks (weight/type
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pairs) are redistributed to all existing locations (positions taken by points): this technique makes it
possible to control both the industrial concentration and the general location trends of all types of
points (two properties listed in the “correct” concentration index criteria applicable to economic
activities). The hypothesis of a random location of type S points is rejected at distances r, if the
function Kd is located above or below the trust boundary of the null hypothesis. Another version of
Kd that takes into account the weighting of points exists - it was proposed in the original article
by Duranton et al. 2005. Behrens et al. 2015 used a cumulative function Kd . It should be noted
that the Kd function has been the subject of many empirical applications in spatial economics (e.g.
Duranton 2008, Barlet et al. 2008).

The Kd function can be calculated under R using the Kdhat function in package dbmss. The
KdEnvelope function that is available in the same package can be used to associate a confidence
interval with the results obtained.

4.5.2 M function of Marcon and Puech
The M indicator by Marcon et al. 2010 is a cumulative indicator, like Ripley’s K, as it is

calculated by varying a disc of radius r around each point. This is a relative indicator since it
compares the proportion of points of interest in a neighbourhood with the proportion of points
seen throughout the territory analysed. If we consider that clothing stores are attracted to each
other, their proportion around each clothing store will be higher than in the city. In practice, for a
radius r, we will calculate the ratio between the local proportion of clothing stores around clothing
stores and the proportion observed in the city. This calculation is repeated for all clothing stores
and the average of these relative proportions is calculated. The reference value for the M function
is 1. A higher value reflects a relative spatial concentration, and a lower value shows a tendency
towards repulsion (the minimum value being 0). The values of M can also be interpreted in terms
of ratio comparisons: for example, if M(r)=3, this indicates that on average there is a 3 times
higher frequency of points of interest appearing around points of interest within a radius r than
the frequency observed over the entire observation window. Finally, like the Kd function, M can
include weighting of points.

Definition 4.5.2 — M function of Marcon and Puech. Formally, for S type points, Marcon
and Puech’s M function is defined as:

M(r) = ∑
i∈S

∑
j 6=i, j∈S

1
(∥∥xi− x j

∥∥≤ r
)

∑
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1
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∥∥≤ r
) /

nS−1
n−1

. (4.15)

where nS and n refer respectively to the total number of S type points and the total number
of all types of points in the study window. This indicator should be read as the result of two
frequency reports. The local average of the frequency of S type points is compared within a
radius r around S type points with the frequency of S type points over the entire observation
window. Removing a point from the denominator avoids a slight bias, since the centre point
cannot always be counted in its neighbourhood.

As for the Kd function, a version exists that takes into account the weighting of points (Marcon et al.
2017). Technically, this means multiplying the indicator by the weight of the neighbouring point
in question (for example, by the number of its employees or its turnover if we look at industrial
establishments). As with the other indicators, a confidence interval can be generated using Monte
Carlo methods. The specific nature of the points is retained (weight/sector pairing). For M, as for
Kd , the control for industrial concentration is not present in the definition of the function but in
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the definition of the confidence interval, as the points labels (weight/sector pairs) are redistributed
to the existing locations. In their latest work, Lang et al. 2015 offered a non-cumulative version
of the M indicator, named m, similar to the g function for K, see Equation 13.8. As in all the
situations we have encountered, the indicators can lead to different analyses: since the reference
values are not the same, they answer different questions. The analyses provided are, therefore,
complementary (Marcon et al. 2015a; Lang et al. 2015). Finally, note that the M function does not
require correction of edge effects and can be calculated in R using the Mhat function in package
dbmss. The MEnvelope function in the same package makes it possible to combine a confidence
interval to judge the significance of the results obtained.

As an example of application, consider the spatial structures of the four facilities in the
introductory example of the city of Rennes. A graphical representation of the results of the
M function for schools, pharmacies, doctors and clothing stores is given in Figure 4.13.

Figure 4.13 – Marcon and Puech functions for the four facilities
Source: INSEE-BPE, packages spatstat and dbmss, authors’ calculations

library("dbmss")
# Set of marked points
bpe_equip<- bpe[bpe $TYPEQU %in%c ("C104","D301","B302","D201"),c (2,3,1)]
colnames(bpe_equip) <- c("X", "Y", "PointType")
bpe_equip_wmppp <- wmppp(bpe_equip)
r<- 0:1000
NumberOfSimulations<- 99
menv_sch<- MEnvelope(bpe_equip_wmppp, r, NumberOfSimulations,

ReferenceType="C104")
menv_pha<- MEnvelope(bpe_equip_wmppp, r, NumberOfSimulations,

ReferenceType="D301")
menv_clo<- MEnvelope(bpe_equip_wmppp, r, NumberOfSimulations,

ReferenceType="B302")
menv_doc<- MEnvelope(bpe_equip_wmppp, r, NumberOfSimulations,
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ReferenceType="D201")
par(mfrow=c(2, 2))
plot(menv_sch, legend=FALSE, main="Schools", xlab = "r (metres)")
plot(menv_pha, legend=FALSE, main="Pharmacies", xlab = "r (metres)")
plot(menv_clo, legend=FALSE, main="Clothing stores", xlab = "r (metres)")
plot(menv_doc, legend=FALSE, main="Doctors", xlab = "r (metres)")
par(mfrow=c(1, 1))

It is easy to see that levels of spatial concentration can be seen for all of the distances studied for
doctors or clothing stores (both associated M curves being located above their respective confidence
interval up to 1 kilometre). As it is possible to compare the values obtained by the M function,
we can also conclude that the highest levels of aggregation appear at short distances. Thus, in the
very first area of study, the proportion of clothing stores around clothing stores is approximately 2
times higher than the proportion of clothing stores observed in the city of Rennes. This result is
quite close to the conclusions drawn by Marcon et al. 2015a in Lyon for this activity. With regard
to schools or pharmacies, however, concentration or dispersion levels are detected according to
the distances in question. Schools, for example, appear dispersed up to approximately 150 metres
(the associated M curve is located beneath the confidence interval of the null hypothesis up to
this distance), then, beyond a distance of 500 metres, a phenomenon of spatial concentration is
detected. At very short distances, pharmacies appear spatially aggregated, whereas their distribution
is dispersed above approximately 50 metres. However, for schools and pharmacies, we note that
the M curves remain fairly close to their respective confidence intervals.

4.5.3 Other developments
This area of statistical literature is currently growing rapidly (Duranton 2008, Marcon et al.

2017). The contributions are varied: statisticians define the necessary theoretical framework and
researchers develop tools applicable to their specific field. Among the work carried out recently,
Bonneu et al. 2015 propose a family of indicators that have the merit of showing links between
the Bonneu-Thomas (proposed in this article), Marcon-Puech and Duranton-Overman indicators.
Not all indicators have yet been implemented in the usual software, even if efforts are made to take
account of recent developments in the literature and make them freely available to interested users.

4.6 Multi-type processes
The introduction presented four maps relating to the respective locations of schools, pharmacies,

general practitioners and clothing stores (Figure 4.1, p.73). All this information could have been
gathered together, with each activity being a qualitative mark for the process. These marks make it
possible to build multi-type processes, and to introduce new questions alongside those that have
been developed previously: is there independence in location between types (marks)? If the answer
is no, are there any phenomena of attraction or repulsion?

In order to provide answers to these questions, we must now consider processes that have
specific characteristics: it is therefore possible for us to define indicators of the first order (intensity)
and second order (neighbourhood relations), which we will do successively in the following two
sub-sections.

4.6.1 Intensity functions
Analysis of variability in the intensity of processes that led to the observation of distribution of

the analysed entities is interesting for an initial analysis.
In the field of ecology, one might wonder, for example, (i) if all tree species within a forest are

located in the same way, (ii) if the dead trees are more agglomerated than the healthy trees (iii) if
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the presence of young shrubs follows that of parent trees etc. The density study gives an initial
indication of the observed spatial heterogeneity. In the example below, we have used the respective
locations of the trees of a permanent experimental facility in Paracou, French Guiana, available
in the Paracou16 dataset in package dbmss. Three tree species are listed: Vacapoua americana,
Qualea rosea and mixed tree species grouped under the term Other. The high number of trees
present on the Paracou16 plot (2426 trees in total) makes it very difficult to identify any location
trends for each species (see Figure 4.14).

Figure 4.14 – Location of tree species Vacapoua americana, Qualea rosea or other (mix) in the
Paracou16 forest system.
Source: Paracou16 data from package dbmss, authors’ calculations

library("dbmss")
data(paracou16)
plot(paracou16, which.marks=2, main = "")
# the 2nd column makes it possible to differentiate the types of points (

species)

On the other hand, a representation of the density by species is more informative and makes
it possible to highlight differences in location according to the tree species in question (see
Figure 4.15). A 2D representation of density is given in this example and obtained from the
density function of package spatstat.

library("dbmss")
data(paracou16)
V.Americana<- paracou16[paracou16$marks$PointType=="V. Americana"]
Q.Rosea<- paracou16[paracou16$marks$PointType=="Q. Rosea"]
Other<- paracou16[paracou16$marks$PointType=="Other"]
par(mfrow=c(1,3))
plot(density(V.Americana, 8), main="V. Americana")
plot(density(Q.Rosea, 8), main="Q. Rosea")
plot(density(Other, 8), main="Other")
par(mfrow=c(1,1))
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Figure 4.15 – Representation of the density of tree species Vacapoua americana, Qualea rosea or
other (mix) in the Paracou16 forest system.
Source: Paracou16 dataset in package dbmss, authors’ calculations

In the field of spatial economics, the study of multi-type processes could also be rich in
information. We could, for example, question the possible interactions between the different types
of facilities (general practitioners, schools, etc.). Using the extract from the permanent database
of facilities in the city of Rennes, the four spatial sub-distributions were shown in Figure 4.1. In
Figure 4.16, we mapped the densities of two facilities: pharmacies and doctors. Visually, quite
similar implantation trends seem to be present, as confirmed by the 3D representation in Figure 4.16.
The persp function in spatstat is used.

library("dbmss")
# BPE file on the INSEE.fr site: https://www.insee.fr
# Data for these examples:
load(url("https://zenodo.org/record/1308085/files/ConfPoints.gz"))

bpe_pha<- bpe[bpe $TYPEQU=="D301", ]
bpe_doc<- bpe[bpe $TYPEQU=="D201", ]

pharma <- as.ppp(bpe_pha[ ,c ("lambert_x", "lambert_y")], owin(c(min(bpe_
pha[,"lambert_x"]),max (bpe_pha[,"lambert_x"])),c (min(bpe_pha[,"
lambert_y"]),max (bpe_pha[,"lambert_y"]))))

bpe_pharma_wmppp <- as.wmppp(pharma)
doctors <- as.ppp(bpe_doc[ ,c ("lambert_x", "lambert_y")], owin(c(min(bpe_

doc[,"lambert_x"]),max (bpe_doc[,"lambert_x"])),c (min(bpe_doc[,"
lambert_y"]),max (bpe_doc[,"lambert_y"]))))

bpe_doctors_wmppp <- as.wmppp(doctors)

persp(density(doctors),col ="limegreen",
theta = -45,#Viewing angle
xlab = "Lambert X", ylab = "Lambert Y", zlab = "Density",
main = "Doctors")
persp(density(pharma),col ="limegreen", theta = -45,
xlab = "Lambert X", ylab = "Lambert Y", zlab = "Density",
main = "Pharmacies")

However, only the results of a second order process property analysis will allow us to reach a
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Figure 4.16 – Representation of the density of pharmacies and doctors in Rennes
Source: INSEE-BPE, packages spatstat and dbmss, authors’ calculations
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conclusion of any possible interaction (attraction or repulsion) between tree species or between
facilities. This is why a first order property study is only a first step of analysis when studying
spatial distribution.

4.6.2 Intertype functions
Various developments have been proposed to study the second order properties of multi-type

processes. Indicators derived from Ripley’s K function (univariate) have been proposed to analyse
relative locations of spatial sub-distributions related to different marks. These indicators are
generally referred to as intertype or bivariate functions. We will look at two in more detail in the
following sub-sections. From a practical point of view, it is possible to use R packages such as
spatstat or dbmss to calculate the functions and represent the results graphically.

The K intertype function
Consider the following case. We would like to study the spatial structure between two types of

points, for example: T type points located around S type points. Using an intertype function then
makes it possible to study the spatial structure of T type points located at a distance of less than or
equal to r from S type points.

An initial indicator can be used, the K intertype function. This is written K̂S,T and is defined as
follows:

K̂S,T (r) =
1

λ̂SnS
∑
i∈S

∑
j∈T

1
{∥∥xi− x j

∥∥≤ r
}
. (4.16)

where λ̂S refers to the estimated intensity of the S type sub-process. In the field of study, nS

represents the total number of points S.
In the event that S and T are the same type, the definition of the univariate K function is presented

in the section 4.4.1 (p.83). Note, however, that the correction of edge effects is not included here in
the definition of the intertype K function for ease of presentation. The reference value is always
πr2, regardless of the radius r, since this is based on the null hypothesis of a completely random
distribution of points (of types S and T ). If the S type sub-process is independent of the T type
sub-process, then the number of T type points within or equal to a distance of r from an S type
point is the expected number of T type points located in a disc or radius r, or λT πr2. This null
hypothesis corresponds to the independent distribution of two types of industrial establishments,
for example. Another null hypothesis giving the same result is that the points are first distributed
according to a homogeneous Poisson process and then receive their type in a second stage (for
example, commercial spaces are created and then occupied by different types of shops). For all r
distances for which observed values of K̂S,T (r) are less than πr2, a tendency to repulsion of T
points around S points would be reported. Conversely, values of K̂S,T greater than πr2 will tend to
validate an attraction of T points around S points within a radius r. The simulation of a confidence
interval using the Monte Carlo method will result in an attraction or a repulsion between the two
types of points.

The K intertype function can be implemented in package spatstat using the Kcross function. In
application, let’s look again at the example of the Paracou16 data. Indeed, if we use the intertype
K function, we hypothesise that the space in question is homogeneous; however, this hypothesis is
almost systematically used in empirical analyses in forest ecology (Goreaud 2000). In Figure 4.17,
we have represented the intertype K functions (or bivariates) for the species Qualea rosea or mixed
Other with that of Vacapoua americana. The black curves represent observed K intertype functions
and red dotted lines represent reference intertype K functions. As can be seen, there is a repulsive
relationship between Qualea rosea and Vacapoua americana (observed K intertypes are located
below the reference value) whereas no association trend appears to exist between the Vacapoua
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americana and other tree species (theoretical and observed K intertype curves are mixed up for all
distances).

Figure 4.17 – Interactions of different tree species in the Paracou16 forest system
Source: Paracou16 dataset in package dbmss, authors’ calculations

library("dbmss")
# Simplification of marks
marks(paracou16)<- paracou16$marks$PointType
par(mfrow=c(1,2))
# Calculation of K intertypes for the trees of species "Q.Rosea" around

those of species "Q. Rosea"
plot(Kcross(paracou16, "V. Americana", "Q. Rosea", correction="isotropic"),

legend=FALSE, main=NULL)
# calculation of K intertypes for trees of species "Q.Rosea" around those

of species "Other"
plot(Kcross(paracou16, "V. Americana", "Other", correction="isotropic"),

legend=FALSE, main=NULL)
par(mfrow=c(1,1))

The M intertype function
Similarly, the previously presented M function can be used as an intertype tool. The idea is

always to compare a local proportion to a global proportion but in the case of the M intertype
function, the type of neighbouring points of interest is not the same as that of the centre points. For
example, if we suspect an attraction of T type points by S type points, we will compare the local
proportion of T type neighbours around S type points to the overall proportion observed throughout
the territory in question. If the attraction between the T type points around S type points is real, the
proportion of T type points around S type points should be locally higher than that observed across
the entire study area. Conversely, if T points are repulsed by S type points, the relative proportion
of T type points around S type points will be relatively lower than that observed for the whole
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territory analysed. In this case, the unweighted empirical estimator of M intertypes will be defined
by:

M̂S,T (r) = ∑
i∈S

∑
j∈T

1
(∥∥xi− x j

∥∥≤ r
)

∑
j 6=i

1
(∥∥xi− x j

∥∥≤ r
) / nT

n−1
. (4.17)

where n means the total number of points across the entire study area, nS the S type points. As for
the intertype K function, we will assume here that each point belongs to only one type that can be S,
T or other. For the intertype M function, the reference value for all distances r in question is always
equal to 1. For more details on this function (taking into account the weighting, construction of the
associated confidence interval, etc.), please refer to the article by Marcon et al. 2010. This intertype
function can be calculated in R using the Mhat function of package dbmss. The MEnvelope function
from the same package can be used to construct a confidence interval.

A concrete example of how to apply M intertypes is given below, based on the Rennes facilities
that were considered in the introduction. If we suspect relationships of attraction or repulsion
between several facilities, it is then possible to analyse existing interactions using the intertype
M function. Remember that using the M function makes it possible to reject the hypothesis of a
homogeneous space that can be considered to be a strong hypothesis to characterise the location
of economic activities (see, for example, Duranton et al. 2005, p. 1104). In this case, the use of
M intertypes would therefore seem more appropriate than K intertypes. In Figure 4.18, based on
the data extract from the facilities database, we have represented the links between the locations
of doctors and pharmacies in Rennes. On the right-hand graphic, the locations of pharmacies in
a neighbourhood of r metres of doctors have been analysed. A repulsion would be detected at
very short distances and then intertype aggregation would be observable up to 1 km. The left-hand
graphic shows that doctors seem to be relatively agglomerated within a radius of 1 km around the
locations of pharmacies in Rennes (the construction of a confidence interval with 100 simulations,
for example, would allow us to conclude that the tendency towards dispersion at very short distances
is not significant).

library("dbmss")

# BPE file on the INSEE.fr site: https://www.insee.fr
# Data for these examples:
load(url("https://zenodo.org/record/1308085/files/ConfPoints.gz"))

# Set of marked points
bpe_equip <- bpe[bpe$TYPEQU %in% c("C104","D301","B302","D201"), c(2,3,1)]
colnames(bpe_equip) <- c("X", "Y", "PointType")
bpe_equip_wmppp <- wmppp(bpe_equip)
bpe_pha <- bpe[bpe$TYPEQU=="D301", ]
bpe_doc <- bpe[bpe$TYPEQU=="D201", ]
pharma <- as.ppp(bpe_pha[ , c("lambert_x", "lambert_y")], owin(c(min(bpe_

pha[,"lambert_x"]), max(bpe_pha[,"lambert_x"])), c(min(bpe_pha[,"
lambert_y"]), max(bpe_pha[,"lambert_y"]))))

bpe_pharma_wmppp <- as.wmppp(pharma)
doctors <- as.ppp(bpe_doc[ , c("lambert_x", "lambert_y")], owin(c(min(bpe_

doc[,"lambert_x"]), max(bpe_med[,"lambert_x"])), c(min(bpe_med[,"
lambert_y"]), max(bpe_med[,"lambert_y"]))))

bpe_doctors_wmppp <- as.wmppp(doctors)
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Figure 4.18 – Neighbouring relationships between doctors and pharmacies in Rennes
Source: INSEE-BPE, packages spatstat and dbmss, authors’ calculations

# Set of marked points
r<- 0:1000

# M intertype: study of interactions between doctors’ locations around
pharmacies

M_pha_doc<- Mhat(bpe _equip_wmppp, r, ReferenceType="D301", NeighborType="
D201")

# M intertype: study of interactions between pharmacy locations around
doctors

M_doc_pha<- Mhat(bpe _equip_wmppp, r, ReferenceType="D201", NeighborType="
D301")

par(mfrow=c(1, 2))
plot(M_pha_doc, legend=FALSE, main="Pharmacies/Doctors", xlab = "r (metres)

")
plot(M_doc_pha, legend=FALSE, main="Doctors/Pharmacies", xlab = "r (metres)

")
par(mfrow=c(1, 1))

Analysis of the neighbouring relations between Rennes facilities is not the only factor that
can be explored. For example, we could suspect interactions between the locations of certain
facilities and the population. To examine this relationship, the data in Figure 4.13 would have to
be considered with the population data. The R code to establish the link between the population
and the four types of facilities considered using the M function is given below. Figure 4.19 clearly
shows that the distribution of the four facilities in question does not appear to deviate significantly
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from that of the population (the maximum distance reported was limited to 100 metres as no notable
result is obtained beyond this radius).

Figure 4.19 – Facilities/population interactions for the four facilities in Rennes
Source: INSEE-BPE, packages spatstat and dbmss, authors’ calculations

library("dbmss")
colnames(popu) <- c("X", "Y", "PointWeight")
popu$PointType<- "POPU"
popuwmppp<- wmppp(popu)

# Merger of point sets in the window bpe_equip_dbmms
bpe_equip_popu<- superimpose(popuwmppp, bpe_equip_wmppp, W=bpe_equip_wmppp

$window)

# 100 simulations are selected by default
menv_popu_sch<- MEnvelope(bpe_equip_popu, r, ReferenceType="POPU",

NeighborType="C104", SimulationType="RandomLabeling")
menv_popu_pha<- MEnvelope(bpe_equip_popu, r, ReferenceType="POPU",

NeighborType="D301", SimulationType="RandomLabeling")
menv_popu_clo<- MEnvelope(bpe_equip_popu, r, ReferenceType="POPU",

NeighborType="B302", SimulationType="RandomLabeling")
menv_popu_doc<- MEnvelope(bpe_equip_popu, r, ReferenceType="POPU",

NeighborType="D201", SimulationType="RandomLabeling")

par(mfrow=c(2, 2))
plot(menv_popu_sch,legend =FALSE, main="Schools", xlim=c(0,100), xlab = "r

(metres)")
plot(menv_popu_pha,legend =FALSE, main="Pharmacies", xlim=c(0,100), xlab =

"r (metres)")
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plot(menv_popu_clo, legend=FALSE, main="Clothing stores", xlim=c(0,100),
xlab = "r (metres)")

plot(menv_popu_doc, legend=FALSE, main="Doctors", xlim=c(0,100), xlab = "r
(metres)")

par(mfrow=c(1, 1))

Lastly, note that the M intertype function is not the only function available in heterogeneous
space. Other univariate functions have a bivariate version such as Kd or Kinhom and can be imple-
mented using package package dbmss in R.

4.7 Process modelling

The processes presented above, particularly the Poisson processes, are also used to build models.
As in traditional statistical models, they are used to explain and predict. The aim is also to find the
one with the best power of explanation among the competing models. To build these models, we
use covariables. The flexibility of the R software allows the use of data that are associated with
observation points, but also continuous data, images and grids.

4.7.1 General modelling framework
To adjust a Poisson point process to a spread of points, the shape of the intensity function can be

specified λ (·) in order to look for the parameters that allow for the best adjustment. In the spatstat,
package, the ppm function is an essential tool. If we call trend the intensity model and mypp the
process analysed, the command is written:

ppm(mypp~trend)
# where "trend" refers generically to a trend and
# "mypp" refers to the process analysed

The syntax of this point process modelling (PPM) command is similar to that of the standard
command lm in R, which is used for linear regression models. There are many specifics in
modelling: estimated models may result from a log-linear function of the explanatory variable,
defined from several variables, etc. The choice and validation of the models must complete the
analysis to provide a conclusive response. Among the solutions, the likelihood ratio test may be
applied.

4.7.2 Application examples
To address such a question, the datasets analysed must be rich enough to satisfy theoretical

models. Readers interested in this approach may refer to the two notable examples dealt with in
detail in the work of Baddeley et al. 2005. The first is based on data (Bei) relating to trees of the
species Beischmiedia pendula available in package spatstat. Indeed, in addition to the location of
trees of this species in a tropical rainforest on the island of Barro Colorado, data on the altitude and
slope of the land are also provided. The second dataset, named Murchison in package spatstat,
relates to the location of gold deposits in Murchison in West Australia. This is used to model the
intensity of gold deposits according to other spatial data: the distance to the nearest geological
fault (the faults are described by lines) and the presence of a particular type of rock (described
by polygons). Process intensity modelling can therefore be based on exogenous variables that are
measured or calculated from geographical information.

Modelling progress is implemented regularly in the ppm function. The ability to model inter-
actions between points (with the interaction argument in the function) in addition to density
currently exists for only one particular type of processes, those of Gibbs, used for the modelling
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of the spatial aggregation in industry by Sweeney et al. 2015. The ppm function can be used for
updates.

Conclusion
In this chapter, we have attempted to give an initial overview of the statistical methods that can

be used to characterise point data. Our objective was to emphasise that the diversity of questions
raised requires careful handling of statistical tools. Before any study, the question asked and its
framework of analysis should, therefore, be clearly defined in order to select the most relevant
statistical method. This theoretical warning is important because calculation routines are now
widely accessible in the R software in particular and, in principle, pose few practical problems in
use. These statistical methods may give rise to more advanced analyses in this field or additional
studies, in particular in spatial econometrics for example (see Chapter 6: "Spatial econometrics:
current models).
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